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Abstract

Background: Protein secretion is one of the most important processes in eukaryotes. It is based on a highly
complex machinery involving numerous proteins in several cellular compartments. The elucidation of the cell
biology of the secretory machinery is of great importance, as it drives protein expression for biopharmaceutical
industry, a 140 billion USD global market. However, the complexity of secretory process is difficult to describe using
a simple reductionist approach, and therefore a promising avenue is to employ the tools of systems biology.

Results: On the basis of manual curation of the literature on the yeast, human, and mouse secretory pathway, we
have compiled a comprehensive catalogue of characterized proteins with functional annotation and their
interconnectivity. Thus we have established the most elaborate reconstruction (RECON) of the functional secretion
pathway network to date, counting 801 different components in mouse. By employing our mouse RECON to the
CHO-K1 genome in a comparative genomic approach, we could reconstruct the protein secretory pathway of CHO
cells counting 764 CHO components. This RECON furthermore facilitated the development of three alternative
methods to study protein secretion through graphical visualizations of omics data. We have demonstrated the use
of these methods to identify potential new and known targets for engineering improved growth and IgG
production, as well as the general observation that CHO cells seem to have less strict transcriptional regulation of
protein secretion than healthy mouse cells.

Conclusions: The RECON of the secretory pathway represents a strong tool for interpretation of data related to
protein secretion as illustrated with transcriptomic data of Chinese Hamster Ovary (CHO) cells, the main platform for
mammalian protein production.
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Background
Protein secretion is one of the most important processes
in eukaryotes, allowing diverse events from enzyme se-
cretion in saprobes to hormonal signalling in multicellu-
lar organisms, and facilitates production of recombinant
proteins in most eukaryotic production hosts. Protein
secretion is a complex process, which involves a large
number of proteins and a series of steps spanning
several cellular compartments. The secretory pathway

has two main functions: 1) performing proper folding
and post-translational modifications (PTMs) of proteins
e.g. glycosylation and sulfation, and 2) sorting proteins
to their final cellular or extracellular destination. The
diverse processes along the secretory pathway are han-
dled by so-called secretory components [30]. The actual
protein traffic is regulated by the organised action of nu-
merous structural and regulatory proteins. Additionally,
a number of regulatory proteins are dedicated to secure
the proper response of the protein secretion pathway to
environmental changes, nutrient availability, stress con-
ditions, as well as differentiation signals [24]. In humans,
malfunctions in secretory components can result in
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Huntington’s, Alzheimer’s, or Parkinson’s disease, and
protein specific misfolding can lead to cystic fibrosis and
antitrypsin deficiency [42, 48].
Such a highly complex process is difficult to describe

using a reductionist approach, and therefore a promising
avenue is to employ the tools of systems biology. A
particularly useful tool is a network reconstruction – a
compilation of a list of the known components in a
specific area of cell biology and the interaction of said
components. Such network reconstructions (RECONs)
have helped to analyse complex cellular pathways and net-
works related to metabolism, transcriptional regulation,
protein-protein interactions (PPI), and genetic interactions
among others [6]. As RECONs allow the analysis of gene-
or protein-level data in their biological context, they be-
come tools for hypothesis-driven biological discovery [34].
To our knowledge, so far none has built dedicated

RECONs of the protein secretion pathway with a focus
on the secretory components and regulators. Models of
the metabolic elements of the secretory pathway have
recently been presented for fungi [13, 30]. However,
there are few well-defined biochemical reactions in
protein secretion, and metabolic models fail to capture
all of the regulatory processes and protein interactions.
Furthermore, these models have limited applicability in
mammalian production systems due to the phylogen-
etic distance between fungi and mammals. Another
approach has been to examine the systems properties
of protein secretion through generating a map of the
PPIs in the human secretory systems [5, 10]. Such maps
provide valuable information about protein organisation
and potential protein interactions, but are still static
pictures of the interconnectivity. A major weakness of
PPI-based networks is that the presence of an interaction
between proteins does not necessarily indicate a biologic-
ally functional relationship under all conditions [44].
Here, we are interested in applying RECONs to the

mammalian secretory pathway and related cell pro-
cesses due to the importance to biopharmaceutical
manufacturing. In 2013, the global market of biopharma-
ceuticals reached 140 billion USD of which the majority of
proteins requiring post-translational modifications are
produced in mammalian cells [43].
Among mammalian expression systems, CHO cell-

based systems are most commonly used for therapeutic
protein production in the biopharmaceutical industry

due to the robustness of the cell, their ability to produce
glycosylation patterns similar to humans, and that
they are well adapted to industrial production in suspen-
sion without serum [43]. However, the quality of
genome-level data in the CHO system is still at its in-
fancy compared to more developed model organisms
such as mouse or humans. The first genome of the CHO
cell line was only published in 2011 [16, 46] followed by
publications of the draft Chinese hamster genome and
several other CHO genomes in 2013 [7, 22, 29]. There-
fore, in order to provide a RECON of high quality for
understanding protein secretion in CHO cells, one will
have to utilize the information from other model or-
ganisms, where the annotation is more developed.
In this study, we provide a holistic view of protein se-

cretion which allows the interpretation of genome-scale
data from mammalian cell lines, in particular mouse and
CHO cells. For this use, we have generated a RECON of
the secretory machinery that can integrate data with
transcriptomics, proteomics, and genomics. Through
manual curation of literature on human and mouse
secretory pathways, supplemented by characterizations
in yeast, we provide a comprehensive catalogue of char-
acterized secretory components, including with func-
tional annotation and the interconnectivity of the
components, thus establishing – to our knowledge –
the largest RECON of the functional secretion pathway
to date. This serves both as a knowledge repository and
as a tool for interpretation of complex genome-scale
data from mammalian cells. In this study, we have
applied the RECON to transcriptome data from both
mouse and Chinese hamster ovary (CHO) cell lines.

Methods
Cell culture and media
A suspension and serum-free adapted sub clone of the
CHO-K1 parental cell line (ATCC CCL-61), kindly pro-
vided by Novo Nordisk A/S, was grown in HyClone
CDM4CHO with L-Glutamine medium (Thermo Ficher
Scientific) supplemented with 0.5% Penicillin-Streptomycin
(Lonza, Thermo Ficher Scientific) and 0.4% Anti-Clumping
Agent (Gibco, Life Technologies) (Table 1).
A recombinant suspension CHO DG44 cell line stabile

expressing a human IgG (DG44IgG), kindly provided by
Symphogen A/S, was grown in PowerCHO medium (Lonza,
Thermo Ficher Scientific) supplemented with 5 mM L-

Table 1 Chinese hamster ovary cell lines and culture conditions

# Cell line Description Condition

1 CHO-K1 Serum-free/suspension Control no IgG

2.1 DG44IgG Serum-free/suspension Control IgG

2.2 DG44IgG-0NEAA Serum-free/suspension/0%NEAA 0% NEAA supplement

2.3 DG44IgG Serum-free/suspension Secretion stress (NaBu 5 mM)
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Glutamine (Gibco, Life Technologies), 0.1 mM MEM
Non-Essential Amino Acid Solution ((Lonza, Thermo
Ficher Scientific), and 0.4% Anti-Clumping Agent (Gibco,
Life Technologies). A sub clone of the DG44IgG cell line
was adapted to growth without MEM Non-Essential
Amino Acid Solution (DG44 IgG-0NEAA) (see Table 1).
All cell lines were expanded in Erlenmeyer cell culture

flasks (Corning, Sigma-Aldrich) and grown at 80 rpm in
a humidified incubator at 37 °C with 5% CO2. Cell via-
bility was measured with NucleoCounter NC-100 cell
counter (Chemometec, Allerød, Denmark) according to
manufacturers protocol.

Measurements of metabolites and productivity
Glutamine and glutamate were determined by YSI 2700
Select Biochemistry Analyzer (YSI Life Sciences, USA)
calibrated with standard solution from YSI: L-glutamine
2737 and L-glutamate 2756. Glucose and lactate were
determined by YSI 2300 Select Biochemistry Analyzer
(YSI Life Sciences) calibrated with standard solution
from YSI: D-glucose 2356 and L-lactate 1530. The IgG
concentration was quantified by Biolayer Interferometry
on ForteBIO Octet QK instrument (ForteBIO, USA) using
the Protein A biosensor kit according to manufacturer’s
protocol.

RNA purification and next-generation sequencing
Batch cultures were conducted in 250 ml Erlenmeyer
cell culture flasks (Corning). The cells were seeded at
3.8 × 105 cells mL−1 in 80 ml. The cultures were main-
tained at 37 °C and a constant agitation speed of
80 rpm. 2 ml were sampled twice a day to monitor the
cultures viability and productivity.
In order to analyse the transcriptome, we wanted RNA

samples obtained from cells in exponential growth phase
as well as in stationary phase. When seeded at 3.8 × 105

cells mL−1, CHO-K1 entered the exponential phase
within 20 h of cultivation and had not reached stationary
phase after 50 h. The CHO DG44 cell lines also entered
the exponential phase after 20 h of cultivation and had
not entered stationary phase 70 h after seeding.

RNA was extracted from the cultures at the following
time points: CHO-K1 at 24 h and after 120 h, DG44IgG
and DG44IgG-0NEAA at 48 h and after 120 h, and
DG44IgG added sodium butyrate 48 h after inoculation
(NaBu, 5 mM) after 140 h (Table 2).
Total RNA was isolated using phenol–chloroform

extraction from Trizol lysed CHO cell pellets. In brief,
2 × 106 CHO suspension cells were washed in ice-cold
PBS and lysed in 400 μl TRI reagent (Sigma–Aldrich)
and stored at −80 °C. Total RNA was extracted using
chloroform and purification was performed by RNeasy
mini kit (Qiagen, USA). Concentration and purity were
analysed through absorption at 230, 260, and 280 nm
using a NanoDrop spectrophotometer (Thermo Scientific)
and Qubit 2.0 (Invitrogen, MA, USA). RNA integrity was
assessed using RNA 2100 Bioanalyzer (Agilent Technolo-
gies, Germany).
Multiplexed cDNA library generation using the TruSeq

RNA Sample Preparation Kit v2 (Illumina, Inc., San Diego,
CA) and next-generation sequencing were performed by
AROS Applied Biotechnology (Aarhus, Denmark) using
eight samples per lane in an Illumina Hiseq 2000 system
for paired-end sequencing (SRA accession: SRP073484).

Processing next-generation sequencing data
The FASTQC tool version 0.11.3 (http://www.bioinfor
matics.bbsrc.ac.uk/projects/fastqc) was used to evaluate
the quality of fastq files before and after treatment.
Quality trimming and adapter clipping were performed
using Prinseq-lite version 0.20.3 [37], trimming trailing
bases below quality 20, cutting adaptamer (first 14 bp),
and discarding clipped reads shorter than 40 bp. Reads
whose mates were discarded due to quality trimming
and length constraints were processed as single end
reads. The trimmed reads were mapped to the CHO-K1
genome (assembly and annotation) released in 2012
(NCBI Accession: GCF_000223135.1) using TopHat2
version 2.0.9 (using Bowtie 2.2.0) with default settings
[25, 26]. Read counts for each transcript were obtained
with HTSeq count version 0.5.4p3 using the intersection
none-empty mode [1].

Table 2 Overview of culture condition at RNA sampling

# Cell line Conditiona μ [h−1] td [h] qIgG Time [h]

1.1 CHO-K1 Exponential phase 0.0353 19.6 0 24

1.2 CHO-K1 Stationary phase 0.001 693.1 0 120

2.1.1 CHO DG44 IgG Exponential phase 0.0231 30.0 9.93 48

2.1.2 CHO DG44 IgG Stationary phase 0.0008 866.4 8.28 140

2.2.1 CHO DG44 IgG Exponential phase, 0% NEAA 0.0235 29.5 8.46 48

2.2.2 CHO DG44 IgG Stationary phase, 0% NEAA 0.0094 73.7 8.42 130

2.3.1 CHO DG44 IgG Secretory stress by NaBu 0 −99.0 11.86 70

2.3.2 CHO DG44 IgG Secretory stress by NaBu 0 −138.6 17.12 100
aCondition at the time point of RNA sampling, μ: Specific growth rate, td: Doubling time, qIgG: Specific IgG production rate, Time: Time of cultivation
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In addition to the RNA-Seq data from the eight cultures
described above, similar RNA-Seq data of 32 samples from
cultures from 14 clones of recombinant suspension CHO
DBX11 cell line stably expressing a human factor VIII
(FVIII) and RNA-Seq of 22 samples (Table 3) from mouse
embryonic tissue were downloaded from the mouse EN-
CODE project [19, 33]. All RNA-Seq data were processed
as described above, but for the mouse RNA-Seq sam-
ple reads were mapped mouse genome (mm9, UCSC)
(downloaded November 2013, http://ccb.jhu.edu/soft
ware/tophat/igenomes.shtml). For each sample only
the first 40 million mate-pairs of the 100 million were used.

RNA sequencing data analysis
The read counts were normalised using EdgeR (version
3.6.8) [36] in R [18]. Genes with detected counts per
million (CPM) in at least two samples were kept. The
normalised read counts were utilised for clustering the
major sub-networks gene expression patterns. Hierarchical
cluster analysis was performed in R using the package
pvclust (version 1.2–2) [40] with average linkage method
and the number of bootstrap set to 1000. Main clusters
were identified for α = 0.95 and standard errors for ap-
proximately unbiased (AU) p-values. All genes of the tran-
scriptome dataset were correlated to identify expression

profile clusters by calculating Spearman and Spearman
squared correlation coefficients. Following identification of
the expression levels for all genes in the CHO genome, the
Spearman correlation coefficient was calculated for each
gene to the productivity of IgG and growth rate μ using R.
Genes were considered to correlate significantly with
productivity with Spearman’s correlation > 0.81 or < −0.81
(constituting two standard deviations from the mean of all
measured correlations).

Differential gene expression analysis
Differential expression analyses were conducted for the
CHO RNA-Seq data of Table 1. To take known sources
of variation into account, the differential analyses were
performed using the GLM likelihood ratio test in EdgeR
for the experiments with multiple factors. A p-value of
0.05 and a false discovery rate (FDR) < 0.05 as well as ±
log2.0 fold changes, were used as the default thresholds
to identify the differentially expressed genes.

Gene ontology enrichment analysis
A BLASTp search of the CHO proteome from Genbank
(downloaded March, 2013) based on the Protein Genbank
IDs extracted from the CHO K1 genome annotation file
(NCBI Accession: GCF_000223135.1] was performed

Table 3 Mouse RNA-Seq samples downloaded from the Encode Project

Sample name Tissue Age [weeks] Replica # Sample # GEO Accession

LID46946 CNS 11.5 1 1 GSM1000573

LID46947 CNS 11.5 2 2 GSM1000573

LID46948 CNS 14 1 3 GSM1000570

LID46949 CNS 14 2 4 GSM1000569

LID46950 CNS 18 1 5 GSM1000570

LID46951 CNS 18 2 6 GSM1000570

LID46983 Placenta 8 1 7 GSM1000565

LID46984 Placenta 8 2 8 GSM1000565

LID46985 Limb 14.5 1 9 GSM1000568

LID46986 Limb 14.5 2 10 GSM1000568

LID46987 Wholebrain 14.5 1 11 GSM1000572

LID46988 Wholebrain 14.5 2 12 GSM1000572

LID47030 Bladder 8 1 13 GSM1000564

LID47031 Bladder 8 2 14 GSM1000564

LID47036 Cerebellum 8 1 15 GSM1000567

LID47037 Cerebellum 8 2 16 GSM1000567

LID47144 Liver 14 1 17 GSM1000574

LID47145 Liver 14 2 18 GSM1000574

LID47146 Liver 14.5 1 19 GSM1000571

LID47147 Liver 14.5 2 20 GSM1000571

LID47148 Liver 18 1 21 GSM1000566

LID47149 Liver 18 2 22 GSM1000566
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against the mouse, human and rat proteome from UniProt
and The Ensembl BioMart (downloaded March, 2013) to
find the closest homologous proteins (lowest E-value) in
these species. Identifiers, including RefSeq Protein Acces-
sion, ENSEMBL gene ID, and UniProt accession for each
protein were subsequently obtained using the Gene ID
conversion Tool from the DAVID database [17] (from No-
vember, 2013). Gene ontology (GO) enrichment analysis
was performed by use of the online server of Gene Ontol-
ogy Consortium [4] and PANTHER classification system
[31] using the mouse UniProt accession numbers and
Mus musculus as background.

Mouse functional secretory network
A list of components was drafted based on pathway data
from mouse retrieved from the Kyoto Encyclopedia of
Genes and Genome database [23]. Additional informa-
tion from UniProt [11] and Reactome [20] of functional
annotation and described interaction was included. The
draft was refined and expanded by manually curation
based on a literature survey of the secretion machinery
related genes in yeast, human, and mouse. The genes
were categorised in sub-pathways manually according to
closest relation found in literature.

CHO cell line specific secretory network
A local BLASTp of the complete mouse secretion network
was performed against the CHO-K1 genome (downloaded
from Genbank as assembly GCF_000223135.1 with RefSeq
annotation, March 2013). To find the closest homolo-
gous of CHO; lowest E-value and identity level >90%
was considered a CHO homolog.

Graphic representation of the secretory network
The secretion network was made compatible for visual-
isation in Cytoscape version 3.2.1 [38]. Colours of nodes
were set based on ± 2.0 fold change. Thickness of lines
encircling nodes were increased by p-value when < 0.05.
The significance of the networks is calculated using
Fisher’s exact test, and the p-value is the executed nega-
tive logarithmic transformation.

Results
Reconstruction of the mammalian secretory network for
mouse proteins
Our first goal was to establish a RECON of the secretory
pathway based on the highest possible quality of annota-
tion data. Initially, a draft RECON of the secretory ma-
chinery pathways in mouse was generated based on data
retrieved from the Kyoto Encyclopedia of Genes and
Genome database [23]. Additional information from
UniProt [11] and Reactome [20] was included to expand
the network beyond the functions covered in KEGG.

Furthermore, the draft RECON was curated by adding
and refining biological functions found in an extensive
literature review of secretion pathway proteins in yeast,
human, and mouse. In order to achieve as holistic a view
of protein secretion as possible, we also included 75
genes that in literature have been tentatively associated
with the secretory machinery. As a result, the generated
secretory RECON comprises 801 components, all sup-
ported by literature (Additional file 1: Table S1).
Two hundred eighty-seven of the 801 components

represent the core components of the protein secretory
machinery that are directly involved in the translocation,
folding, post-translational modifications and transport
of the proteins (Additional file 1: Table S2). The post-
translational modifications comprising N- and O- gly-
cosylation systems occurring in the Golgi compartment
are seen as independent systems and are therefore not
included in this RECON. The reconstructed network
thus condenses our current knowledge of the protein
secretory machinery excluding the Golgi compartment.

Ontology of the RECON: components, subsystems, and
functions of the secretory machinery
The secretory machinery consists of several intercon-
nected pathways defined from literature, which we here
termed subsystems. These subsystems are to some extent
overlapping: translocation, protein folding (PF), protein
transport (PT), ER-associated degradation (ERAD), and
unfolded protein response (UPR), see Fig. 1a and Table 4.
To provide an overview of the 801 components, we

first categorized them by the different subsystems.
Within each subsystem, components and complexes of
components were grouped according to their function
described in literature, termed functional groups. A
component can be assigned to one or several functional
groups if literature reports different functions. A func-
tional network is thus the network of reported interactions
within a functional group.
The network was then further expanded by including

the following: 1) Branches into the subsystems of autoph-
agy, apoptosis, and ER stress. These branches serve to
identify if expression or activity is shifted into these sub-
systems, which are not as such a part of the protein secre-
tion pathway. Therefore, these branches appear
incomplete in term of components. 2) All reports of links
between the components, be it DNA-DNA, protein-DNA,
or protein-protein interactions (Fig. 1c.)

Conversion of the secretory network to a Cytoscape
representation for data analysis and visualisation
The complete network of the RECON was made com-
patible with Cytoscape [38] allowing the integration of
omics data for analysis and visualisation. Components
with previously described interconnectivity, functional
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annotation and/or protein complexes were included. As
this leaves out components with no described interac-
tions, the Cytoscape representation includes 655 con-
nected components of the secretory RECON. The
architecture of the network was expanded to include 42
nodes, which mark protein complexes, as well as the 103

functional groups. Additional nodes were included if
isoproteins had previously been reported. The network
is provided as a Cytoscape Input File (Additional file
2: Cytoscape input file). Supplying the RECON as a
network facilitates extraction of sub-networks for fur-
ther analysis and the addition of new components

Fig. 1 The reconstruction process of the mouse secretory machinery. The process from the overall secretory pathway with: a defining the
subsystems, b classifying functional grouping and protein complexes within the subsystems, to c schematically categorising and adding
interactions at the level of sequence, gene, and proteins
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and interactions. Furthermore, it serves to ease data
interpretation, in general to focus on the part of an
‘omics-dataset involved in protein secretion and in
particular to identify co-regulated genes of the same
protein complexes and/or from the same function.

Test of the functional secretory machinery network for data
interpretation
We wanted to test that the reconstruction can be
used for data analysis and interpretation. As a first
step, we wanted to examine how the the defined
subsystems of the secretory RECON represented
data, and assess the inference of these systems. In
order to achieve this, and furthermore demonstrate
the use of the network in relation to transcriptome
data analysis, we used an RNA-Seq dataset obtained
from the ENCODE project: an assortment of 22 sam-
ples of mouse tissue from seven different embryonic tis-
sues of mouse, covering several stages of embryo
development [19, 33].
We performed a hierarchical cluster analysis using RNA-

Seq data, as we would expect that strongly co-regulated
functional groups and protein complexes will cluster [41].
For each subsystem the gene expression levels of the indi-
vidual components were extracted and clustered using
Spearman correlation to identify monotonic relationships.
The clustering was performed with bootstrapping to evalu-
ate stability of the generated clusters. The dendrogram of
Fig. 2 shows the average-linkage clustering of normalised
count data for 325 components covering the subsystems
ERAD, protein folding, and translocation (Fig. 2). Each
component is coloured according to a functional anno-
tation allowing evaluation of clustering performance.
Functional clusters with the subsystems of ERAD
(blue), protein folding (green) and translocation (green)
are identified by the vertical colour bar (Fig. 2a). The
proteasome that is considered a part of the subsystem
ERAD, is highlighted separately due to the large size of
this protein complex. Figure 2b-d shows a closer view
of the expression patterns across all mouse samples
within three separate areas of the clustering.
Our results show here that the clustering of the

data (the biological co-regulation, as shown by the
dendrogram in Fig. 2) is in very good accordance
with the functional categories in the subsystems and

protein complexes defined in the secretory RECON
(As seen by the colors in Fig. 2).

Exploring the potential of clustering according to functions
The RNA-Seq data clustering of the mouse tissue sam-
ples allow us to identify new genes potentially associated
with the secretory system, based on similar expression
profiles suggesting co-regulation [41]. In particular, if a
transcription factor is self-regulated, one would expect it
to cluster together with the genes it is regulating.
To illustrate this potential of the network, we exam-

ined the expression profiles of the sub-cluster with the
functional annotation ‘protein folding’. The sub-cluster
consists of 33 components and is indicated in Fig. 2c.
The expression levels of the protein folding sub-cluster
was correlated to all individual genes in the complete
mouse transcriptome data set and the results were ranked
using the summed Spearman correlation coefficients of
the individual gene pairs (Additional file 1: Table S4).
With this, we identified four genes which are highly corre-
lated to the expression levels of protein folding genes and
potentially involved in regulation: Morc4 (a zinc finger
protein), Snd1 (a transcriptional co-activator), EIF4ebp1
(a translation initiation factor), and Rbbp7 (a histone-
binding protein). In a similar fashion, we identified five
genes which have inverse correlation to the protein
folding sub-: Tbc1d9, Dock3, Atp6v1g2, Rab3a (all genes
involved in signal transduction) and Mecp2 (a methyl-
CpG-binding protein). As Fig. 3 shows with the examples
of Rbbp7 and Mecp2, the expression profiles are
highly similar (or inverse) to the protein folding genes.
Thus both proteins could be potential regulators
within protein folding.

Reconstruction of CHO cells secretory machinery network
The next step was thus to employ the mouse-based
secretory RECON to reconstruct the protein secretory
pathway of CHO cells using a comparative genomic ap-
proach. Through homolog protein search, 726 CHO-K1
genes were mapped to the mouse secretory components
with identity over 80% (at the protein level). For an
additional 38 ORFs homologs, the identity was only >
60%, although being the best hit, with a significant e-
value and bit scores above 50 [35]. These proteins were
also added to the CHO cell network. Of the identified
homologs, 39 were noted partial in the description and
two of those components were found to also have par-
tial annotation (SRP54 and CREP). 39 components
were not identified by BLAST or annotated as pseudo
genes and thus not included.
As a result, the CHO-K1 secretory RECON comprises

764 components (see Additional file 1: Table S1). 270 core
components of the protein secretory machinery were
identified and the distribution within the major

Table 4 The subsystems of the secretory pathway

Subsystem # Components mouse # Components CHO cells

Translocation 34 29

Protein folding 103 103

Protein transport 150 138

UPR 65 56

ERAD 128 119
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subsystems are listed in Table 3. The graphical representa-
tion of the CHO-K1 secretory RECON was created using
Cytoscape as described for the mouse network (Fig. 6a).

Examination of protein secretion in CHO cells
To illustrate the application of the secretory network
for analysis of omics data within protein secretion in

Fig. 2 Hierarchical cluster analysis with average-linkage of mouse expression levels. a Dendrogram representing the hierarchical clustering of the
gene expression levels of the components from the subsystems of ERAD, PF, proteasome, and translocation. Vertical colour bar: Purple, Proteasome;
Blue, ER associated degradation (ERAD); Green, Protein folding (PF) and translocation. b Gene expression levels across all samples within
proteasome. c Gene expression levels across all samples within genes with the functional annotation protein folding. d Gene expression levels across
all samples within genes related to the ERAD. Blue, ER associated degradation (ERAD); Green, Protein folding (PF) and translocation; Purple, Proteasome.
1: CNS_e11.5-1, 2: CNS_e11.5-2, 3: CNS_e14-1, 4: CNS_e14-2, 5: CNS_e18-1, 6: CNS_e18-2, 7: Placenta_8w-1, 8: Placenta_8w-2, 9: Limb_e14.5-1, 10:
Limb_e14.5-2, 11: Wholebrain_e14.5-1, 12: Wholebrain_e14.5-2, 13: Bladder_8w-1, 14: Bladder_8w-2, 15: Cerebellum_8w-1, 16: Cerebellum_8w-2, 17:
Liver_e14-1, 18: Liver_e14-2, 19: Liver_e14.5-1, 20: Liver_e14.5-2, 21: Liver_e18-1, 22: Liver_e18-2
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a cell factory, the secretory RECON was applied to a
RNA-Seq dataset from the biopharmaceutical work-
horse CHO cells:
A RNA-Seq data set was generated from CHO cells

using the following conditions: two growth conditions
(exponential growth and stationary phase), two cell lines
(CHO-K1 and CHO DG44), with and without expres-
sion of IgG antibodies, with and without sodium butyr-
ate (NaBu) treatment, and absence and presence of
NEAA in the growth medium (See Table 2). These di-
verse conditions provide a range of transcript expression
levels for genes that are relevant for optimisation of the
secretory pathway for heterologous gene expression,
with NaBu in particular added to induce secretory stress
[12, 39]. The RNA-Seq dataset is experimentally de-
signed to minimise noise from differences between
batches and biological variation. Each sample represent
a combination of conditions, and the full set secures
biological replicates for each condition.
For quality control of the biological replicates, the

RNA-seq data was investigated by multi-dimensional
scaling (Additional file 3: Figure S1). As expected, the
differences between the two cell lines CHO-K1 and
CHO DG44 are separated in the first dimension, while
the second dimension separates the normal non-treated
cells from the sodium butyrate treated cells. The paired
nature of the samples, exponential and stationary phases,
was confirmed, with the exception of samples with and
without NEAA, which seemed to have no effect.

Differential expression analyses
As an initial analysis of the data, we identified differ-
entially expressed genes within the four categories:
Effects of IgG production, cultivation phases, NEAA
medium supplement and secretion stress induced by
NaBu (see Table 5).
We determined the transcriptional effect of heterol-

ogous IgG production in CHO cells by comparing

CHO-K1 not producing heterologous proteins (Table 5,
1.1-1.2) with CHO DG44 producing recombinant IgG at
industrial levels (Table 5, 2.1.1–2.2.2), using the cultiva-
tion phases as blocking. Of the 25,029 examined genes,
16,446 were above the cutoff for expression, and 6540
genes were differentially expressed (false discovery rate
(FDR) < 0.05). We identified 1953 genes with |log2 Ra-
tio| ≥ 2, where 1542 were up-regulated and 411 were
down-regulated. In a similar fashion, the exponential
growth phase was compared to stationary phase with the
same set of samples (Table 5, 1.1–1.2, 2.1.1–2.2.2), but
using cell lines as blocking. Similar strategies were used
to examine the effect of NaBu and NEAA medium sup-
plements (Table 5). In any of the four conditions, the
number of genes not expressed was just above 8000. A
comparison revealed that these 8000 genes are largely
the same in all conditions.
An alternative to the use of our secretory pathway

RECON, is the use of the functional annotations from
the gene ontology (GO). We thus applied a GO enrich-
ment analysis for comparison to our method: For the
CHO-K1 genome, only a limited number of genes have
assigned GO-terms. Consequently, we performed a
BLASTP search to retrieve mouse UniProt accession
numbers that matched the CHO-K1 genome. GO-terms
were assigned to the mouse identifiers through the
online server of Gene Ontology Consortium [4]. Of the
6540 genes found to be significantly differentially
expressed in the IgG production comparison, 1447 genes
were mapped to GO-terms using a BLAST comparison
of mouse and CHO-K1. A GO enrichment analysis was
performed using a cutoff of p-value < 0.05 to identify
significantly overrepresented GO-terms for each of the
main GO categories, biological processes (BP), cellular
compartments (CC), and metabolic function (MF) as
well as a GO-slim for BP (Additional file 1: Table S9). In
summary, the majority of the overrepresented GO terms
for BP are regulation or positive regulation of signal

Fig. 3 Spearman correlated expression profiles. Expression profiles correlated by Spearman correlation coefficient to the selected protein folding
components from Fig. 2c. a Expression profile of correlated gene Rbbp7 (red) across all mouse samples visualised with the expression profiles of
Fig. 2c. b Expression profile across all mouse samples of the gene Mecp2 (red) correlated by squared Spearman coefficient visualised with the
expression profiles of Fig. 2c
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transduction (GO:0009966; GO:0009967), signalling
(GO:0023056, GO:0023051), response to stimulus (GO:0
048584; GO:0048583; GO:0050896), and metabolic, bio-
logical or cellular processes (GO:0044710; GO:0048518;
GO:0008150). In comparison, the GO-slim enrichment
for BP revealed terms that could be associated with the ef-
fect of protein production: vesicle-mediated transport
(GO:0016192), protein transport (GO:0015031), and intra-
cellular protein transport (GO:0006886). GO enrichment
thus gives a broad overview of the cellular processes
engaged, but not at the level of detail in the secretory
RECON (Fig. 2).

Comparative cluster analysis of gene expression levels
within the secretory machinery for CHO cells to mouse
With the purpose of characterising the expression pat-
tern within the secretion pathway of CHO cells, we
applied the secretory pathway RECON for CHO cells to
a diverse CHO gene expression dataset. This dataset was
composed of 40 different CHO RNA-Seq expression
experiments: the 8 samples listed in Table 2, and 32 add-
itional samples obtained from cultivating 14 clones of
recombinant suspension CHO DBX11 cell line stably
expressing a human factor VIII (DBX11 FVIII) at high,
medium and low levels [21]. Hierarchical cluster analysis
was performed using Spearman correlation (as described
above), for the components related to the subsystems
ERAD, protein folding, and translocation, and the prote-
asome complex. Of these, 303 components are expressed
in our data set. The dendrogram of Fig. 4a present the
average-linkage clustering of these components. We
were still able to identify groups from the subsets ERAD,
protein folding, and translocation and the proteasome,
but only a part of the genes within a given subset are
clustered (Fig. 4a). The expression of the components
shown to cluster in mouse (Fig. 2c) are visualised across
all CHO samples in Fig. 4b-d. The protein folding group
identified in the mouse data is still detectable in CHO
cells, but several components cluster differently in CHO
cells, as shown in grey in Fig. 4c. Details on the cluster-
ing of components of the proteasome and the ERAD are
found in Additional file 3: Figure S2. In summary, it
seems like functions associated with protein folding
are regulated relatively tightly in CHO, but generally

regulation is less strict in the CHO cancer cell lines
than in the mouse tissues.
Following the changed regulation, we examined the

expression patterns of the potential regulators found in
mouse expression data (described above). For the gene
Mecp2 no sequence homolog could be found in the
CHO-K1 genome. The expression of Rbbp7 was plotted
against all CHO samples (Additional file 3: Figure S3),
but no correlation seems to be present in this data, fur-
ther supporting the observation of decreased regulation.

Gene expression level correlated with protein and growth
within the secretory network
We furthermore developed a method to use the genes of
the RECON to analyse gene-phenotype correlations for
protein production and growth in the secretory network.
Extracting all expression values for the 764 CHO genes
in the secretory RECON and comparing these with
growth rates and IgG titers, we analysed Spearman and
Pearson correlations to find monotonic and linear rela-
tionships, respectively. Correlation coefficients are avail-
able in Additional file 1: Table S10.
Of the 764 CHO secretory network components, 683

were analysed, 111 were found to correlate with growth
using Spearman, and 123 using Pearson. For IgG
production rate, these numbers were 102 and 183,
respectively. Figure 5 shows a scatterplot of all calculated
Spearman correlation coefficients. Known targets related
to protein folding or UPR (green) and apoptosis or anti-
apoptosis (red) are indicated. Targets previously reported
to improve CHO cells growth, protein production, and
survival are highlighted, and are intriguingly seen to be
primarily at the outer rim of this visualisation. Of
particular interest for CHO protein secretion engineer-
ing are the targets found in this outer rim, which have
not been previously reported to improve cell growth and
IgG production. The method seems to be a powerful
tool to identify these.

Application of the functional network for interpretation of
protein secretion in CHO cells
Finally, we wanted to apply the graphical visualization of
the CHO secretory RECON to facilitate interpretation of
the effects related to secretion and production of a
biopharmaceutical protein as IgG. The differential

Table 5 Summary of differential gene expression analysis (see Additional file 1: Tables S5–S8)

Condition Not expressed Total # analysed # FDR < 0.05 # |log2 FC|≥ 2 Up Down Disp BCV

IgG production 8583 16,446 6540 1953 1542 411 0.0168 0.1296

Cultivation phases 8583 16,446 4223 333 265 68 0.0168 0.1296

Secretion stress NaBu 8132 16,897 8121 2857 2316 541 0.01497 0.1224

0% NEAA sup. 9202 15,827 27 5 4 1 0.00588 0.0767
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expression data for the effect of recombinant IgG pro-
duction was visualized with the network. Despite the
overall deregulation shown in Fig. 4, the network clearly

visualizes e.g. that the protein complexes OST, COPI,
COPII, ESCRT-I, the proteasome and the functional
group of ER glycosylation are co-regulated genes of

Fig. 4 Hierarchical cluster analysis with average-linkage of CHO cells expression levels. a Dendrogram representing the hierarchical clustering of
the gene expression levels of the components from the subsystems of ERAD, protein folding, and translocation and the proteasome protein
complex. Vertical colour bar: Purple, Proteasome; Blue, ER associated degradation (ERAD); Green, protein folding, and translocation. b Gene
expression levels across all samples for components with the functional annotation proteasome clustering in mouse. c Gene expression levels
across all samples for components with the functional annotation protein folding in mouse. Grey shadow indicates the position of the
components in the hierarchical clustering of the CHO genes. d Gene expression levels across all samples for components with the functional
annotation ERAD that clustered in mouse. Horizontal bar, identifier of samples. Top line: protein expressed; no recombinant proteins (grey), IgG
(green), and FVIII high levels (dark purple), FVIII medium levels (purple), FVIII low levels (light purple). Middle line: cultivation phase; exponential
growth (light blue), stationary phase (Dark blue). Bottom line: NaBu treatment (red)
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protein complexes. The subnetworks displaying these
complexes are displayed in their position of the secretory
pathway for illustration (Fig. 6b). Strikingly, all subunits
of the proteasome are differentially expressed, but with
a log fold change below 2. Therefore, examined indi-
vidually, the subunits would be discarded as not signifi-
cantly expressed. However, using the information of the
RECON, allows us to examine all subunits as a com-
plex, and here we see that the complex is significantly
(p < 0.05) down-regulated in CHO cells optimised for
IgG protein production. The genes of the proteasome
complex are in Fig. 6c and d visualised with the gene
expression values from the experiments of secretion
stress and cultivation phases, respectively. Overall, the
visualization of the secretory RECON allows us to iden-
tify patterns in omics-data within the secretory path-
way, thus making it easier to interpret the data within
the important area of protein secretion.

Discussion
Motivated by the complexity of the secretory pathway,
we have developed a network reconstruction of the
secretory machinery using a systems biology approach

based on manual curation. In this study, we have pro-
vided a catalogue of 801 proteins from the mouse with
functional annotation and their interconnectivity. The
functional annotation of the components and their
grouping in subsystems were based on literature. Fur-
thermore, we provide an implementation of this network
that integrates with multi-omics data for visualization of
genome-scale data. Prior work in this area includes a re-
construction of the yeast secretory machinery presented
by Feizi et al. [13], which was based on well-defined
stoichiometry reactions as a part of a genome-scale
model reconstruction of metabolism. This study reports
a network of 163 components in yeast. For the more
complex organism Aspergillus oryzae, Lui et al. [30]
presented a reconstruction of the secretory pathway
using the yeast network as a base. They reported a list of
369 genes (putative end experimentally verified), includ-
ing biosynthesis of GPI and dolichol. The network
presented in this study covers mammalian protein secre-
tion, excluding the N- and O-glycosylation, therefore the
GPI biosynthesis and dolichol pathways are not in-
cluded. The components of the cell wall, which are
naturally not part of the mammalian secretory network,

Fig. 5 Components of the secretory network gene expression correlated with growth and protein production. The Spearman correlation
coefficient is calculated for gene expression level to both growth rate and IgG production rate. Each dot marks a component of the secretory
network. The highlighted points in blue are previously described generic targets. A Green circle indicates known targets associated with protein
folding and UPR. Red circles indicate known targets associated with activation or inhibition of apoptosis
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are also not included. The network of our study thus
includes more biological processes linked to the secre-
tion pathway than any previous study. Furthermore, we

include aspects of the processes of stress in connection
with heterologous protein production, specifically compo-
nents of the subsystems: autophagy, apoptosis, and ER

Fig. 6 Graphical representation of the reconstructed secretory network. The change in differential expression of each components is visualised by
the log2 fold change: up-regulation (red) and down regulation (blue). The intensity of the colour indicates the level in fold change. No cut-off to
the fold change was added since minor changes in the expression level are important when identifying areas of activity and processes in the
secretory network. Nodes are circled by a thicker line if FDR < 0.05. a The complete network graphically visualised in Cytoscape. b Selected protein
complexes of OST, COPI, COPII, ESCRT-I, and the functional group of ER glycosylation and proteasome displayed in their position within the secretion
pathway. c Proteasome components overlaid with gene expression data with the effect of secretion stress. d Proteasome protein/functional complex
overlaid with gene expression data with the difference of exponential growth phase and stationary phase. Nodes: Green, Function; Turquoise, Proteins
complex; Yellow, isoprotein; Red, Up-regulated; Blue, Down-regulated
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stress. The subsystems: translocation, protein folding, pro-
tein transport, UPR, and ERAD comprise a total of 512
components. Moreover, the network can be expanded and
improved in the future when new components or connec-
tions are identified.
We further examined – as a test of the network –

whether RNA-Seq data clustered based on biological data
reflects the subsets, functional groups, and complexes of
the network. As could be expected for normal, healthy
cells, the components of the subsystems of ERAD, protein
folding, and translocation as well as the proteasome are
grouped into major clusters (Fig. 2a). One cluster con-
tained all components associated with functions related to
protein folding and translocation, while the other cluster
held mainly components linked to ERAD.
The complexity of the secretory pathway was also ex-

emplified in the close biological association between
protein folding and the machinery involved in identifica-
tion of terminally misfolded proteins. Furthermore, the
components of the proteasome were found in two tight
clusters (Fig. 2b, approximately unbiased (AU) = 86).
The expression pattern of the proteasome units has
similarities to the PF expression patterns of Fig. 2c, as
might be expected, as both are a part of the normal
growth-related functions of the cell. The bottom part of
Fig. 2a holds mainly ERAD-associated components
(AU > 73), however, one sub-cluster (Fig. 2d) shows a
significantly different expression pattern (AU > 95).
However, since all samples are from healthy growing
tissues, activity of ERAD is not expected to occur, thus
explaining that stress-related ERAD-associated components
may not be induced in these samples.
In summary, clustering of the transcriptome data was

used to assess the functional secretory network, and
confirms that the literature-based sorting of the proteins
into the subsystems and functional groups of ERAD,
protein folding, and translocation seems meaningful.
Despite the high complexity of the secretory pathway,
we see that our functional categories are representative
of the un-supervised clusters formed from analysis of
RNA-Seq data. This also demonstrates that such analysis
can provide meaningful data on the biological system by
querying the network.
The functional secretory network based on the well-

characterised organism mouse, as well as human and
yeast, provided the foundation for constructing of a
CHO cell secretory network. Despite the fact that the
CHO-K1 genome is still at the draft stage, 764 homolog
components were identified. For the absent 39 compo-
nents, the cause is most likely either missing annotation
[28] or gaps in the genome. However, wrong annotations
of identified components are also likely to be present,
but in a limited number since the BLAST was per-
formed by manual curation of significant hits. As

only <5% of the identified mouse network is missing,
the CHO network is still a comprehensive representation
of CHO protein secretion.
In order to apply the secretory RECON for studying

protein secretion and to identify novel engineering targets,
transcriptomic data was applied from healthy mouse tis-
sues as reference and generated for CHO cell lines.
The transcriptome data of CHO showed that for the

effect of IgG production, the high number of differen-
tially expressed genes (6540) confirms that heterologous
protein production affects the overall gene expression
and general cellular processes (Table 5). This was
confirmed by GO enrichment analysis, which identified
biological processes terms within various types of regula-
tion. However, using differential gene analysis alone, it
was difficult to approach more specific traits within
protein secretion for the IgG production.
When examining the differences due to the change of

cultivation phases, few genes (333) were significantly
changed more than |logFC| > 2. This is perhaps to be
expected, as the experimental design removes differences
between the cell lines and eliminates all growth-related
genes which do not change.
Our addition of NaBu which causes hyperacetylation

[8], and leads to increased transcription as well as in-
creased recombinant protein expression [8, 14, 45], gave
rise to the highest number of differentially expressed
genes (8121) with a false discovery rate (FDR) < 0.05. Of
these, the majority are upregulated, as to be expected
with the NaBu effect of transcriptional activation. The
difference between the cell lines adapted and grown in
medium with or without supplementation of NEAA
respectively was very little, which was confirmed by
the few differentially expressed genes (27 with FDR < 0.05
and 5 having |logFC| > 2). The identified differentially
expressed genes were not connected to amino acid metab-
olism in literature. Based on this, and the low number, we
believe that they might be false positives.
We examined the transcription levels of the compo-

nents from the major subsystems protein folding, trans-
location, proteasome, and ERAD, and observed tighter
clustering in mouse than in CHO cells. This is interesting,
as the mouse samples are from different tissues, while the
CHO samples are the same cell type. We thus see it as a
sign of less tight regulation in the cancerous CHO cells
than in the healthy mouse cells. As an example, the eight
subunits of the OST protein complex (addition of N-
glycans on proteins in the ER lumen), cluster tightly in
mouse (Fig. 2a), but have a very diverse expression profile
in CHO. One exception from the apparent difference in
regulation is chaperones, which are observed to have simi-
lar expression profiles in mouse CHO. Another interesting
observation is that five components of the translocation
complex Sec61 cluster together with protein folding
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components in mouse (as would be expected), while in
CHO cells they clustered with components of ERAD. This
could indicate that the retro-translocation function of this
protein complex might be more active in CHO cells.
We therefore speculate that CHO cells in general are
de-regulated, at least compared to healthy mouse
cells, but in traits where there has been a deliberate selec-
tion for functionality – e.g. within folding of (heterologous)
proteins – the regulation has been retained.
In this study, we further presented three alternative

methods to study protein secretion using omics data
illustrated with transcriptomic data: Method 1) functional
clustering of the secretory network for identification of
regulators, Method 2) correlation of the specific IgG pro-
duction and maximum growth rate to the expression
levels within the secretory network, and Method 3) graph-
ical representation of the secretory network as a method
for studying protein secretion from a holistic view, and
with the possibility of focusing on specific subsystems or
protein complexes.
Method 1 enables identification of regulators of

selected functions. Here, we identified possible regula-
tors of protein folding, as such potential targets for cell
engineering. The identified histone-binding protein
(Rbbp7) (Fig. 3a) could serve as a potential target since
in literature it is described as a co-repressor [15, 47].
The Methyl-CpG-binding protein (Mecp2) was identi-
fied as anti-correlating to protein folding (Fig. 3b) and
could be of particular interest as a target, since it has
been associated with regulating expression of a wide
range of genes and that it can function as both an activa-
tor and repressor of transcription [9]. However, these
two potential discoveries proved difficult to transfer to
CHO, partially due to genome quality and partially due
to apparent deregulation: The identified repressor/ac-
tivator Mecp2 in mouse was not annotated in the
CHO-K1 draft genome, and Rbbp7 was observed to
have a significantly different expression profile in
CHO cells (see Additional file 3: Figure S2).
For method 2 – correlating expression levels to IgG

productivity and growth, we used the CHO transcrip-
tome data for protein production. In Fig. 5 it is noticed
that several of the known targets for optimised protein
production in CHO cells (XBP1, ATF4, BIP, ERP72/
PDI4, CNX [27, 32] have high negative correlation to
growth, but interestingly with little correlation to IgG
production. Possibly, many of these are a part of a stress
response under normal regulation, and therefore correl-
ate with low growth rates. In the other end of the
growth axis is the gene p53 which is highly correlated
with growth, but not correlated to IgG production,
which is expected as it is a well-described target for
improved cell viability [3]. Similar improvements are
reported for the genes BAX and BAK1 [2], here they

correlate only to some degree with both growth and
protein production (negative correlation). In contrast,
the genes P4Hb/PDI1/ERP59 and GADD34 [32] also
previously described as positive targets for protein pro-
duction, are located as negatively correlated to IgG
production and with no correlation to growth. Within
genes that correlate highly with IgG production, we see
the targets known for cell survival, e.g. BCL-XL, pos-
sibly suggesting that our cells are stressed by the pro-
tein production. Other proteins previously described as
positive targets for protein production are ERP57/
PDIA3 [32] and Hsp90b1/GRP94 [12], but here we see
that they are correlated with growth and not signifi-
cantly with protein production. Finally, the different
caspases are scattered across the plot and are not
correlated with either growth or IgG production. This
however is easily explained, as caspases are regulated
by phosphorylation, which cannot be seen at the
transcriptional level.
It is interesting that we see discrepancies between our

calculated correlations, and approximately half of the
previously reported targets. Possibly this supports that
reported improvements are often cell line or in particu-
lar protein specific. However, several are identified in
accordance with literature. Possibly more interesting, is
how we see that known targets placed at the rim of
Fig. 5, suggesting that genes placed here are interesting
targets in general. In particular, novel engineering targets
within the secretory pathway might be found in close
proximity to the known successful targets.
Method 3 was the use of a graphical representation of

the secretory RECON for studying the specific subsys-
tems and protein complexes of protein secretion that
could not be observed by simple differential gene ex-
pression analysis (too many genes) or GO enrichment
analysis (too broad terms) (Fig. 6).
Illustrated by the example of the OST protein complex,

all subunits of the complex, which we could identify in
the CHO-K1 genome, are up-regulated (p = 0.2 Fisher’s
exact test) in comparison with the complete network. In
the same way, the majority of the expressed subunits of
the proteasome protein complex were found to be down-
regulated, which in comparison with the complete
network is found highly significant with a p-value < 0.05.
Importantly, none of the components has any change
above 2 fold, meaning that they would not be found in a
regular differential expression analysis. In contrast, the
functional group of ER glycosylation components is not
found to be significantly up or down-regulated. Further-
more, the subunits of the two transport complexes be-
tween the ER and the Golgi compartment, COPI and
COPII, were found to have diverse expression patterns.
Within a protein complex, it is expected that all the
subunits have relatively similar expression patterns as
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observed for the mouse gene expression data (see Fig. 2).
Once again, this suggests a lower or less strict level of
regulation in the CHO cancer line cells.

Conclusions
In this study, we have generated a comprehensive cata-
logue of characterized proteins of the secretory pathway
with functional annotation and their interconnectivity
and functions, and thus – to our knowledge – estab-
lished to date the most elaborate RECON of the secre-
tion pathway. The secretory network was mapped for
both the well-characterised mouse (801 components)
and the relatively uncharacterised CHO cell line (764
components). The RECON serves as a frame for mean-
ingful interpretation of omics data. In particular, we
present three different methods to study protein secre-
tion through omics data: 1) Using clustering of the tran-
scription levels of the RECON elements to identify new
potential regulators. 2) Correlation of transcriptome to
IgG production and growth. 3) a graphical presentation
for analysing transcriptome data in relation to protein
complexes or functional groups. All three are highly use-
ful tools as demonstrated through specific findings and
the general observation in several methods that CHO
cells seem to have less strict transcriptional regulation
than the healthy mouse cells.
The secretory pathway RECON therefore represents a

strong tool in optimization of protein production and
growth of CHO cell lines, the main platform for mam-
malian protein production.
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