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Abstract

Background: Essential reactions are vital components of cellular networks. They are the foundations of synthetic
biology and are potential candidate targets for antimetabolic drug design. Especially if a single reaction is catalyzed
by multiple enzymes, then inhibiting the reaction would be a better option than targeting the enzymes or the
corresponding enzyme-encoding gene. The existing databases such as BRENDA, BiGG, KEGG, Bio-models, Biosilico,
and many others offer useful and comprehensive information on biochemical reactions. But none of these
databases especially focus on essential reactions. Therefore, building a centralized repository for this class of
reactions would be of great value.

Description: Here, we present a species-specific essential reactions database (SSER). The current version comprises
essential biochemical and transport reactions of twenty-six organisms which are identified via flux balance analysis
(FBA) combined with manual curation on experimentally validated metabolic network models. Quantitative data on
the number of essential reactions, number of the essential reactions associated with their respective enzyme-
encoding genes and shared essential reactions across organisms are the main contents of the database.

Conclusion: SSER would be a prime source to obtain essential reactions data and related gene and metabolite
information and it can significantly facilitate the metabolic network models reconstruction and analysis, and drug
target discovery studies. Users can browse, search, compare and download the essential reactions of organisms of
their interest through the website http://cefg.uestc.edu.cn/sser.
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Background
Despite their complexity, the reconstructed metabolic
networks are important tools to visualize the ‘omics’
data and foster understanding and interpretation of
these data in terms of biological functions [1]. Recon-
struction of such networks is time intensive and requires
extensive effort, costing several months to years depend-
ing on the genome size and number of personnel in-
volved [2]. Although the degree of indispensability is not
uniformly equal for all of the reactions in the network,
each reaction in the metabolic network contributes for
the proper functionality of the biological system of the

organism in one or other way. Consequently, these reac-
tions are classified as either essential or non-essential.
The essential ones are those reactions which are vital for
the viability of the organism in a given living conditions
than non-essential ones. Some of the reactions are
universally essential irrespective of the environment in
which the organism is situated, these reactions are
identified for a model organism and termed as “super-
essential” in the network [3].
Following the whole genome sequencing and biological

systems modeling, the number of predictive metabolic
network models has been growing significantly. Conse-
quently, tremendous numbers of biological databases
storing metabolic pathway information have been devel-
oped. Although the efforts have contributed greatly to the
understanding of the systems biology of a considerable
number of organisms, finding the reaction essentiality data
in a centralized repository has given little attention. The
existing databases such as KEGG (Kyoto Encyclopedia of
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Genes and Genomes) [4], BIGG (Biochemical Genetic and
Genomic, Systems Biology Research Group of University
of California San Diego) [5], Biocyc, Metacyc [6], Ecocyc
[7], Bio-models [8], the model SEED [9], GSMN
(Genome-Scale Models Database, Tian Jin University)
[10], Biosilico [11] and many others offer comprehensive
information on biochemical reactions [12], but none of
them especially focus on essential reactions. Therefore,
building a centralized repository for this class of reactions
would be of great value. Essential reactions are potential
candidate targets for antimetabolic drug design [3, 13, 14].
Especially if a single reaction is catalyzed by multiple
enzymes, then inhibiting the reaction would be a better op-
tion than targeting the enzymes itself or the corresponding
enzyme-coding gene [15] and this was the key driving force
for us towards constructing species-specific essential reac-
tions database (SSER).
The current version (version 1.0) of SSER includes es-

sential biochemical and transport reactions of twenty-six
organisms. The reactions were obtained by applying flux
balance analysis (FBA) on experimentally validated
metabolic network models in in-silico growth conditions
in combination with manual curation of each reaction.
Besides to storing biochemically essential reactions,
SSER can allow the users to obtain information related
to the enzyme-coding genes, essential precursors, and
products in a defined in in-silico growth conditions. The
information from SSER can also have a significant role
in biotechnology based industries as essential reactions
can be used to increase the yields of production in these
industries.

Construction and content
Data acquisition and source
Comprehensive, latest and experimentally validated
genome-scale metabolic network model versions were
downloaded (Nov-Dec 2015) from publically accessible
model repositories, mainly BiGG, GSMN and authors’
publications (Additional file 1). It means that a model is
selected from multiple versions of an organism, if it is
the most up to date, contains comprehensive informa-
tion and experimentally validated. For instance, we chose
to use iJO1366 because it was the most up to date
version of Escherichia coli K-12 MG1655 at the time of
model collection. Furthermore, iJO1366 represents a
significant expansion of the E. coli reconstruction than
iAF1260 and older versions as it contains greater num-
ber of genes, metabolic reactions and unique metabolites
[16]. The above criteria were set only to limit the num-
ber of models to be considered in the first version of
SSER. We put forward to include more models and
organisms in future versions. The degree of essentiality
of a gene/reaction is crucially dependent on the growth
environment, and hence each reaction in our database is

supplemented with growth media information. This in-
formation was obtained by searching published articles
reporting the experimentally validated reconstructions of
each organism (see Additional file 2). To investigate the
extent of association between essential reactions and
essential genes, we downloaded the essential gene
information of two organisms selected for the case
study, E. coli K-12 MG1655 and Bacillus subtilis 168
from DEG version 13.0 (Database of Essential Genes)
database [17]. We chose the two microbes because they
are the most studied and best characterized in terms of
their genome annotation, functional characterization, and
knowledge of growth behavior [18–20]. See Additional file
3 for the whole workflow.
Recently, computational approaches have become the

most powerful techniques over the experimental coun-
terparts in reaction/gene essentiality analysis due to their
high sensitivity, speed, accuracy, and low cost [4]. We
took an advantage of a constraint-based flux balance
analysis (FBA) approach in conjunction with manual
curation in constructing SSER. The Constraint-Based
Reconstruction and Analysis (COBRA 2.0) [21] toolbox
in MATLAB environment was implemented in this
regard. FBA is among powerful in-silico technique which
has been widely used in genome-scale metabolic net-
work reconstruction and analysis. A Significant number
of studies have also revealed its capability to accurately
predict cellular phenotypes from genotypes. For ex-
ample, in a yeast model, iND750 reconstruction 4,154
in-silico predicted growth phenotypes across multiple
environmental conditions were compared with two
large-scale experimental deletion studies showed 83%
agreement between the in-silico and the experimental
results [22]. As a second step towards constructing
SSER, the models, as downloaded from their source
were loaded into MATLAB (MathWorks® R2012b) envir-
onment with the Constraint-Based Reconstruction and
Analysis (COBRA 2.0) Toolbox [2, 21, 23] and then a
single reaction deletion simulation was applied as
described in the following section.

Flux balance analysis (FBA)
Flux balance analysis (FBA) is an approved constraint-
based approach which is based on the principle of linear
optimization to determine the steady-state reaction flux
distribution in a metabolic network by maximizing an
objective function [14, 24]. By definition, an essential re-
action is a biochemical or transport reaction its deletion
abolishes or decreases the cellular growth significantly
[25, 26]. The essential reactions in the network models
can be determined through single reaction deletion
studies. In a single reaction deletion function, a flux
value of zero is given to the reaction that is to be re-
moved, or the reaction catalyzed by a particular enzyme
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is completely removed from the network or switched off.
Hence, depending on the value of the Biomass Objective
Function (BOF), the fate of each reaction under investi-
gation could be decided [2, 27, 28].
The growth ratio of the mutant to the wild-type

denoted as “grRatio” in our database and “Browse” page
of the website, was used to determine essential reactions
in each model. Different threshold values of the biomass
production rates for gene/reaction essentiality determin-
ation has been used, ranging from 0 to 10% growth re-
duction of the mutant with respect to the wild-type
depending on a given substrate conditions and other
imposed constraints [26, 29–31]. Yang and coworkers
[31] have observed consistency in gene essentiality pre-
diction of the computational method with experimental
methods using the biomass production ratio of less than
1% and 0. That is, they obtained consistent results using
the cutoffs <1% and 0 separately. They assumed that
computationally zero growth can be assessed with bio-
mass production of less than 1e−6 for computational
noise elimination. In another study, 1% cut-off value was
used in determining synthetic reaction lethality analysis
[30]. In our work, a reaction is classified as essential if
the growth ratio is less than 1% and these reactions were
extracted into a separate file for further curation. We
thought using this stricter cutoff can reduce the risk of
inclusion of the false positives into our collection of es-
sential reactions. A similar threshold value was used in a
case study conducted for the validation of single gene
deletion function of the COBRA toolbox where the max-
imum growth rate was defined to be greater than 99% in
yeast iDN750 model [21] (see Additional file 4).
Once the reactions that met the above criteria

extracted, the next step was to unify the short names
(Abbreviations) of the reactions. Searching our database
would be troublesome if the reactions were deposited as
they were in the models because different researchers
follow various methods of nomenclature of biochemical
reactions in their reconstructions. Therefore, we looked
some way to reorganize and unify the reactions that
were identified as essential in each organism. This was
achieved by searching in BiGG databases for the abbrevi-
ations by using the names of the reactions as a query
string. The search results are not always single value but
some reaction names are associated with multiple
abbreviations. In such conditions, we decide to choose
the one with pre-defined reaction parameters such as
metabolite type and compartment match with the query
reaction. For example, searching BiGG database for the
reactions “2 succinyl 6 hydroxy 2 4 cyclohexadiene 1
carboxylate synthase” returned SHCHCS3, SHCHCS2,
and 2S6HCCi. Among the results, 2S6HCCi exactly fit
our search criteria and hence it is considered as a short
name for that particular reaction.

Database organization
The current version (version 1.0) of SSER contains 6077
essential biochemical and transport reactions of twenty-
six organisms. It is a relational database built on the top
of seven tables, four of which are major contributors
whereas the remaining three are bridging tables. The
three most important tables include “reaction”, “reac-
tions”, and “species”. The “reaction” table lists SSER_ID,
reaction abbreviation, reaction name and reference’s
PubMed ID (PMID) for each reaction. The reactions
table lists the details of each reaction. These include
growth rate of knockout strain (grRateKO), growth rate
wild type (grRateWT), growth ratio (grRatio), cutoff,
reaction equation, the subsystem, media condition,
associated gene and gene name if exists. The third table
describes the species name and source of the data (see
Fig. 1).

Utility and discussion
SSER was established with the primary objective of
delivering three vital functions to its users. The first and
the most important one is to serve as a repository for
quantitative data, names, formulae and stoichiometric
equations of essential reactions in comparison to the
total number of the reactions used in the reconstruc-
tions of each organism. Furthermore, a quantitative data
about the number of the essential reactions associated
with their respective enzyme-encoding genes can also be
retrieved from SSER (see Fig. 2).
Users can search for essential reactions of the organisms

of their interest in the “Browse” page of the website by
using a keyword. In addition, the details of each reaction
can be browsed by following the link on SSER_ID field of
each reaction. The link returns reaction equation, func-
tional assignment (subsystem), growth media, growth rate
knock out (KO), growth rate wild-type (WT), growth ratio,
cutoff, the SSER_ID and names of the associated gene(s) of
each reaction (see Fig. 3).
The “Contents” page is about the statistics of the data-

base and is depicted in the form of tables and graphs. A
table of the total number of the essential reactions and
number of essential reactions associated with their
corresponding enzyme coding genes as well as two
graphs of shared essential reactions across the species
and essential reaction-essential gene association graphs
are included in this page. All the supporting data files
such as the models used in this study, in SBML format
and all essential reactions comprised in SSER can be
downloaded at the “Download” page. The “Download”
page also contains information for programmatic (API)
access of SSER. “Help” page provides useful information
on how to use the database and also it included the
description of the headings of the table columns of the
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Fig. 1 The database schema

Fig. 2 Graph of the total number of reactions, number of essential reactions and number of gene-associated essential reactions
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browse page. All the references reviewed for each organism
are available at “References” page.
Secondly, to investigate whether essential reactions are

evolutionary conserved or not, we identified the number
of essential reactions shared across organisms in our
database. To facilitate this task we developed a compari-
son function which is available on the ‘Compare’ page of
the website. Users can compare the essential reactions
across organisms with similar growth media conditions.
As reaction essentiality is mainly determined by environ-
mental condition, the comparison function is particu-
larly limited to the prokaryotes which have grown in
glucose minimal medium. Selecting two or more organ-
ism from the list on the page and clicking “Run” button
at the bottom of the page provides a list of the short
names and details of the reactions which were isolated
as essential in the selected organisms. The result could
be opened in the browser and can be downloaded in
“.txt” file format. For instance, comparing E. coli K-12
MG1655 and Shigella flexneri 2a strain 301 returned 219
shared essential reactions. This represents 82.3% and
83.2% essential reactions in both organisms, respectively
(see Additional file 5). We validated this result against
sequence similarity alignment result in genome sequence
report of Shigella flexneri 2a in which it shared 84.8%
(3.9 Mb/4.6 Mb) of its genome with E. coli K-12 MG1655
and Escherichia coli O157 [32]. A study conducted on the
evolution of the metabolic network of E.coli [33] has also
revealed similar result, showing that six E.coli strains
compared have shared 285 essential reactions in their
genomes.

A large number of essential reactions could be shared,
particularly if the organisms are closely related on the
tree of life. To this end, we calculated the evolutionary
distance across 22 prokaryotes using composition vector
method [19] and correlated this data with the number of
shared essential reactions. For instance, using the same
organism as above, E. coli K-12 MG1655 and Shigella
flexneri 2a str. 30, we obtained the shortest calculated
Composition Vector Distance (CVD) for these organisms
(CVD = 0.165165606804). But E. coli K-12 MG1655 has
shared only 124 essential reactions with Yersinia pestis
CO92 which is distantly related to it than Shigella flex-
neri 2a str. 301 (CVD = 0.500301106751) (see Additional
file 6). Recent studies have also shown that phylogenetic-
ally closely related organisms share an evolutionarily
conserved core of essential reactions [20, 30, 34, 35]. All
the calculated CVD values can be accessed on the
“Compare” page of our website.
Surprisingly, three reactions, namely CHORS (Choris-

mate synthase), SHKK (Shikimate kinase) and PSCVT
(3phosphoshikimate 1carboxyvinyltransferase), were found
to be essential in multiple organisms irrespective of
the growth media condition and the phylogeny of the
organisms. They were found essential in all 22 pro-
karyotes in our database. Inspired by the case above,
we searched our database for organisms in which a
given reaction is essential and identified the number
of shared essential reaction across the entire organ-
isms. However, the reason behind this trend needs
further investigation which is beyond the scope of
this article (see Fig. 4 and Additional file 7).

Fig. 3 Screen shot of the website. For example, ACGK was searched in the database and 20 results were retrieved indicating that this reaction is
essential in 20 species in the database. Clicking on the link at SSER_ID field returns details about each reaction

Labena et al. BMC Systems Biology  (2017) 11:50 Page 5 of 8



The third important information in SSER is a quantita-
tive data about the number of the essential reactions
associated with essential genes. Essential genes have
been predicted by removing or switching off enzyme-
catalyzed biochemical reactions. If the switching-off of

the reaction abolishes or significantly reduces the
cellular growth, then the gene that encodes the protein
catalyzing that particular reaction is considered to be
essential [10, 30, 36]. In this particular case study, essen-
tial reactions-essential genes association analysis of E.coli

Fig. 4 A plot of shared essential reactions across the organisms. The data points represent the number of reactions shared (y-axis) across the
organisms (x-axis)

Fig. 5 Graphs representing essential reaction-essential gene association data for Escherichia coli K-12 MG1655 and Bacillus subtilis respectively. In
the graphs, the blue dots represent E.coli and red dots represent Bacillus subtilis. Where “Total Ess-rxns” is a total number of essential reactions,
“Gene-Assoc” is Gene associated essential reactions and “E.G.Assoc” is Essential Gene associated essential reactions
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K-12 MG1655 and Bacillus subtilis 168 strains revealed
that 116 and 65 out of 269 and 205 reactions respect-
ively were catalyzed by the enzymes encoded by essential
genes. From the case above, we can see that the number
of the essential genes is not exactly equal to the number
of essential reactions. Therefore, this result alerts us to
consider the role of essential reactions in cellular
systems studies than solely depending on essential genes
information in such studies (see Fig. 5).

Availability and requirements
SSER is publically accessible via http://cefg.uestc.edu.cn/
sser and comprises 6077 essential biochemical reactions of
twenty-six species. The website is scripted in HTML5,
CSS3, PHP and SQL and tested with Internet Explorer 8,
Internet Explorer 7, Firefox, Google Chrome and Safari4.

Conclusion
The current version of SSER comprises 6077 essential bio-
chemical and transport reactions of twenty-six organisms.
The reactions were identified via flux balance analysis
(FBA) in conjunction with manual curation on experi-
mentally validated metabolic network models. SSER would
be a prime source to obtain essential reactions data and
related gene and metabolite information. It can signifi-
cantly facilitate the metabolic network models reconstruc-
tion and analysis, and drug target discovery studies.
Furthermore, SSER provides a function for comparing
essential reactions across organisms thereby extending its
applicability to evolutionary studies. Finally, we put for-
ward to update SSER on a regular basis.

Additional files

Additional file 1: All models and reactions in SSER. (RAR 3930 kb)

Additional file 2: Growth media information. (XLSX 13 kb)

Additional file 3: Workflow. (TIF 70 kb)
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Additional file 5: Shared reactions between E.coli and Shigella flexneri
2a str. 301. (XLSX 23 kb)

Additional file 6: Composition vector distance. (XLSX 14 kb)

Additional file 7: Shared essential reactions across all organisms.
(XLSX 870 kb)
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