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Abstract

Background: The leading edge of the global problem of antibiotic resistance necessitates novel therapeutic
strategies. This study develops a novel systems biology driven approach for killing antibiotic resistant pathogens

using benign metabolites.

Results: Controlled laboratory evolutions established chloramphenicol and streptomycin resistant pathogens of
Chromobacterium. These resistant pathogens showed higher growth rates and required higher lethal doses of
antibiotic. Growth and viability testing identified malate, maleate, succinate, pyruvate and oxoadipate as resensitising
agents for antibiotic therapy. Resistant genes were catalogued through whole genome sequencing. Intracellular
metabolomic profiling identified violacein as a potential biomarker for resistance. The temporal variance of metabolites
captured the linearized dynamics around the steady state and correlated to growth rate. A constraints-based flux
balance model of the core metabolism was used to predict the metabolic basis of antibiotic susceptibility and

resistance.

Conclusions: The model predicts electron imbalance and skewed NAD/NADH ratios as a result of antibiotics —
chloramphenicol and streptomycin. The resistant pathogen rewired its metabolic networks to compensate for
disruption of redox homeostasis. We foresee the utility of such scalable workflows in identifying metabolites for
clinical isolates as inevitable solutions to mitigate antibiotic resistance.
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Background

A post-antibiotic apocalypse portends the utility of anti-
biotics being massively compromised through evolution
of antibiotic resistance. The genetic basis of several anti-
biotic resistant populations have been delineated via
whole genome sequencing to the level of identifying re-
sistance genes [1-4]. Antibiotic resistance genes catalo-
gued through these efforts have rarely provided
individualized therapies. Penicillin resistance in Strepto-
coccus pneumoniae is a consequence of mutations in
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putative iron transport systems [1]. Stress pathways con-
tribute to glycopeptide resistance in Staphylococcus aur-
eus [5]. The evolution of antibiotic resistance in
pathogens is characterized by uncontrolled proliferation
even in the presence of drugs. Growth and energy gener-
ation are two principal dimensions of cell function and
proliferation. This duality of cell function, orchestrated
by metabolic networks, is critical for survival and gov-
erns resistance. Redox homeostasis is important to ef-
fectively harness reducing power produced through the
catabolism of various substrates and to utilize this power
in the anabolism of cellular components such as DNA,
lipids and proteins. Metabolic regulation and gene

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0427-z&domain=pdf
mailto:anu.raghunathan@ncl.res.in
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Banerjee et al. BMC Systems Biology (2017) 11:51

expression modulation are now recognized as major
players in antibiotic resistance [6-9]. p-Lactamases are
amongst the most common causes of bacterial resistance
to B-Lactam antimicrobial agents [10]. Derepression of
secondary metabolism in Nocardiopsis, identified through
metabolome characterization, was a consequence of ac-
quired resistance [9]. In E. coli it was reported that over-
flow metabolism and reactive oxygen species (ROS)
formation are inherent cellular response to antibiotic le-
thality [11]. A recent study implicates accelerating cellular
respiration rates in the bactericidal mode of action [2].
Specific metabolites have been associated with varying de-
grees of killing antibiotic tolerant pathogens (persisters)
by stimulating proton motive force (PMF) and increasing
antibiotic uptake [12, 13]. Promoting Tricarboxylic acid
cycle (TCA)/Krebs cycle by glucose/alanine activation that
subsequently also increase PMF stimulating uptake of
antibiotic have initiated death in multi-drug resistant
Edwardisiella tarda [13]. Stoichiometric flux balance
models based on evolutionary optimality predict outcomes
of single environment evolution accurately and can
compute operational flux states, growth and energy
phenotypes of resistant/susceptible cells [14—18]. Inves-
tigating altered metabolism and connecting to evolved
resistant genotypes may provide simple strategies to
overcome drug resistance and induce susceptibility to
existing antibiotics.

In this study, we have identified benign metabolites
to stimulate antibiotic action and death of streptomycin
and chloramphenicol resistant pathogen Chromobacter-
ium violaceum. Primarily a zoonotic pathogen, it is op-
portunistic in humans and converts the essential amino
acid tryptophan to violacein, a blue-violet pigment [19].
The oxidative dimerization of two tryptophan mole-
cules is an essential and regulatory step for the synthe-
sis of violacein scaffold [20-22]. Chromobacterium
violaceum is also reported sensitive to aminoglycosides,
chloramphenicol, and tetracycline and resistant to
ampicillin, penicillin, and first-generation cephalospo-
rins [23, 24]. Our work highlights for the first time that
differential violacein levels could act as a potential bio-
marker for resistance to two distinct classes of antibi-
otics. Here we pioneer a scalable workflow (Fig. 1)
from controlled evolution of resistance to rationally
identifying metabolites that induce drug susceptibility
using systems biology approaches. Constraints-based
flux balance modeling, being an integral part of systems
biology approach, was used for the first time to predict
that disruption of redox homeostasis was causal for
antibiotic action. Compensatory metabolic reprogram-
ming to overcome redox cofactor imbalance was delin-
eated. In addition the in silico resistant growth
phenotype was predicted to be a function of the rigidity
of flux network.
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Methods

Adaptive Laboratory Evolution (ALE)

The detailed ALE workflow is well described in Fig. la.
Chromobacterium violaceum strain ATCC 12472%, wild
type, (C. violaceum or WT) was obtained from the Ameri-
can Type Culture Collection Center (ATCC), USA. The
wild type C. violaceum was routinely cultured on Luria-
Broth (LB, Hi-Media-M575) and maintained at 30 °C with
continuous aeration in a shaker incubator set at 180 revo-
lutions per minute (rpm). C. violaceum was tested to be
susceptible to low concentrations of both antibiotics
(Chloramphenicol: MIC 8 pg/mL and Streptomycin: MIC
10 pg/mL in liquid culture and 60 pg/mL in agar plates).
Antibiotic resistant strains of C. violaceum were evolved
separately under controlled laboratory environments using
the two antibiotics, chloramphenicol (chl) and strepto-
mycin (str) at sub-lethal concentrations (10 pug/mL) on
Luria Bertani agar (LBA) plates. Clonal purification by re-
peated sub-culturing of the colonies obtained on LBA
plates with antibiotic (10 pg/mL) resulted in single col-
onies. These colonies were cultured in LB with antibiotic
(10 pg/mL) and further cryopreserved in 50% glycerol and
all genotyping and phenotyping experiments done by
thawing the frozen vials and sub-culturing in LB with anti-
biotic (10 pg/mL) at 30 °C with continuous aeration in a
shaker incubator set at 180 rpm until mentioned other-
wise (Fig. 1d).

Minimum Inhibitory Concentration (MIC) determination
Antibiotic susceptibilities were determined with Ezy-
MIC™ Strips (HiMedia Laboratories, India) on Miiller-
Hinton agar plates using the manufacturer’s instructions
(Fig. 2c and d). The MICs were further determined using
broth micro-dilution method for C. violaceum (at 30 °C,
180 rpm) according to the dilution method described
previously [25] (Fig. 2e).

Effect of varying concentration of antibiotics on growth
profiles and growth rate estimation

All strains were profiled for growth by varying concen-
trations of antibiotics at 30 °C, 180 rpm. Exponential-
phase cultures were prepared at 30 °C, 180 rpm using a
shaker incubator and further used to inoculate 3 mL of
LB to an initial ODggq of 0.1. Antibiotic stock solutions
were added to yield desired concentrations of the anti-
biotic ranging from 0 to 256 pg/mL. Cultures were incu-
bated in a shaker incubator at 30 °C, 180 rpm and
bacterial cell densities were estimated hourly using a
spectrophotometer. Growth profile assays for each C.
violaceum strain were performed in triplicate using inde-
pendent starter cultures and antibiotic stocks. Growth
rate was estimated graphically from growth curves by
plotting the natural log values of ODgy, for each time
point and determining the slope by linear regression. A
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Fig. 1 Schematic/work flow of experimental design — From evolution to emergence. a Adaptive laboratory evolution (ALE) of antibiotic resistant
populations of C. violaceum under sub-lethal concentrations of antibiotic. 5 pl of overnight culture of C. violaceum was evenly spread onto LB
agar plates with respective antibiotic (10 ug/ml) and were incubated at 30 °C until colonies appeared on the agar plates. After clonal purification
the resistant populations were cultured and showed characteristic violet color pigment, violacein. ChIR shows lower intensity of pigmentation
while StrpR showed higher levels as compared to WT. b Primary phenotypic profiling performed to confirm the evolution of resistance against
the two antibiotics using minimum inhibitory concentration (MIC) and violacein estimation (refer Methods for details). ¢ Systems Biology approach
used in this study with basic growth profiling, metabolite supplementation experiments, genotypic profiling using whole genome sequencing (WGS9),
HRMS metabolomics, and in silico structural analysis of variants and flux balance modeling using iDB149 network with constraints derived from in
house data. This scalable pipeline allows understanding the genotype-phenotype relationship of the resistant pathogens

minimum of four time points were used to determine
the growth rate (Fig. 2a and b).

Growth profiling on different exogenous carbon and
nitrogen sources

C. violaceum was cultured overnight, then diluted to a
density of 0.002 (Optical density at 600 nm, ODjgq), mixed
with an equal volume of LB that contains different metab-
olites at a final concentration of 2 mg/mL, except for lac-
tate which was at a concentration of 0.27 mg/mL. C.

violaceum was cultured in 96-well flat-bottom plastic mi-
croplates at 30 °C for 30 h with or without antibiotic pres-
sure. 30 different metabolites were tested in biological
triplicates. The plates were monitored for growth, biomass
and violacein using iMark™ Microplate Absorbance Reader
(BIO-RAD) at 550 nm and 655 nm at regular time inter-
vals. The amount of violacein and dry cell weight were de-
termined using 550 nm and 655 nm readings and
compared to standard calibration graphs (Additional file 1:
Figure S4) for quantitation purpose. Different conditions
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Fig. 2 The evolved phenotypes of antibiotic resistance: Growth profiling and minimum inhibitory concentration typing across sensitive and
resistant populations. a Growth rate on varying concentration of chloramphenicol showing a 17 and 7 fold change relative to wild type at 32 pg/
mL for ChIR and StrpR respectively. b Growth rate on varying concentration of streptomycin showed no growth for WT and ChIR at 30 pg/mL
and considerable growth rate for StrpR. ¢ MIC using EzyMIC™ Strips for 11 antibiotics. d Mueller Hinton agar plates showing primary resistance
against chloramphenicol (Chl) and streptomycin (Str) and secondary resistance developed against piperacillin/tazobactam (PTZ). ChIR shows no
zone of inhibition contrary to an elliptical zone of inhibition in case of WT and StrpR. e Broth dilution method shows high MIC values for the
resistant populations against the respective antibiotics that they were evolved on. Legends are Blue for WT, Red for ChIR and Green for StrpR.
Means + S.D. represented in a, b and e (n = 3)

were tested wherein one set had the respective antibiotics,
to which the strains were resistant, from zeroth time point
(t0) and in the other set, antibiotic was added 6 h (t6) post
inoculation. After 30 h the t6 set of plates were used to
plate fresh LBA plates without any antibiotic to analyze vi-
able colonies after the 30 h incubation period. Growth
rates were measured for the overall 30 h duration experi-
ment in four different phases: pre-6 h phase, post 6 h
phase, overall growth rate and a maximum growth rate.
Same phase wise analysis for biomass and violacein was
also performed. Curve fitting, visualization and analysis of
the different plots for this experiment were done using
GraphPad Prism Version 6.01 (GraphPad Software, San
Diego California USA, www.graphpad.com). Nonlinear
curve fitting was done using Gompertz growth equation
[26] for the growth data points (Additional files 2, 3 and
4). All the heat maps were generated using MATLAB plat-
form (Fig. 3).

Whole genome sequencing

In order to extract genomic DNA for whole genome re-
sequencing, ChIR and StrpR cultures were revived from
previously cryopreserved glycerol stocks on LBA plates
with respective antibiotic at 30 °C. These cultures have
been previously tested for all the phenotypic traits as de-
scribed in the results section. A single colony from LBA
was cultured in LB broth at 30 °C, 180 rpm and mid —
log phase cells were harvested for genomic DNA extrac-
tion using the DNeasy Blood and Tissue Kit (Qiagen,
USA) according to the manufacturer’s instructions. The
quality of the genomic DNA was assessed for RNA con-
tamination using A260/A280 ratio and visualized on
agarose gel. The DNA was also quantitated using Qubit
before library preparation. Genome sequences were ob-
tained for the two evolved populations, ChIR and StrpR,
using Ion Torrent PGM™ (Life Technologies) NGS
using the 314™ chip with mean read length of 180 and
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Fig. 3 Systematic evaluation of microenvironment metabolite supplemented antibiotic effects on biomass, growth and viability for the three
populations. a The heat map represents the exponential growth rates (measured fitness) of the WT, ChIR and StrpR populations on multiple
microenvironment metabolites. The predominantly blue-scale of the wild type in presence of antibiotics (first two columns) indicate the bactericidal
and bacteriostatic effect of antibiotics. The last two columns show the evolution of resistance as indicated by the increased growth rates. The Inset (d)
highlights the four metabolites maleate, succinate, pyruvate and 2oxoadipate on which growth rates are minimal even for the resistant populations.

b The heat map represents the maximum amount of biomass after 30 h (as cell dry weight) that is produced by the WT, ChIR and StrpR populations
on multiple microenvironment metabolites. The Inset (e) highlights the four metabolites maleate, succinate, pyruvate and 2oxoadipate on which
biomass was minimal. The effect of initial colony forming units was assessed by adding at the start of the culture (t0) and 6 h after growth (t6). ¢ The
heat map represents viability (as log 10 values of colony forming units/ml) after 48 h in the absence of antibiotics on rich LB media plates. The inset (f)
once again confirms the effect of the four metabolites maleate, succinate, pyruvate and oxoadipate on which viability is null
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188 base pairs respectively. The sequencing data analysis
for ChIR and StrpR samples showed 86 and 84% of the
bases read were of > Q20 quality respectively. For 77.07%
of ChIR and 71.3% of StrpR samples the genome base
coverage was 20x and for 18.61 and 10.01% coverage
was 100x. The assemblies and comparative analysis
against NCBI sequence of C. violaceum (accession num-
ber NC_005085) were also performed. The genome se-
quence data for this publication has been deposited at
Sequence Read Archive (SRA) (http://www.ncbi.nlm.-
nih.gov/sra) under accession number SRP072862.

Confirmation of mutations by Sanger Sequencing

All NGS identified sequence variations were confirmed
by Sanger sequencing. Primers (Additional file 1: Table
S5) were designed to amplify around 200 to 600 base
pairs (bp) amplicons such that the nucleotide of interest
was at a position for easy read during Sanger sequen-
cing. Amplification and sequencing was performed by
Eurofins Genomics India Pvt. Ltd.

In silico Structure - Function analysis of the mutation
acquired

Ab-initio models were made using ROBETTA server
[27] (http://robetta.bakerlab.org) except for RpsL (hom-
ology modeling was used) and the models generated
were checked for various parameters for model assess-
ment, such as Ramachandran Plots using PROCHECK.
Finally, visualization and manipulation of the three
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dimensional models were performed using the software
PyMOL (Schrodinger, LLC, 2015). In addition 3DLi-
gandSite [28] was used to get a better understanding of
the structure-function change post mutation/variation
(Fig. 4).

Preparation of intracellular metabolite extracts

For performing metabolomics experiments, the three
different populations of C. violaceum were inoculated
(10% inoculum of overnight starter culture) and incu-
bated in a shaker incubator at 30 °C, 180 rpm for 30 h.
2 mL of cell cultures were harvested at the end of 0, 6,
12, 18, 24 and 30 h by centrifugation at 12000 g at 4 °C
for removal of extracellular media. The following steps
were carried out on ice. The pellets were reconstituted
with ice-cold ethanol for quenching as well as maximal
extraction of metabolite features as used in previous
study [29, 30]. For collecting the extracts, the suspension
was centrifuged at 14000 g at 4 °C. The intracellular ex-
tracts were aliquoted (100 pL) and immediately stored at
-80 °C till further use.

Spectrophotometric analysis

The intracellular as well as extracellular extracts were
used for violacein estimation with BioPhotometer
(Eppendorf) by comparing to standard calibration
graphs for quantitation purpose as previously de-
scribed [31].

Fig. 4 In silico protein structure and function alterations due to altered genotypes confirmed by sanger sequencing. a- d Ab-initio models for wild
type (WT) and mutant (MUT) proteins for AcrR, KdpD and PabC using ROBETTA and homology model for RpsL. e 3DLigandSite representation of
the ligand binding residues (blue) including Ser238 among others, lost in the mutated variant of pabC gene as shown in (d)
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LC-MS analysis of intracellular metabolites

The intracellular extracts were dried in centrivap (Lab-
conco) at 4 °C, followed by reconstitution in 100 uL of
10% water in acetonitrile containing 4 pM atorvastatin
(internal standard). 10 pL of each sample was pooled to
prepare a technical quality control (QC) sample. Meta-
bolic profiling of samples was carried out on High Per-
formance Liquid Chromatography — Heated Electrospray
Ion Source — High-resolution Mass spectrometry (HPLC-
HESI-HRMS). The separation was achieved on Sequent
(Zwitter ionic hydrophilic interaction Liquid Chromatog-
raphy) ZIC-HILIC column (100 mm*2.1 mm*5 pum, Merck
Millipore) column using HPLC consisting of Accela qua-
ternary gradient pump, a degasser and Accela autosampler
(Thermo Fisher). The column was maintained at 45 °C
using column oven (PerkinElmer). The mobile phase for
elution consisted of 0.1% formic acid in deionized water
(Mobile phase ‘A’) and 0.08% formic acid in acetonitrile
(Mobile phase ‘B’). Gradient was set with 5% of mobile
phase A (0-5.0 min, 300 puL/min), 13% A (15.0, 300 ul/
min), 45% A (20.0 min, 300 pL/min), 90% A (23.0 min-
25.0 min, 300 pL/min), 5% A (27.0-32.0 min, 700 pL/
min). Heated electrospray ionization (HESI) source was
used as an interface between Liquid Chromatography
(LC) and High-resolution Mass Spectrometry (HRMS) in-
struments. The spray voltage of the source was set at
3.7 kV with capillary temperature 300 °C, sheath gas 45
units, auxiliary gas 10 units, heater temperature 390 °C
and S-lens RF at 50 units. The data was acquired in range
of 70-1050 m/z at resolution of 70,000 Full Width at Half
Maximum (FWHM) with Automated Gain Control
(AGC) target 1e6 and injection time of 120 ms. Two tech-
nical replicates, each of 5 pL sample volumes were
injected during analysis in both positive and negative ion
mode. A total of 7 QC samples were run at beginning,
intermittently and end of the run.

LC-MS Data analysis

For data analysis, the Qual browser module of Xcalibur
(Thermo) was used for manual inspection of presence of
metabolite of interest through accurate mass - extracted
ion chromatogram (AM-XIC). A mass extraction win-
dow (MEW) of 20 ppm around monoisotopic m/z of
possible adduct was used to generate the XIC. After es-
tablishing the retention time (Rt) and peak width of re-
spective metabolites as well as internal standard (IS),
Tandem Mass Spectrometry (MS/MS) was carried out in
respective ion modes to confirm their identities. The
MS/MS data was analyzed using fragment search tool in
METLIN [32] data base (http://metlin.scripps.edu) and
Mass frontier 7.0. A data processing method from pro-
cessing setup module of Xcalibur software was prepared
to integrate and generate area under peak data. The peak
areas of metabolites were normalized to the area
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response of uniformly spiked internal standard, atorva-
statin (ATV). This ratio is representative of the intracel-
lular metabolite concentration (abundance) after taking
into consideration the dilution factor for each sample
extract. Principal component analysis (PCA) was used to
get an overview of the data and to reduce the high di-
mension of the data set. For each metabolite, we calcu-
lated the temporal variation, using the coefficient of
variation (CV):

CV =o/u,

where 0 and p are the standard deviation and mean of
the measurements across the time points respectively.

AP-MALDI of intracellular metabolites

It was also estimated on Thermo Q-Exactive mass spec-
trometer (MS) coupled with an atmospheric pressure -
matrix-assisted laser desorption/ionization (AP-MALDI)
source equipped with a solid state Nd:YAG laser operating
at 355 nm. A mixture of 2,5-dihydroxybenzoic acid (2,5-
DHB) and 2-cyano-4-hydroxycinnamic acid (CHCA) was
used as a matrix for the analysis. Samples were mixed with
internal standard (2,4-diamino-6-methyl-1,3,5-triazine)
before spotting on MALDI target plate in 6 replicates.
The instrument was operated in full MS scan mode within
m/z 50-750 at resolution 35,000 FWHM. Spray voltage at
2.5 kV, capillary temperature at 250 °C, AGC target of 1e6
and 500 ps injection time were optimized before be-
ginning analysis. Laser fluence was optimized at 70%
and Pulse Dynamic Focusing (PDF) value of 100 ps
was used with automated rastering motion chosen for
data acquisition.

AP-MALDI data analysis

Data analysis was performed with Thermo XCalibur Qual
Browser, mMass [33] for qualification and in-house soft-
ware MQ v 5.0 (http://www.ldi-ms.com/services/software)
for quantification [34] with a chosen MEW of 20 ppm.

Constraints based modeling of C. violaceum central
metabolism: network reconstruction

Stoichiometric network analysis based on the constraint-
based modeling framework has been proven to be a
valuable tool to study cellular metabolism and pheno-
typic capabilities of many organisms [35-38]. -The
small-scale central metabolic model of C. violaceum pre-
sented here is a manually curated stoichiometric network
reconstruction and model that allows probing special
characteristics of this bacterium. It was done using avail-
able literature data [39-42] as well as information from
databases such as KEGG, Biocyc, Metacyc. Further the
violacein biosynthesis reaction list, including reaction stoi-
chiometry, reversibility, sub-cellular localization, and gene
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locus/loci for each reaction comprising core metabolism
were also incorporated into the model. The biomass equa-
tion for the model was also modified in order to take into
account for tryptophan contribution towards biomass pro-
duction. For all simulations maximization of the biomass
equation was fixed as the objective function until men-
tioned otherwise. The detailed description of the model
can be found in Additional file 5. The model was initially
validated using a set of 10 substrate utilization BIOLOG
GN2 plate data existing in literature [43-45].

Further a set of constraints that define the antibiotic
susceptible WT and differentiated the evolved popula-
tions (ChIR and StrpR) were determined. The
constraints used in different simulations included (i)
Substrate (Glucose) uptake rates (ii) Growth vyields (iii)
Violacein secretion (iv) ATP maintenance costs associ-
ated with molar growth yields of each strain as discussed
(Table 3, Additional file 5). The specific growth rates
were calculated using 1 g biomass as the basis. The
growth yields thus calculated were compared across the
three strains. The goal of the simulations was to under-
stand the flux distribution in silico and the sensitivity of
growth yield to various precursors with specific refer-
ence to the cofactors NADH, NADPH and ATP. Con-
straints based flux balance analysis (FBA), as described
in the following section, was used to simulate for growth
(maximize biomass objective function) and violacein
production. Constraints-based methods were used to
perform a comparative analysis between the susceptible
and resistant populations to understand the connections
between metabolism and resistance.

Implementation of the central metabolic reconstruction
for C. violaceurn and constraints-based analysis was done
using Constraints Based Reconstruction and Analysis
(COBRA) Toolbox 2.0.2 [46] with MATLAB v 7.1,
(R2010b) and TOMLAB/CPLEX v7.7 optimizer. MATLAB
codes for all referenced COBRA functions are available at
the COBRA’s website (https://opencobra.github.io/).

Flux Balance Analysis (FBA) and associated sensitivity
parameters

Flux-balance analysis is a method for assessing the sys-
temic properties and cell behaviors of a metabolic geno-
type. In short the primal FBA problem, equation (1)
describes the steady-state mass balances of the biochem-
ical reaction network [47-50]

Maximize Z = c'v
Subjectto S.v =0 (1)
vIBsy>yUB

LB UB .
where ¢, v, v-7, and v are vectors of length n, and S is
the m x n stoichiometric matrix.
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Mathematically, the S matrix acts as a linear transform-
ation between the vector that defines fluxes through n re-
actions in the biochemical network and the vector of the
time derivatives of the concentrations of m metabolites in-
volved in these reactions. The fundamentals of FBA have
been widely and critically reviewed [46, 51-54].

The function optimizeCbModel(model), in COBRA
toolbox was used for maximization of pathogen growth
or biomass by fixing the objective function to be the bio-
mass equation in the model.

Two sensitivity parameters — shadow prices and re-
duced costs [46] - were assessed in order to understand
the effects of changing biomass, ATPM, metabolites and
reactions of the different populations of C. violaceum.
Shadow price corresponds to the sensitivity of the
growth rate as an objective function (Z) in response to a
change in the availability of a metabolite (i), and indi-
cates how much an increment in that metabolite will in-
crease or decrease the growth rate. Analogous to
shadow price, reduced cost is the sensitivity of the
objective function in response to change in fluxes of
a particular reaction and its effect on the objective. In
addition to the primal solution (optimal fluxes), the
LP solver provides the corresponding dual solution
i.e., shadow price and reduced cost for the FBA
problem.

Scaled reduced costs [55] and logarithmic sensitivity
coefficient [56] were also calculated as shown in equa-
tion (2) and (3) which better assess the sensitivity taking
into account the substrate and growth yield. The loga-
rithmic sensitivity coefficient (D;) represents the sensitiv-
ity of each precursor yield to its biosynthetic demand
whereas scaled reduced costs (W;) are used to assess the
limiting reactions.

Wi = (Vi.Wi)/Z (2)
D; = dX/dM.dM (3)

In equation (2) v; is the flux through a particular reac-
tion having a w; reduced cost associated with it. Z is the
objective function value, in this case being biomass.
Similarly, in equation (3) dX/dM is the associated
shadow price to a particular metabolite and dM is the
coefficient of the metabolite in the objective function
equation.

Another sensitivity parameter, gamma redox, the differ-
ence between the shadow prices for the redox couplet
(NADH/NAD) and (NADPH/NADP) were calculated [51].

YFedOX(NADH/NAD) = YNADH - YNAD (4)

YredOX(NADpH/NADP) = YNADPH - YNADP (5)

This is an index of available reducing capacity available
to the cell and whether it is limiting or in excess for
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biomass formation. A positive shadow price suggests
available reducing capacity in excess of the optimal de-
mand for growth and where it is negative, limiting for
optimal growth. A positive shadow price doesn’t neces-
sarily indicate accumulation but also suggests metabolic
rewiring into overflow metabolism.

Flux Variability Analysis (FVA)

FVA was utilized to investigate the resulting space of
feasible flux distributions [57]. FVA can be set up in
COBRA toolbox using the function fluxVariability(). One
can thus determine the minimum and maximum flux
value that each reaction in the model can take up while
satisfying all constraints on the system for a specific ob-
jective. The objectives under consideration for this study
include optimal growth. These will be considered as
forced or fixed fluxes. Differences in these unique forced
fixed rates in resistant populations as compared to wild
type indicate metabolic reprogramming. To highlight the
differences between the antibiotic sensitive and resistant
populations, we classified reactions in the network based
on their minimum and maximum flux values and
assigned categories that reflect their rigidity or flexibility.
Nine categories can thus be mapped onto the flux vari-
ability map based on the magnitude and direction of the
flux (Additional file 1: Table S4a) ranging from category
1 for forward direction (positive fixed) fixed flux, ie.,
minimum and maximum flux values were same, a non-
zero positive value to category 9 wherein the minimum
and maximum flux was zero (blocked). Specific attention
was paid to reaction rates that were uniquely determined
(i.e., if upper and lower boundaries as computed by FVA
coincide; Categories 1 and 4). Changes between such
rigid fluxes (1 and 4) to more variable flux capabilities
(2,3,5,6,7 and 8) would reprogram the metabolic network
by either changing the direction of equilibrium or modu-
lating magnitude and span of the reaction rates.

Dynamic Flux Balance Analysis (dFBA)

dFBA was utilized to qualitatively predict the outcomes
of growth in batch culture conditions matching our ex-
perimental condition [38]. The resistant populations
ChIR and StrpR needed to be assessed for the onset of
overflow metabolism and secretion patterns as observed
in FVA simulations. The dFBA can be set up in COBRA
toolbox using the function dynamicFBA() [58]. It is an
implicit iterative process wherein at each iteration; FBA
is used to simulate for growth, nutrient uptake and by-
product secretion rates using an initial concentration for
nutrients, which are in turn used to calculate biomass
and nutrient concentrations in the culture at the end of
the step. The same values are used to calculate max-
imum uptake rates of nutrients for the next time step.
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Glucose measurements

Glucose levels of C. violaceum cultures (WT, ChIR and
StrpR) were measured using MyQubit Amplex Red Glu-
cose Assay Kit (Thermo Fischer Scientific) according to the
manufacturer’s instructions using Qubit 2.0 Fluorometer
(Life Technologies, CA, USA). The assay is based on the
D-glucose dependent generation of hydrogen peroxide with
glucose oxidase (GO) followed by the horse radish peroxid-
ase (HRP) catalyzed oxidation of colorless, stable Amplex
Red (10-acetyl-3,7-dihydroxyphenoxazine) to fluorescent
resorufin.

NADH and NAD measurements

NAD/NADH levels of C. violaceum cultures (WT, ChIR
and StrpR) were measured using a commercially avail-
able kit (MAKO037, Sigma Chemical, St. Louis, MO,
United States) according to the manufacturer’s instruc-
tions (Fig. 6¢c to e). NAD total (NAD and NADH) or
NADH levels are quantified in a colorimetric assay at
450 nm using iMark™ Microplate Absorbance Reader
(BIO-RAD).

Results

Adaptive Laboratory Evolution (ALE)

The schema for the workflow followed in this study
(Fig. 1) involved the evolution of Chromobacterium vio-
laceum strain ATCC 12472" (C. violaceum or WT) from
a small inoculum onto Luria Bertani agar (LBA) plates
chloramphenicol (chl) and streptomycin (str), both tar-
geting protein translation at the ribosomal subunit level.
To provide strong evolutionary pressure while maintain-
ing a sizeable population, the concentration of antibiotic
was chosen such that no more than 60% of growth was
inhibited. Once defined this sub-lethal concentration
(SLC), of the antibiotic (10 pg/mL) was not varied
throughout the evolution as well as other experiments
unless specified. The adaptive evolution continued for
about 3 weeks and when the first positive trait appeared,
these colonies were cultured multiple times on LB agar
plates with the respective antibiotics followed by colony
purification. Multiple clones that were evolved in parallel
were colony purified. Broth cultures of the respective
antibiotic resistant population were used for Minimum
Inhibitory concentrations (MIC) calculations. One of the
parallel lines of evolved clones resistant to antibiotics
was further used in genotypic, phenotypic and metabolic
profiling studies (Fig. 1d).

Evolution of antibiotic resistance and fitness

We first analyzed that growth rates and kinetic profiles
of the resistant populations support evolution towards
fitness on both antibiotics. The effect of varying anti-
biotic concentration on growth rate was studied (Fig. 2a
and b). The growth rates of the chloramphenicol
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resistant (ChIR) population was reduced to 50% at
32 pg/ml chloramphenicol, while the streptomycin re-
sistant population (StrpR) growth rate was lowered
down to just 15% of that without antibiotic. At even
10 pg/ml of streptomycin the growth rate of the StrpR
population was reduced by only 10%. The growth rate
exponentially decreased with increasing concentration of
the antibiotic in the wild type and evolved resistant pop-
ulations (ChIR and StrpR). The resistant populations im-
proved in growth rate and biomass yield substantially
even in the presence of higher concentrations of anti-
biotic in contrast to the wild type (WT). Surprisingly, no
fitness costs associated with the acquired resistance were
observed in the absence of antibiotics.

Next, we assessed broad-spectrum antibiotic suscepti-
bility for ChIR and StrpR populations via estimation of
MIC on 11 different antibiotics (Fig. 2c). The population
evolved on chloramphenicol, ChIR, had an MIC much
greater than the wild type, being able to resist high titres
of 256 pg/ml of chloramphenicol. The streptomycin
evolved population, StrpR was able to resist twice the
amount of antibiotic as the wild type reaching a titre of
120 pg/ml. StrpR populations showed low MICs for
chloramphenicol indicating higher sensitivity. Only the
ChIR population showed cross-resistance to Piperacillin/
Tazobactam (PTZ) combination (Fig. 2d). Similar trends
were observed when MIC values were estimated by
broth dilution method (Fig. 2e) for chloramphenicol
(>256 pg/mL) and streptomycin (120 pg/mL) and were
represented as percentage viability of the cells.

Effect of exogenous metabolites and antibiotics on growth
A systematic evaluation of benign microenvironment
metabolites in excess of being limiting (Additional file 1:
Table S2) showed unique fitness landscapes and associ-
ated costs for the evolved and wild type populations
(Fig. 3). Wild type C. violaceurn (WT) does not show
capacity to utilize citrate, oxalate and glyceraldehyde-3-
phosphate (Additional files 2, 3 and 4). Streptomycin
(bactericidal) showed a more profound effect on growth,
unable to support growth on 50% of the substrates
tested while chloramphenicol (bacteriostatic) affected
growth on only 7/30 (23%) of the substrates (Table 1
and Fig. 3a, c¢). The ChIR and StrpR populations showed
fitness costs associated with growth on 13 and 17 sub-
strates respectively. StrpR populations showed lag for ex-
tended period of times on many substrates (consistent
with mutations discussed in the next section). Lowered
fitness is observed on glycolytic intermediates like
fructose-1,6-diphosphate and other TCA cycle interme-
diates. Strikingly, the ChIR population recorded almost
no growth and viability on organic acids maleate (C3),
pyruvate (C3), succinate (C4) and 2-oxoadipate (C6)
even in the presence of chloramphenicol antibiotic
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(Fig. 3b and d). The StrpR population exhibited similar
growth patterns with the only exception of D-malate
(C3) also being able to make the resistant population
susceptible again to antibiotic.

Altered genotypes and in silico protein functional analysis
in resistance

In order to see how genotype was shaping the growth
phenotype of the resistant populations, we re-sequenced
the whole genome and confirmed 14 sequence changes
(Table 2, Additional file 1: Table S5) using capillary se-
quencing. The sequence changes were seen to affect the
protein structure and function in silico as discussed
(Fig. 4).

The ChIR population acquired mutations in marC [59]
and the transcription repressor acrR of the tripartite
AcrAB-TolC multidrug efflux pump [60-62]. Mutations
in marC were silent substitutions. The repressor protein
suffered premature truncation after translation of 141
amino acids and a non-synonymous substitution R60L
resulting in altered domain that is involved in ligand
binding for repression (Fig. 4a and Additional file 1:
Figure S5c). In case of the StrpR population, a non-
synonymous substitution R86S was detected in rpsL,
coding for the 30S ribosomal protein S12 [63-66] along
with deleterious mutations in kdpD, encoding for the
sensor kinase of the two-component signal transduction
system (TCS) [67] and pabC, encoding the pyridoxyl 5’
phosphate (PLP)-dependent enzyme 4-amino-4-deoxy-
chorismate lyase catalyzing PABA biosynthesis [68, 69].
Ab initio models built using ROBETTA and ligand bind-
ing analysis using 3DLigandSite showed that the mu-
tated KdpD and PabC proteins truncated after 682 and
226 amino acids respectively resulting in loss of critical
ligand binding or sensory domains (see Discussion).

The metabolic phenotype of resistant populations

To determine the fundamental genotype-phenotype rela-
tionship and establish a metabolic basis for antibiotic re-
sistance, intracellular metabolomic profiles were measured
using Liquid Chromatography — High-resolution Mass
Spectrometry with Tandem Mass spectrometry (LC-
HRMS with MS/MS) (Fig. 5, Additional file 6). Including
both ion modes, total 126 metabolites were screened. At
the end of the analysis, 59 metabolites were finally selected
based upon qualification criteria of mass accuracy, MS/
MS confirmation, elution profile, reproducibility of re-
sponse of technical QC samples and biological relevance.
The details of these 59 metabolites are mentioned in Add-
itional file 6. Relative abundance was calculated by nor-
malizing metabolite peak area response with that of
internal standard (metabolite of interest peak area/internal
standard peak area). This ratio is representative of the
intracellular metabolite concentration (abundance) after
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Table 1 Fitness costs of antibiotic resistance on multiple substrates
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Growth Rates (hr™")

Time Lag (hr)

Metabolites WT + chl WT + str WT ChIR StrpR WT + chl WT + str WT ChIR StrpR
Glucose 0.00 0.00 0.71 021 1.80 3 95 2
Glucose-6-phosphate 0.09 0.01 1.08 0.77 223 3 3 2 35 2
Glyceraldehyde 3-phosphate 0.00 0.00 0.00 0.00 0.00

Fructose 1,6-bisphosphate 0.00 0.01 1.14 0.23 0.25 3 1.5 6 10
Fumarate 0.00 0.06 1.55 0.21 0.27 3 1.5 12 135
Maleic acid o 0.00 060 0° 0° 1

D-Malic acid 0.08 0.01 0.67 1.89 oP 25 155 1.5 0

Succinate 0.00 0.00 1.00 0? ob 25

Oxalic acid 0.00 0.00 0.00 0.00 0.00

Oxoadipic acid 0.04 0.00 0.62 0°¢ 0° 0 0

Malonic acid 0.1 0.03 1.08 045 0.17 2.5 25 1.5 2 18
Pyruvate 041 0.00 0.58 0°¢ ob 4 2.5

Citric acid 0.00 0.00 0.00 0.00 0.00

Isocitric Acid 046 0.00 1.31 032 0.32 10 35 35 125
L-Lactic acid 029 0.00 0.99 1.05 0.16 3 45 45 18
Ketoglutaric acid 0.15 0.09 0.19 0.24 0.04 0 0 35 0 21
L-Arabinose 0.00 0.00 0.88 0.54 0.29 35 35 135
Manose 6-Phosphate 0.18 0.00 1.08 098 1.68 3 25 35 25
Ribose 5-phosphate 0.28 0.00 0.86 033 0.18 2.5 25 6 6
3-phosphoglyceric acid 0.29 0.26 0.28 040 0.18 2 2 0 6 6
L-Tryptophan 0.00 0.00 0.53 023 1.92 2 2 2
L-Alanine 0.21 0.00 0.96 0.28 0.36 2.5 25 6 35
L-Valine 0.28 0.00 0.74 033 0.14 2 2 6 6
L-Aspartate 027 0.20 0.19 041 0.18 25 25 0 6 10
L-Glutamine 0.00 0.00 0.83 1.15 0.26 25 35 13
L-Glutamate 0.52 0.16 1.28 112 0.23 3 3 3 3 125
Mannitol 024 0.00 1.00 0.98 020 3 2 35 85
D-Sorbitol 0.24 0.00 0.58 040 0.25 125 25 6 9.5
Glycerol 0.00 0.00 0.78 0.28 1.99 25 9.5 25
L-Ascorbic acid 0.00 0.18 0.81 023 027 3 3 6 12
Luria bertani 0.00 0.00 047 037 1.69 3 3 15 3 3

Altered kinetic parameters represented as Growth Rates and Time lag for the three populations of C. violaceum (WT, ChIR and StrpR) on multiple micro-
environment metabolites. Zero growth rates are represented in bold

6 initial till 180 min
bt0 initial till 180 min
tO first 60 min

9310 18 h growth
€growth after 24 h

taking into consideration the dilution factor for each sam-
ple extract across the three different populations of C. vio-
laceum. Metabolite relative abundance levels in the three
populations span three orders of magnitude intracellularly
(Additional file 1: Figure S1). Guanosine, methylmalonate,
glutamine and aspartate vary slightly, but high order of
magnitude differences are seen in PABA, succinate, leu-
cine, hypoxanthine and violacein. To validate that the

metabolism is different in the wild type (WT) and resist-
ant strains (ChIR and StrpR), Principal Component Ana-
lysis (PCA) of quantitative features of metabolites of
intermediary metabolism extracted from LC-HRMS data
was performed (Additional file 1: Figure S2). Score plots
of principal components for both biological replicates,
show trends that showcase maximum separation of data
with respect to different time points (PC1) and also
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Table 2 Summary of variants confirmed using Sanger sequencing post whole genome sequencing

SN. Gene Gene Nucleotide Type Amino acid change GENE STRETCH Gene detail
locus name change
1 CV_0436 acrR G179T° SNP  Re0L 456438 - > 457,085, 648 bp/215 AA  Transcription repressor of multidrug
efflux pump
G375GAT? INS  Premature termination, acrAB operon, TetR (AcrR) family
141 AA
2 CV_4365 marC C4648G SNP No Change 708,719 - > 4,709,366 multiple drug resistance protein
3 CV_4191 rpsL G SNP R86S 4,519,516 < — 4,519,887, 372 bp/ ~ 30S ribosomal protein $12
123 AA
4 (CQV_3410 pabC Al47deletion® DEL  Premature termination, 3,703,561 < —3,704,373,813 bp/  4-amino-4-deoxychorismate lyase
226 AA 270 AA
5 CV_1596 kdpD G167deletion® DEL  Premature termination, 1,719,330 < — 1,722,017, 2688 bp/ 2 component regulatory protein
682 AA 895 AA sensor kinase. Osmosensitive K+
channel histidine kinase KdpD
(EC273)
6 CV_0066 CV_0066 G655C SNP  P219A 75121 <— 76422, 1302 bp/433 AA  Hypothetical protein
7 NtCDS ntcds 1263524 SNP between CV_1197 and tRNA Ser ~ Cv_1197 - polysaccharide/polyol
phosphate ABC transporter ATPase
8  CQV_0464 CV_0464 A4273C" SNP  Synonymous 478148 - > 483,712, 5565 bp/1854 AA  Hypothetical protein, Homologous
G4274A° SNP to Fibronectin type Il domain protein
T4276A° SNP
C4277G* SNP
G4278C¢ SNP
C4344G¢ SNP

Out of 57 genes and 25 non coding (Nt CDS) obtained after whole genome sequencing using lon Torrent platform only eight of them were confirmed using
capillary electrophoresis of which some were unique or common to the resistant populations

variant confirmed in ChIR

Pvariant confirmed in StrpR

‘variant confirmed in both the strains
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Fig. 5 The metabolic basis of antibiotic resistance through dynamic metabolomic profiling shows metabolic reprogramming. a Violacein with

its differential abundances as compared to wild type in the StrpR (50% increase) and ChIR populations (50% reduction). b Prodeoxyviolacein
measured only in ChIR population. ¢ Fold change with reference to wild type population across resistant populations in their average intracellular
relative abundance (log 10 values). d Temporal variation of metabolite abundances across sensitive and resistant populations (log 10 values).

e The oscillatory or linear behavior with varying amplitude, period and phase lag during growth on glucose across sensitive and resistant
populations. The Central Carbon Metabolism Network is drawn for quick correlation. Solid blue squares show all amino acids, Fructose-1,6-biphosphate
(1,6-FDP), D-ribose-5-phosphate (R5P), D-erythrose-4-phosphate (E4P), glycerate-3P (3PG), phosphoenolpyruvate (PEP), pyruvate (PYR). Yellow rounded
rectangles show nucleotides. Various metabolite time profiles for the three strains are shown. All the values were normalized to the internal standard
(Refer Methods for details). Graph legends: Blue — WT, Red — ChIR, Green — StrpR. Means + S.D. represented in (a,b and e) (n = 2)
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clustering of data points based on susceptibility or resist-
ance to antibiotic (PC3). Differential expression of features
exhibited by StrpR was captured by PC3 in both the bio-
logical replicates. A significant difference after 6 h time
point in scores of StrpR shows a distinct deviation in
metabolic behavior in comparison to the other popula-
tions studied. This is also observed in the growth profiles
of StrpR. The ChIR strain shows separation from the WT
and the StrpR populations in terms of intermediary core
metabolism on glucose as also identified through flux bal-
ance modeling discussed in following sections. The signifi-
cant metabolites after almost 30 h of growth include
deoxyviolacein, xanthine and [-cyanoalanine while the
metabolites in the early hours of growth include more
core metabolite candidates like fumarate, maleate, malate,
succinate and pyruvate (Additional file 1: Figure S2). The
metabolite abundances also show oscillatory behavior with
varying amplitude, period and phase lag (Fig. 5e). Leucine,
lysine and proline had a characteristic oscillatory behavior
with a period of 12 h; also there is phase lag in WT com-
pared to resistant populations. Certain metabolites such as
arginine and adenosine showed negligible changes. Inter-
mediate of violacein biosynthesis pathway, prodeoxyviola-
cein was seen to increase linearly only in ChIR whereas it
was very low for the other two ie, WT and StrpR. The
presence of prodeoxyviolacein, a precursor only in ChIR
(Fig. 5b) potentially explains the lowered violacein through
limited availability of cofactor NADPH since tryptophan
levels are similar. Increased recycling of nucleotides
through salvage pathways was reflected in high levels of
adenosine, xanthine and hypoxanthine in the resistant
populations (Fig. 5¢ and e). 8-oxoguanine, a major oxi-
dized base lesion formed by reactive oxygen species, was
higher in the StrpR population indicating potential oxygen
radical effects.

The linearized dynamics around the steady-state level of
metabolites is captured by the temporal variation (Fig. 5d,
See Methods). Growth limiting metabolites are known to
show relatively lower temporal variation [17]. Temporal
variation (TV) identified potential growth limitation by
malate, glucose, glyceraldehyde-3-phosphate and uracil
across all populations. Phenylalanine and methionine are
potentially growth limiting (low TV) in ChIR while pyru-
vate only in StrpR. Tyrosine and serine are less growth
limiting (high TV) in the resistant populations than the
wild type. Pyruvate and malate showed low average intra-
cellular concentrations or had low temporal variation in
the two resistant populations (Fig. 5c and d).

In silico prediction of NAD/NADH balance and redox
homeostasis

To delineate a metabolic basis for the emergent resist-
ance, the heterogeneous components of resistant
genomes and elucidated metabolic physiology were
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integrated into a constraints-based flux balance model.
A central metabolic network reconstruction represented
by the genotype of C. violaceum iDB149 was developed
(Fig. 6a and b; Additional file 5). The network recon-
struction represents the core metabolism for the patho-
gen including glycolysis, pentose phosphate pathway,
TCA cycle, electron transport and basic amino acid me-
tabolism. Although, primarily a generic reconstruction
of central metabolism, it includes the virulence factor
metabolism, tailoring it to mirror C. violaceum metabol-
ism. It includes detailed amino acid metabolism of spe-
cifically tryptophan, due to its direct connection with
the production of violacein, a virulence factor specific to
this pathogen. A biomass equation was defined as a
drain on metabolites present in intermediary metabolism
and macromolecules in the precursor biomass based on
E. coli and Chromobacterium legacy data. This biomass
composition is kept constant throughout the analysis
and between strains. In order to understand the effects
of changing biomass composition, a logarithmic sensitiv-
ity coefficient [56] that represents the sensitivity of each
precursor yield to its biosynthetic demand was calcu-
lated for each of the 14 precursors of biomass (Add-
itional file 5). Rank ordering identified higher impact of
cofactors NADH, NADPH and ATP to increasing
growth. Molar growth yields calculated based on experi-
mental glucose utilization data and the maximum
growth vyield for Chromobacterium (Additional file 5)
was used to estimate the growth-rate independent en-
ergy ATP maintenance flux [38] (varpym) that represents
the energy required to sustain basal cellular activities.
The values interpolated/fitted from growth yield curves
differed for the wild type and the resistant populations
due to varying molar growth yields (Additional file 5,
Table 3). The differential violacein phenotype (repre-
sented as a production/secretion rate constraint) calcu-
lated from experimental data was used to define
resistant populations in silico (Additional file 1: Table
S3). Based on the sensitivity analysis of violacein produc-
tion and growth yields, a trade-off exists between the
production of violacein and biomass production. Fixing
this biosynthetic demand as a critical constraint in the
model, growth rates (via growth yields) predicted for
both resistant ChIR, StrpR and WT populations were
consistent with experimental data. The experimental
rates used for the simulations were from the exponential
growth phase of the three different populations of C. vio-
laceum. With these constraints determined by experi-
ments, the wild type model was tested for prediction of
carbon source utilization patterns using experimental
legacy data [43—45] of Biolog™ The model being a core
metabolic model was validated for utilization of carbon
sources that had transporters included and growth
against a small subset of substrates was accurate



Banerjee et al. BMC Systems Biology (2017) 11:51

Page 14 of 20

a -
VIOLACEIN
PATHWAY FROM
TRYPTOPHAN

Exchanges

Pyruvate
Metabolism
4%

Glycine and Serine

Metabolism Violacein
2% Biosynthesis
i 9

Glutamate Anaplelrotlc 6%

. reactions

Citric Acid Cycle
Glycolysis or 5%

Gluconeogenesis

8%

Pentose Phosphate '
Pathway

Reactions
Metabolites

o ) Oxidative
i B MODIFIED
> | P 6% :
. “BlOMASS ° ' \Phospr;/:ylatlon
EQUATION Tyrosine,
— Tryptophan, and
Phenylalanine
ﬂi Metabolism
e 12%
|
c Glucose d e
18 - = NADH mNAD 30 4 MGlucose MPyruvate M Succinate 2 - W Glucose  MPyruvate M Succinate
@
16 E 25 | 1.8 A
w 14 - ® o 1.6 -
= -
812 - S 5 14
2 10 E x 124
=) ° a
Ay 8 £ § 14
K 2 < 08
o ¢ © [=)
£ 5 < 06
s 4 | 2 2
=) 0.4
2 § 0.2 -
0 A 0 -
WT CHLR +chl STRPR +strp WT CHLR +chl  STRPR +strp WT CHLR +chl STRPR +strp

Fig. 6 Constraints-based Modeling predicts disruption of redox homeostasis and rewiring of metabolic network for compensation. a Core network
representation of C. violaceum metabolism (iDB149) with tryptophan, violacein pathway (using Escher; https://escher.github.io/) and tailored biomass
composition. b Reconstruction statistics and subsystem classification. ¢ - @ NADH and NAD experimental values attained for the three different strains
using three different substrates — Glucose, Pyruvate and Succinate. Mean + S.D. for triplicate samples represented

(Additional file 5). Further, the sensitivity of the yields to
different biosynthetic demands, maintenance and changes
in fluxes were probed. Shadow prices in the solution of
the linear optimization problem of Flux Balance Analysis
(FBA) define the sensitivity of the objective function with
respect to each constraint indicating the utility of the me-
tabolite in accelerating growth. Growth, as an objective in
FBA, is defined as multiple simultaneous demands on pre-
cursors to make macromolecules related to biomass. In
this context, a scaled shadow price for metabolites and
scaled reduced costs for reactions that account for sub-
strate and the growth yield are better sensitivity indicators
(See Additional file 5 and Methods). The logarithmic

sensitivity for cofactor NADH is the lowest in the ChIR
populations followed by StrpR and differ from wild type at
molar yields (Table 4). The 25% decrease in scaled shadow
price values indicate that a compensation for that particu-
lar cofactor must have taken place during evolution result-
ing in a higher yield of that cofactor in the evolved strains
for the already achieved higher growth and biomass yield.
The logarithmic coefficients show that NADH and
NADPH as compared to ATP may potentially play a role
in increase in biomass yields through changing biomass
composition. The reduced costs of each reaction indicate
their significance in increasing the objective (growth). The
alpha-keto glutarate dehydrogenase (AKGDH) reaction in

Table 3 Constraints used in this study for simulation of growth for the three different populations of C. violaceum using iDB149

Model Glucose uptake rate Violacein secretion rate Molar growth yield ATPM Biomass
WT 9.99 149 0.0312 6.24 0.23
ChIR 10.532 0673 0.0314 9.74 0327
StrpR 12.777 0.702 0.0504 5.69 0.644

Units for Glucose uptake rate and Violacein secretion rate are mmol/gDW/hr whereas hr™' for Biomass and gDW/mmol of glucose for Molar growth yield
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Table 4 Sensitivity parameters assessed using FBA - Scaled shadow prices, Logarithmic sensitivity and Maximum reduced costs

Metabolite Maximum Precursor ~ Shadow price in BOF  Coefficientin  Scaled shadow  Logarithmic
Yield (M/Glc) (dX/dM) BOF (dM) price (SSP) sensitivity (LS)

WT NADPH 0.004 -0.0079 13.028 —1.36E-04 -0.1024

NADH 0.0061 —-0.003 —3.547 —7.95E-05 0.0107

ATP 0.0056 —-0.0097 59.81 —2.37E-04 -0.5784
ChiR NADPH 0.0034 -0.0054 13.028 —5.56E-05 -0.07

NADH 0.0101 2.09E-18 —3.547 6.48E-20 —740E-18

ATP 0.0034 -0.0108 59.81 —1.11E-04 -0.643
StrpR NADPH 0.0009 -0.008 13.028 —1.11E-05 -0.1043

NADH 0.0017 —0.0031 —3.547 —8.04E-06 0.0109

ATP 0.0013 —0.0099 59.81 —1.93E-05 —0.5895

Reaction ID ~ Reaction Name WT CHLR STRPR
Maximum Scaled Reduced Cost ~ AKGDH 2-Oxoglutarate dehydrogenase 0 —8.11E-07 0

EX_o2(e) Oxygen Exchange 0 1.106 0.683

ICL Isocitrate lyase 0 0 —4.86E-07

PGL 6 - Phosphogluconolactonase 0 —8.11E-07 —4.86E-07

SUCCt3 Succinate transporter 0 -8.11E-07 —4.86E-07

PPNDH Prephenate dehydratase 0 —8.11E-07 0

GLCt2 Glucose Transporter 0 —8.11E-07 —4.86E-07

Rxnvio8 Reaction 8 of Violacein Synthesis 0 —6.56E-08 —2.81E-08

the ChIR strain while the isocitrate lyase (ICL) reaction in
the StrpR strain have scaled reduced costs associated with
them (Table 4). Flux variability analysis (FVA) assesses the
entire range of cellular function and the redundancy of
optimal phenotypes. Applying FVA to identify reaction
rates that can be uniquely determined allow us to explore
the immutable or rigid metabolic state of the cell at max-
imal specific growth rate consistent with experimental
data. Some reactions can be assigned fixed values, while
the remaining calculable fluxes remain within the extreme
bounds (Additional file 1: Table S4a). Uniquely computed
reaction rates that are forced or fixed fluxes (coinciding
upper and lower bounds) define metabolic rigidity and
govern the plasticity of growth phenotype. Differences in
these unique forced fixed rates in resistant and susceptible
populations overall flux distribution indicate compensa-
tory changes in metabolism due to antibiotic selection
pressure. The constraints-based model identified two
major features based on alternate optima predictions.
Firstly, the resistant populations showed rigid flux distri-
bution in secretion of overflow metabolites acetate and
formate (Table 5). The onset of overflow metabolism and
the details of secretion patterns were probed further using
dynamic flux balance analysis (Additional file 1: Figure
S3a - ¢). Both the resistant populations identified acetate
as a common overflow metabolite. Dynamic FBA (dFBA)
(Additional file 1: Figure S3a - c) qualitatively identified
secretion of acetate and formate in that order in the ChIR

population as indicated in the FVA and ethanol on lower-
ing the oxygen uptake rates. The second major feature in-
cluded reactions changing the rigid flux distribution in the
wild type to a more flexible flux in the resistant popula-
tions. The reactions included alpha-keto glutarate
dehydrogenase (AKGDH) and malate dehydrogenase
(MDH) (Table 5). These change from a rigid flux configur-
ation to more flexible one that potentially could modulate
the direction and magnitude of flux involving NADH. The
significance of alpha-keto glutarate (AKG) in the growth
of the resistant populations is also supported by the high
logarithmic sensitivity with respect to growth (Additional
file 5). In order to probe this further, we looked at the
scaled shadow prices, Yieqox and logarithmic sensitivity
during experimental conditions (Additional file 1: Table
S4b and Additional file 5) and identified NADH and
NADPH to limit growth in the ChIR strain while ATP was
also growth limiting in the StrpR strain. Thus, disruption
of redox homeostasis through NADH/NAD ratios (Fig. 6,
Table 5) and biomass precursor anabolism through
NADPH/NADP ratios were identified as central to anti-
biotic action by FVA [57] and sensitivity/shadow price ana-
lysis [70]. A recent report uses a NADH oxidase enzyme
system to delineate the role of NADH imbalance and show
decoupling of electron transfer via ETC. and proton pump-
ing for ATP synthesis [71]. Analysis of pareto fronts and
trade-off between ATP and NADH and NADPH mainten-
ance reactions (NADH/NADPH oxidases, not generally
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Table 5 FVA results showing category change in resistant strains as a function of antibiotic that involve redox cofactor balancing

Reaction ID Reaction formula WT ChIrR StrpR
HEX1 atp(c] + glc-DIc] - > adplc] + géplc] + h[c] 1 7 7
PYK adplc] + h(c] + peplc] - > atplc] + pyrlc] 7 1 1
AKGDH akglc] + coalc] + nadlc] - > co2[c] + nadhlc] + succoalc] 1 7 19
MDH mal-L[c] + nad[c] < = > h[c] + nadh[c] + oaalc] 1 7 19
FUM fum[c] + h2o[c] < = > mal-L[c] 1 7 19
SUCOAS atplc] + coalc] + succlc] < = > adplc] + pilc] + succoalc] 4 7 47
ACKr aclc] + atplc] < => actplc] + adplc] 7 4 4
PFL coalc] + pyrlc] - > accoalc] + for[c] 7 1 7°
PTAr accoalc] + pilc] < = > actplc] + coalc] 7 1 1
GLCt2 glc-Dle] + hle] - > h[c] + glc-Dic] 1 7 7
ACt2r acle] + hle] < => ac[c] + h(c] 7 4 4
FORti for[c] - > forle] 7 1 7°
EX_ac(e) acle] < => 7 1 1
EX_for(e) forle] < => 7 1 7°

Increased TCA cycle/Oxidation Phosphorylation in the StrpR population and increased overflow metabolism population diverting from TCA cycle in the ChIR
population. Of use here are Category definitions — 1 and 4 representing forced and fixed flux in either direction. 7 defined by negligible variable flux

2StrpR/WT flux fold is 0.52
BStrpR/WT flux fold is 0.32

present in Chromobacterium) was performed to under-
stand the modulation of NADH/NAD and NADPH/
NADP ratios in growth. A reaction representing the
NADH/NADPH oxidase (water forming) with the right
balance of protons and oxygen was added to the model.
This reaction essentially acts as a drain if there is excess
NADH/NADPH in the system. On probing the relation to
ATPase (representing ATP maintenance, ATPM) by a
pareto front analysis (Additional file 1: Figure S3d - e,
the differential relation for ChIR and StrpR was estab-
lished. To reduce the growth of the ChIR strain to
the wild type molar yield we identified NADH oxi-
dase as a critical constraint (Pareto front analysis).
For StrpR, however, both NADH and NADPH oxi-
dases were needed. This is also suggested by Yiedox
analysis (Additional file 1: Table S4b), which identified
both NADH and NADPH as growth limiting in StrpR
and only NADH as growth limiting in ChIR. At molar
growth vyields this suggests that excess NADH yields
are indeed responsible for the excess growth associ-
ated with the resistance to chloramphenicol, while
both NADH and NADPH yields play a role in StrpR.
The rigidity of the flux held through AKGDH and
MDH reactions was restored, when these constraints
were added. Experiments confirmed an increase in
NADH levels (Fig. 6e) in the ChIR population. For
the StrpR population the NAD levels go up (Fig. 6e),
seen in the molar yield simulations that show a 2 fold
increase in flux through the NADH16 reaction that is
the quinone associated conversion of NADH to NAD
(Additional file 5).

Discussion

The advent of genome-scale experimentation allows ac-
quisition of heterogeneous data-types that are critical to
delineating the genotype-phenotype relationship [1-4].
However, the mechanistic basis for the killing of anti-
biotic resistant populations only partially emerges
through such data and requires integration of multiple
data-types into a predictive scalable model. In this work
we show that an integrative approach is able to predict
the underlying mechanism related to redox and energy
homeostasis operational at the level of cellular metabol-
ism in C. violaceum. The model explains/predicts how
benign metabolites in combination with antibiotics could
potentially kill antibiotic resistant Chromobacterium
populations by driving metabolism in a direction causing
imbalance and disruption of the delicate redox or energy
balance needed for the organism to survive.

Changed kinetic parameters (Table 1) of the two resist-
ant populations in comparison to the susceptible wild type
on several substrates indicated differential utilization and
metabolic patterns resultant from altered genotypes and
physiology via adaptive evolution of C. violaceum. Inter-
estingly, fitness costs associated with the acquired resist-
ance only manifested during growth on carbon sources
and not in the environment used for evolution. The iden-
tification of four metabolites pyruvate, maleate, succinate
and oxoadipate, potentially all electron donors, do not
support growth across both the ChIR and StrpR resistant
populations. The null post treatment viability count
(Fig. 3e and f) make them ideal candidates for antibiotic
therapy for resistant populations.
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Also, these metabolites with the exception of maleate
are electron donors and enter catabolism in central me-
tabolism as glycolytic or TCA intermediates (Additional
file 1: Figure S5). Each of the substrates is taken up and
metabolized via specific dehydrogenases that involve the
cofactor couple NAD/NADH. The results obtained high-
light the importance of measuring fitness costs under
multiple micro-environmental conditions. They provide
a more relevant estimate of fitness in Chromobacterium
and also reveal novel physiological weaknesses exploit-
able for drug development such as the redox homeosta-
sis. Knowledge of such associated fitness costs in other
pathogens can identify microenvironment metabolites
that in combination with the antibiotic can target reduc-
tion of pathogen fitness.

The evolutionary fitness landscape of Chromobacter-
ium can be viewed as a random adaptive (weighted) walk
dictated by the drugs in the regime of strong selection
and weak mutation (SSWM) [72, 73]. Such weighted
walks in space of genotypes in the presence of chloram-
phenicol may have resulted in mutations in acrR, the
transcription repressor of the tripartite AcrAB-TolC
multidrug efflux pump and marC another multidrug ef-
flux pump and may be potentially commutative. The
continuous activity of the tripartite AcrAB-TolC multi-
drug efflux pump, which is proton dependent, could re-
sult in membrane potential changes due to efflux of
small molecules like violacein. Antibiotics are known to
activate the AcRAB-TolC pumps [62] and hence con-
tinuous de-repression may be a mechanism for evolu-
tion. The relatively few changes in genome sequence
observed with chloramphenicol as selection pressure in-
dicate a role beyond genetic causality in the resistant
phenotypes.

Previously implicated mutations in rpsL (R86S; Fig. 4b)
related to streptomycin resistance [63, 74] dictate an
“error-restrictive”, hyper-accurate translation phenotype,
accurate ribosomal function [65] and could explain the
long lags and lowered growth rates observed for this
population on specific carbon sources. Enhanced growth
of the StrpR in poor carbon sources like glycerol prob-
ably occurs due to lower levels of the transcription fac-
tor, S [75]. Lack of growth on pyruvate, succinate and
maleate indicate potential induction of rpoS [76]. The
mutated PabC protein involved in de novo folate biosyn-
thesis via PABA could potentially lead to excess PLP
known to perturb amino acid metabolism [77], including
the observed tryptophan synthesis as observed in LC-
HRMS with MS/MS profiles for StrpR intracellular tem-
poral extracts. Streptomycin is known to cause leakage
of low molecular weight antibiotic, ions and amino acids
by damaging the permeability barrier creating potential
secondary selection pressure [78]. This implies low cyto-
plasmic K+ could shape the evolution as a secondary
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selection pressure specifically based on the mutated
cytoplasmic domain of KdpD TCS regulator. On geno-
typic profiling and protein functional analysis we reach a
hypothesis that the antibiotic adapted landscape of C.
violaceum with a few beneficial mutations and fitness
distributions potentially supports the Gillespie [72, 73]
landscape model for evolution of resistance. Whether
these genome changes are causal or correlational need
to be investigated.

Violacein with its differential abundances (Fig. 5a) as
compared to wild type in the StrpR (>50% increase) and
ChIR populations (~50% reduction) could be a potential
biomarker for resistance. This could be potentially due
to indole known to be shared in antibiotic resistant E.
coli to provide cover for more susceptible bacteria [79].
C. violaceum accumulates tryptophan (downstream of
indole) that is converted subsequently to virulence factor
violacein. Potentially, developing a synthetic operon to
convert tryptophan (found in all pathogens) to violacein
may be useful as a visual reporter/biosensor of emergent
resistance in even other infectious diseases. Reports exist
that chloramphenicol lower intracellular indole and ac-
cumulation of tryptophan as observed [80]. Further ex-
ploration is needed to connect violacein to strategic
intracellular communication and resistant growth phe-
notypes of the pathogen.

Using the in silico central metabolic network recon-
struction representing C. violaceum, iDB149, we were
able to understand emergent properties of redox and en-
ergy homeostasis across susceptible and resistant popu-
lations. On shadow price and reduced costs analysis of
growth limiting metabolites and reactions, AKGDH and
ICL were identified in ChIR and and StrpR respectively.
The alpha-keto glutarate dehydrogenase (AKGDH) reac-
tion is known to regulate oxidative phosphorylation, ly-
sine and tryptophan synthesis. Isocitrate lyase (ICL)
reaction on the other hand, has been implicated in
pathogenesis and persistence in Salmonella and resist-
ance in Mycobacterium [81]. The use of ICL involves
shunting isocitrate through the glyoxylate shunt and
bypassing part of the TCA cycle. This potential mechan-
istic difference between ChIR and StrpR in glucose me-
tabolism is also evident in the intracellular metabolite
profile (Additional file 1: Figure S2). AKGDH is also a
known modulator for oxidative phosphorylation and
dependent on the ADP/ATP ratios [82]. The flux
through the ATP synthase is higher in the StrpR strain
(Additional file 5) suggesting a potential increase in res-
piration rates as previously described [2]. The apparent
lowering of ATP synthase flux potentially suggests a
mechanism for decoupling of electron transfer from pro-
ton pumping in oxidative phosphorylation in the resist-
ant populations. The StrpR population with mutations
in rpsL may need a model of regulation and metabolic to
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explain the big change in growth rates and yields in pres-
ence of streptomycin. Flux variability analysis showed re-
actions that have flux category change in resistant strains
compared to WT as a function of antibiotic involved
redox cofactor balancing (NADH/NAD and NADPH/
NADP ratios); increased TCA cycle/Oxidation Phosphor-
ylation in the StrpR population and increased overflow
metabolism population diverting from TCA cycle in the
ChIR population. The wild type growth on pyruvate, mal-
ate and succinate also indicates the increase in NADH
levels as a mechanism for survival in the presence of anti-
biotics (data not shown). The metabolism of these sub-
strates after their uptake, all involve the use of the
cofactor couple NAD/NADH [70]. The pareto front ana-
lysis of the added NADH/NADPH oxidase to the ChIR
and StrpR strains potentially show an increase in NADH
as a mechanism of evolution to become resistant. The
addition of the above mentioned compounds potentially
increase the NADH levels further causing major redox
imbalance. This cofactor imbalance prevents the mainten-
ance of a rigid core flux distribution, through certain
control nodes, eventually preventing minimal cellular
function of the metabolic network for energy and biomass
formation. The model thus predicts the emergence of
NAD/NADH ratios and electron imbalance to be critical
to survival and susceptibility of the antibiotic resistant
phenotype and can be leveraged to make the resistant
pathogens susceptible to antibiotics again.

Conclusion

Taken together, our data unveiled that disruption of
redox homeostasis by certain benign metabolites as key
to killing antibiotic resistant pathogens. To distinguish
between causal and correlational factors in the evolution
of antibiotic resistance more rigorous experiments and
comprehensive genome-scale models may be needed.
Reversing the phenotype by perturbing metabolism
through modulating micro-environments could be one
way of subverting the onset of the post antibiotic era.
Determining the genetic and metabolic basis of ribo-
some targeting antibiotic’s resistance helps address the
‘fourth dimension’ of how heterogeneous networks in
cells evolve simultaneously in space and time. This could
lead to scalable pipelines integrating growth/metabolite/
MIC profiling and constraints-based flux balance models
for clinical isolates, ultimately leading to personalized
treatment and individualized therapy.

Additional files

Additional file 1: Supplementary Tables S1 to S6 and Figures S1 to S5.
(PDF 2833 kb)

Additional file 2: Growth profiles for WT, ChIR and StrpR using 30
different C/N substrates when antibiotic was added from zero hour
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timepoint showing WT with no antibiotic in media (blue, wt_noab), ChIR
with chloramphenicol added to the media (red, DD001_tOchl), StrpR with
streptomycin added to the media (green, DD006_tOstrep). Plots made
using GraphPad Prism v6.01 and n = 3. (TIF 1004 kb)

Additional file 3: Growth profiles for WT, ChIR and StrpR using 30
different C/N substrates for first six hours when no antibiotic was added
(antibiotic was added after these 6 h, and hence represented as ‘t6)
showing WT (blue) with no antibiotic in first 6 h, ChIR (DD001_t6chl, red),
StrpR (DD006_tOstrep, green) with no antibiotic in media. Plots made
using GraphPad Prism v6.01 and n = 3. (TIF 778 kb)

Additional file 4: Growth profiles for WT, ChIR and StrpR using 30
different C/N substrates post addition of antibiotic at 6 h (t6) showing
WT with chloramphenicol and streptomycin, (WT_téchl,blue, and
WT_t6strep, red, respectively), ChIR with chloramphenicol added to the
media (DD001_téchl,green), StrpR with with streptomycin added to the
media (DD006_tOstrep, violet). Plots made using GraphPad Prism v6.01
and n=3. (TIF 1060 kb)

Additional file 5: This file contains information about the C. violaceum
core metabolic model. The file includes metabolites, reactions, and other
simulations used to understand the in silico behaviour of redox state of
the resistant populations ChIR and StrpR in comparison to WT in the
subsequent tabs. (XLS 384 kb)

Additional file 6: This file contains information about 59 metabolites
analyzed using HPLC-HESI-HRMS. The file includes information including
the retention time information, QC data peak area, normalized peak area
among others. (XLS 292 kb)

Abbreviations
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Balance Analysis; FDP: Fructose 1,6-bisphosphate; FORTI: Formate transport via
diffusion; FUM: Fumarate; FVA: Flux variability analysis; FWHM: Full width at half
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