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Abstract

Background: Due to advances in next generation sequencing technologies and corresponding reductions in cost,
it is now attainable to investigate genome-wide gene expression and variants at a patient-level, so as to better understand
and anticipate heterogeneous responses to therapy. Consequently, it is feasible to inform personalized drug treatment
decisions using personal genomics data. However, these efforts are limited due to a lack of reliable computational
approaches for predicting effective drugs for individual patients. The reverse gene set enrichment analysis (i.e., connectivity
mapping) approach and its variants have been widely and successfully used for drug prediction. However, the performance
of these methods is limited by undefined mechanism of action (MoA) of drugs and reliance on cohorts of patients rather
than personalized predictions for individual patients.

Results: In this study, we have developed and evaluated a computational approach, known as Mechanism and Drug Miner
(MD-Miner), using a network-based computational approach to predict effective drugs and reveal potential
drug mechanisms of action at the level of signaling pathways. Specifically, the patient-specific signaling network is
constructed by integrating known disease associated genes with patient-derived gene expression profiles. In parallel, a
drug mechanism of action network is constructed by integrating drug targets and z-score profiles of drug-induced
gene expression (pre vs. post-drug treatment). Potentially effective candidate drugs are prioritized according to the
number of common genes between the patient-specific dysfunctional signaling network and drug MoA network. We
evaluated the MD-Miner method on the PC-3 prostate cancer cell line, and showed that it significantly improved the
success rate of discovering effective drugs compared with the random selection, and could provide insight into
potential mechanisms of action.

Conclusions: This work provides a signaling network-based drug repositioning approach. Compared with the reverse
gene signature based drug repositioning approaches, the proposed method can provide clues of mechanism of action
in terms of signaling transduction networks.
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Background
The average cost of developing a new drug is about 2.6
billion dollars, as reported in a study conducted by Tuft’s
Center for the Study of Drug Development [1]. The
estimated success rate of drugs in clinical trials for FDA
approval is ~12%, a key contributor to huge development

costs [1]. With ~2000 currently FDA-approved small mol-
ecule drugs [2, 3], roughly over 15,000 compounds that
are well studied and passed toxicity tests [4, 5] had entered
into clinical trials but eventually failed. Due to advances in
next generation sequencing (NGS) technologies and
corresponding reductions in cost [6], it is now possible to
investigate genome-wide gene expression and variants at
the individual patient-level, so as to better understand and
anticipate heterogeneous responses to therapy. Systematic
genomics analyses have revealed diversity of dysfunctional
biomarkers of cancer samples [7–10], which is believed to
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be responsible for heterogeneous drug responses of indi-
vidual patients [11].
By integrating patients’ personal genomics data, e.g.,

genome wide gene expression and encoding structural
variation profiles, and publicly available pharmacogen-
omics big data [9, 10, 12], it is possible to reposition
FDA approved drugs and agents tested in clinical trials
for new indications, in a fast and cheap manner, to yield
effective personalized anticancer therapies [5, 13–16].
For example, commercial companies are developing
data-driven computational approaches and software
tools for personalized drug predictions, such as Founda-
tion Medicine [17], as well as the Verge Genomics plat-
form for brain disorders [18]. The widely used data
resources and tools being used for this type of research
are the Connectivity Map and LINCS [12] projects,
which successfully provide the open-source data (z-score
profiles of drugs) and tools for applications of drug
sensitivity prediction [19], drug repositioning [20–23],
and drug combination therapy [24, 25]. However, the
mechanism of action of predicted drugs often remain
unknown. Elucidating drugs’ mechanism of action is an
important challenge in pharmacology requiring the
specific molecular targets of given drugs, as well as the
consequent actions (signaling transductions pathways)
originating from drug targets. Further, such understand-
ing is of significant importance when seeking to translate
these types of findings into early-stage validation and
clinical studies. To overcome such challenges, in this

study, we propose a computational approach, mechanism
and drug miner (MD-Miner), for drug repositioning, using
a network-based approach. The mechanism of action sig-
naling network of drugs and disease signaling network of
individual patients are constructed via said methodology
by integrating protein-protein interactome data with gene
expression data of individual patients and drugs, and then
predicting effective drugs for individual patients based on
the constructed signaling networks.

Results
Method overview
Figure 1 shows the overview of the drug prediction
method consisting of three major modules. Module 1):
Construction of mechanism of action (MoA) signaling
network (MoAnet) of drug instances, comprised of 1.3
million drug and genetic perturbation instances derived
from different cell lines, drug doses and data collection
times, as found in CMap/LINCS [12]. Target informa-
tion for said drugs is obtained using the DrugBank
database [2, 3]. Subsequently, activated transcription fac-
tors (TFs) are identified based on up-regulation of TF
target genes integrating TF-target interactome data [26],
and the z-score profiles of drug instances generated by
Connectivity Map [12] (available via LincsCloud [27]).
Finally, drug targets, activated TFs and their up-
regulated target genes are mapped onto the BioGRID
[28] protein-protein network (interactome) in order to
construct the “MoAnet” using Dijkstra’s algorithm [29].

Fig. 1 Method Overview. There are three modules: Module 1): Construction of mechanism of action (MoA) signaling network (MoAnet) of drug
instances (the same drug treatment on different cell lines with different doses and time); Module 2): Construction of patient-specific disease signaling network
(Pnet); and Module 3): Scoring of drug sensitivity. For each drug, the average network overlapping nodes between MoAnet and Pnet are calculated and used
as the drug sensitivity score for individual patients, and then drugs are ranked based on the sensitivity score in the decreasing order. The top-ranked drugs
have higher possibility to be effectively repositioned for given individual patients
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Module 2): Construction of patient-specific disease sig-
naling networks (Pnet). The same method used in MoA-
net construction is employed to link disease associated
genes (knowledge) obtained from DisGeNET [30, 31], acti-
vated TFs and up-regulated target genes based on personal
genomics data of individual patients (patient-specific).
Module 3): Scoring of drug sensitivity. For each drug, the
average network overlapping nodes between MoAnet and
Pnet are calculated and used as the drug sensitivity score
for individual patients, and then drugs are ranked based on
the sensitivity score in the decreasing order.

Drug repositioning for prostate cancer using PC-3 cell line
Prostate cancer is the second most common type of can-
cer, where 1 in 7 men in U.S. will be diagnosed with
prostate cancer. Prostate cancer is also the second-
leading cause of cancer-related death in American men
[32]. Due to the widespread incidence and leading
cancer-related death rate, a significant proportion of
clinical studies are related to prostate cancer treatment.
In this study, we evaluate the proposed approach using
the PC-3 prostate cancer cell line as a use case, and will
improve and apply the proposed method on different
type of cancers and diseases in our future work.

Pnet construction for PC-3 cell line
Gene expression data of PC-3 (prostate cancer) and
RWPE-1 (normal prostate) cell lines were generated by
V. Härmä et al., in [33] (available at GEO: GSE19426).
The average gene expression of duplicates of PC-3 and
RWPE-1 are used to calculate the fold change of gene
expression. From DisGeNET, the top 30 prostate cancer
associated genes are collected, which are listed in Table
1. Twenty-four transcriptional factors, as shown in Table
2, are identified as activated (with the threshold T = 2)
in PC-3 cell line. There are eight up-regulated (fold
change > = 2) target genes of the 24 activated TFs. All
the disease-associated genes, activated TFs and up-
regulated target genes are mapped onto the BioGRID
protein-protein interaction network, the Pnet of PC-3 is
constructed by linking the disease associated genes
(source nodes) with activated TFs (target nodes)
together, and then linking the TFs with their target

genes, in which 237 genes (nodes) and 647 interactions
(edges) are included. Figure 2 shows part of the
constructed Pnet of PC-3 cell line, in which 121 genes
(nodes) and 214 interactions (edges) are included. Pink,
gray and red colors represent disease-associated genes,
linking genes and activated transcriptional factors.

MoAnet construction of FDA approved drugs
The DrugBank database [2, 3] is the most widely used
database for querying drug information, e.g., drug targets
and mechanism, that currently contains 8206 drug en-
tries, including 2202 U.S. Food and Drug Administration
(FDA) approved drugs (1991 FDA-approved small
molecule drugs, 211 FDA-approved biotech (protein/
peptide) drugs), and over 6000 experimental drugs. The
target information obtained from DrugBank includes
11,957 drug-target interactions between 4797 drugs and
2245 targets (6510 drug-target interactions between
1456 FDA approved drugs and 1447 targets). The
z-score data (genomics data) of 1.3 million of drug
instances were obtained from Connectivity Map [12] via
LincsCloud [27]. In total, 1160 drugs, including 1058
FDA approved agents, and their 32,053 z-score profiles
(treated on different cell lines with 24 h and 10 uM
dose) were obtained. Consequently, the MoA signaling
network of 36,107 (including 32,053 FDA approved drug
instances) were calculated using the same method of
Pnet construction using drug target information and
z-score profiles of drug instances. Figure 3 shows an ex-
ample MoAnet of Auranofin (CMAP ID: BRD-
A79465854, CMAP Instance ID: HOG003_A549_24
H_X3_F1B10/G03) (Prediction rank: 7, Score of sensitivity:
0.255, Growth inhibition rate on PC-3 cell line: −63.994) on
A549 (lung cancer) cell line. The green nodes indicate the
network overlap between Pnet of PC-3 and MoAnet of
Auranofil instance on A549 cell line. As can be seen, there
are a large number of overlapping network nodes, which
indicates the potential effectiveness of auranofil on PC-3
cell line.

Drug repositioning and evaluation
In a recent drug screening study [34], 1398 drugs were
evaluated on the PC-3 cell line, where the growth inhib-
ition rate of drugs were made available online [34]. In
total, 68 drugs were considered as potentially efficacious,

Table 1 Top 30 prostate cancer associated genes obtained
from DisGeNET

BCL2 EGFR PIK3CA PIK3CB FSD1L

AR ERBB2 IL6 PROS1 PSAT1

SOX9 ERBB3 SSTR2 PIK3CG NPEPPS

TP53 E2F1 PIK3CD NKX3-1 FOLH1

MAGEA11 FOXA1 CSF2 FSD1 GLIPR1

KLF6 BMP7 KLK3 NUSAP1 PLAG1

Table 2 Twenty-four activated TFs in PC-3 cell line

ATF2 PPARG JUN USF1

NFKB1 HIF1A CEBPB NFATC1

RELA RXRB PPARD RARB

ETS1 ATF1 CREB1 NFATC4

REL NFKB2 NFATC2 NFATC3

RXRA TFAP2A RXRG NFAT5
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as they reduced the mean growth rate to less than or
equal to 1.5 standard deviations below the average across
all agents (growth rate ≤ 54.57) [34]. Among the 1398
screened drugs, MoAnets were constructed that in-
cluded 402 drugs that are contained in CMap/LINCS,
including 394 FDA-approved drugs, along with target in-
formation and z-score profiles. Of the 402 selected
drugs, 26 of the 68 active drugs were recovered in the
constructed MoAnets. These drug numbers are summa-
rized in Table 3. Drug sensitivity scoring for the PC-3
cell line was performed in order to rank the 402 drugs.
Figure 4 shows the evaluation results (fraction of active
drugs and number of active drugs among the top 30, 50,
70, 100 predicted results) of the prediction compared
with random selection. As can be seen, the MD-Miner
can improve the possibility of successful drug reposi-
tioning significantly (33.3% success rate in MD-Miner
versus 6.5% in random selection) compared with random
selection (the expectation values of the random selection
are used here, rather than randomly select effective
drugs repeatedly) (Fig. 4a). In another word, 10 out of 26

active drugs are identified among the top 30 predicted
drugs (only 2 active drugs can be identified in random
selection) (Fig. 4b). Table 4 shows the 10 active drugs
among the top-30 prediction results. In addition to the
well-known anti-cancer drugs, e.g., Docetaxel and
Paclitaxel, the Auranofin (for inflammatory arthritis
treatment) and Digoxin (for heart disease treatment) can
inhibit tumor growth significantly.

Discussion
There are still a few limitations of the proposed method
that should be noted, including: 1) the use of in vitro as-
says or animal models derived from cancer patient sam-
ples is needed to prove the reliability of the proposed
approach; 2) the measurement of genetic mutation data
of individual patients is not currently integrated in the
method. Patient-specific mutations, rather than general
disease associated genes, can be integrated with patient
specific gene expression in order to obtain accurate
patient-specific signaling network; and 3) the construc-
tion of the MoAnet of drugs depends on the availability

Fig. 2 Sub-network of reconstructed patient signaling network (Pnet) of PC-3 cell line (prostate cancer). There are 121 genes (nodes) and 214 interactions
(edges). Pink, gray and red color represents disease-associated genes, linking genes and activated transcriptional factors
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of known drug targets and z-score profiles from CMAP/
LINCS. However, as shown in this study, the target
information and z-score profiles of many drugs may not
be available. Specifically, instead of using shortest path
approach, gene expression fold-change information and
sophisticated network construction approaches, e.g., a
weighted network or clustered network analysis [35],
should be evaluated to construct accurate MoAnet and
Pnet signaling network. Finally, the reverse gene signa-
ture based drug prediction score should be combined
with the network-based score to improve the drug
prediction results. In the future work, we will improve
the proposed method by solving these limitations, and

will also apply and evaluate the proposed method on
different type of cancers and diseases.

Conclusion
Diverse and unique genomic variation in individual pa-
tients is believed to be responsible for heterogeneous
drug response [9, 10]. Due to the advances made in
NGS technology, it has become affordable for individual
patients to be genotyped, resulting in the identification
of clinically relevant and/or actionable genome-wide
genetic variants. However, computational methods are
needed to systematically integrate personal genomics
data and other sources of big “omics” data characterizing

Fig. 3 MoAnet of Auranofil instance on A549 cell line. There are 121 genes (nodes) and 214 interactions (edges). Red, gray and green color
represents drug targets, linking genes and common genes appeared in both Pnet of PC-3 and MoAnet of Auranofil instance

Table 3 Number of drugs in different resources

# of drugs in ref. [35] # of drugs in ref. [35]
and CMAP

# of FDA approved drugs
in ref. [35] and CMAP

# of potential efficacious
drugs in ref. [35]

# of FDA approved, potential efficacious
drugs in ref. [35] and CMAP

1398 402 394 68 26
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drug potential efficacy in order to advance precision
medicine for individual patients. Despite a few existing
computational approaches that have been developed for
drug prediction and repositioning [5, 12–16, 20–23], it
remains an open questions as to how to integrate diverse

data resources and predict effective drugs for individual
patients. In contrast to traditional connectivity mapping
approaches using differentially expressed genes, we have
proposed a methodology to reposition drugs based on
the mechanism of action signaling network of drugs and
disease signaling network of individual patients that are
constructed by integrating protein-protein interactome
data with gene expression profiles of drugs and individ-
ual patients. The evaluation on the PC-3 prostate cancer
cell line showed that it significantly improved the suc-
cess rate of discovering effective drugs compared with
the random selection, and could provide insight into po-
tential mechanisms of action.

Methods
Genomics data of PC-3
Gene expression data of PC-3 (prostate cancer) and
RWPE-1 (normal prostate) cell lines were generated by
V. Härmä et al., in [33] (available at GEO: GSE19426).

Drug screening data on PC-3
The mean growth rates across at least three separate
experiments for each of the 1398 agents on PC-3

Fig. 4 Evaluation of MD-Miner drug prediction results. The fraction and number of active drugs among the top-30, top-50, top-70, top-100 ranked
drugs predicted by MD-Miner are shown in (a) and (b) respectively

Table 4 Ten active drugs in top-30 ranked drugs predicted by
MD-Miner

Rank Drug Name Score of Sensitivity
(Predicted)

Growth Inhibition
Rate on PC3

1 Staurosporine 0.468 −16.375

4 Docetaxel 0.265 18.695

6 Paclitaxel 0.257 1.426

7 Auranofin 0.255 −63.994

12 Bortezomib 0.245 −74.068

13 Cladribine 0.244 2.411

15 Dactinomycin 0.236 −15.905

19 Homoharringtonine 0.226 −42.758

21 Digoxin 0.205 −71.924

30 Etoposide 0.188 43.669
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prostate cancer cell line is available in the supplementary
materials of reference [34].

Prostate cancer associated genes
Top-thirty (30) prostate associated genes obtained by
using DisGeNET [30, 31] online database (data set was
downloaded in June 2016).

Genomics (z-score) profiles of drugs
From lincsCloud, 1,328,098 z-score profiles were down-
loaded via Amason S3 using Firefox’s S3Fox plugin
(http://download.lincscloud.org/) (data set was download
in May, 2016).

Drug-target interaction
The target information obtained from DrugBank
(released on 2016-04-20, version 4.5.0) includes 11,957
drug-target interactions between 4797 drugs and 2245
targets (6510 drug-target interactions between FDA
approved 1456 drugs and 1447 targets).

Transcriptional Factor (TF)-Target interaction data
The TF-target interaction data was obtained from Tran-
scriptional Regulatory Element Database (TRED) [36],
and KEGG signaling pathways [37]. In total, 2618 TF-
target interactions, between 192 TFs and 649 target
genes, were collected [26]. The processed data set was
used and is available in the code of reference [26].

Identification of activated transcriptional factors (TFs)
The average fold change of three target genes with great-
est fold change (for TFs with three or more target
genes), or average fold change of all target genes (for
TFs with two or less target genes) was used to indicate
their activation score. The TFs with activation score
greater or equal to 2.0 (average fold change of target
genes) are selected as activated TFs.

BioGRID protein-protein interactome
BioGRID (version 3.4.140) [28], a widely used protein-
protein database, was downloaded at http://thebiogrid.org/
download.php. The self-interaction edges were removed.

MoAnet and Pnet network construction
Source nodes (drug targets or disease associated genes),
activated TFs and their up-regulated target genes are
mapped onto the BioGRID protein-protein network.
Then signaling network (MoAnet of drug instances and
Pnet of PC-3 cell line) are constructed by linking source
nodes, activated TFs and target genes using Dijkstra’s al-
gorithm. In another word, the Dijkstra’s algorithm was
used to find the shortest paths between each of the drug
targets, or disease associated genes to each of the acti-
vated TFs.

Score of sensitivity
Potential effective drugs are repositioned (prioritized) in
the decreasing order of average common genes between
Pnet and MoAnet of drug instances as follows:

si ¼
X

j

MoAnetji KPnet
���

���
KPnetj j � Ni

where Si is the score of sensitivity of the i-th drug, MoA-
neti

j is the MoAnet of the j-th instance of the i-th drug,
Ni denotes the number of instance of the i-th drug, and
the |.| operator represents the number of elements in a
set. MoAnet of drugs on PC-3 were removed for drug
scoring.
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