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Abstract

Background: Predicting the response to a drug for cancer disease patients based on genomic information is an
important problem in modern clinical oncology. This problem occurs in part because many available drug
sensitivity prediction algorithms do not consider better quality cancer cell lines and the adoption of new feature
representations; both lead to the accurate prediction of drug responses. By predicting accurate drug responses to
cancer, oncologists gain a more complete understanding of the effective treatments for each patient, which is a
core goal in precision medicine.

Results: In this paper, we model cancer drug sensitivity as a link prediction, which is shown to be an effective
technique. We evaluate our proposed link prediction algorithms and compare them with an existing drug
sensitivity prediction approach based on clinical trial data. The experimental results based on the clinical trial data
show the stability of our link prediction algorithms, which yield the highest area under the ROC curve (AUC) and are
statistically significant.

Conclusions: We propose a link prediction approach to obtain new feature representation. Compared with an
existing approach, the results show that incorporating the new feature representation to the link prediction
algorithms has significantly improved the performance.

Keywords: Link prediction, Feature learning, Precision medicine, Cancer drug discovery, Applications in biology and
medicine

Background
Cancer has a significant global impact on public health;
it is the second leading cause of death in the United
States of America [1]. Cancer patients respond differ-
ently to potential drugs (i.e., chemotherapy) due to en-
vironmental causes, tumor heterogeneity, and genetic
factors, making cancer drug discovery difficult [2–5].
The increasing number of deaths associated with cancer
has attracted the attention of researchers from numer-
ous domains, such as computational biology, machine
learning, and data mining [6–9]. Costello et al. [10]
assessed the performance of 44 drug sensitivity

prediction algorithms based on profiling datasets (i.e.,
genomic, proteomic, and epigenomic data) in breast can-
cer cell lines. The training set consists of 35 cell lines, in
which each cell line is associated with 28 drug responses.
The test set consists of 18 cell lines. The task of each
prediction algorithm is to learn a model from the train-
ing cell lines and perform predictions on the test set.
The predictions correspond to a ranking of the 28
drugs—from the most sensitive to the most resistant for
each cell line on the test set. The top-performing ap-
proach [10] improved the performance by integrating
several profiling datasets with improved representation
with a probabilistic nonlinear regression model. The
second-best performing approach employed random forest
regression to make predictions on the test set. The predic-
tion algorithms were evaluated using the weighted prob-
abilistic c-index (wpc-index) and resampled Spearman
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correlations [10]. The remaining prediction algorithms were
not statistically different.
Geeleher et al. [11] proposed the following approach

to drug sensitivity in which the input data are baseline
expressions with drug IC50 values in cell lines and in
vivo tumor gene expressions. The raw microarray data
for the cell lines and clinical trials are processed separ-
ately and then combined and homogenized. The homog-
enized expression data consist of cell line expression
data (i.e., baseline gene expression levels in the cell lines)
and clinical trial expression data (i.e., baseline tumor
expression data from the clinical trial). A learning algo-
rithm is applied to the cell line expression data with the
associated drug IC50 values for cell lines to learn a
model. The resulting model is applied to clinical trial
expression data to yield drug sensitivity predictions.
Two problems associated with the previous drug sensi-

tivity prediction algorithms contribute to the degrad-
ation of the performance: (1) the poor quality of cell
lines, especially when cell lines are not screened against
all compounds [12]; and (2) the failure to adopt a new
feature representation, because new feature representa-
tions provide a basis for improving the performance of
learning algorithms [13–15].
In this paper, we model the cancer drug sensitivity as a

link prediction problem, which is a classical research
topic in computational social science [16–19] and bio-
medicine [20, 21]. Modeling the problem as link predic-
tion enables us to exploit two link prediction algorithms:
(1) the supervised link prediction algorithm, which aims
to select better quality cancer cell lines; and (2) the ex-
tended supervised link prediction, which selects cancer
cell lines and the top-k genes (i.e., features) using state
of the art CUR matrix decomposition [22]. Our experi-
mental results indicate that the proposed link prediction
algorithms outperform the baseline prediction algo-
rithms proposed by Geeleher et al. [11].
The key contributions of our paper are as follows: 1)

we represent cancer drug sensitivity as a link prediction
problem, which to the best of our knowledge is the first
robustly transfer cancer drug sensitivity prediction to
link prediction, 2) we connect a social network domain
to a health informatics domain for advancing health in-
formatics, 3) we propose two link prediction algo-
rithms, and 4) we perform an experimental study on
clinical trial data to demonstrate the predictive power
and stability of our proposed link prediction algo-
rithms against the prediction algorithms that employ
the current approach [11].
This paper is organized as follows: In Related works

section, we review the relevant literature, which pertains
to both link prediction and cancer drug sensitivity pre-
diction. In Methods section, we describe how the cancer
drug sensitivity problem can be modeled as a link

prediction problem. Then, we propose two link predic-
tion algorithms that employ our link prediction ap-
proach: the supervised link prediction algorithm (A1)
and the extended supervised link prediction algorithm
(A2). Results and experiments section reports the
experimental results and compares our link prediction
algorithms against the baseline on the clinical trial data
that pertains to breast cancer and multiple myeloma.
Conclusions section summarizes our contributions in
this paper.

Related works
Link prediction in gene regulatory networks
Given m genes, in which each gene has n expression
values, we can denote their gene expression profiles by
G ∈ ℝm × n, which contains m rows—each row corre-
sponds to a gene—and n columns—each column corre-
sponds to an expression value [23]. To learn a model,
we need to know the regulatory relationships (i.e., labels)
among the genes, which are stored in the matrix H ∈
ℝp × 3. H contains p rows—each row shows a known
regulatory relationship between two genes—and three
columns. The first column shows the source gene (i.e.,
the transcription factor). The second column shows the
target gene, and the third column shows the label, which
is denoted as +1 (i.e., present link) when the source gene
regulates the target gene or −1 (i.e., missing link) when
the source gene does not regulate the target gene. Thus,
H represents the observed (i.e., known) gene regulatory
network. To learn a model, we need to construct the
training set D ∈ ℝp × 2n + 1. The p examples in D are con-
structed as follows: For each pair of genes with the asso-
ciated label in matrix H, the n expression values of each
pair of genes in matrix G are extracted, and the concat-
enation of the n expression values of each pair of genes
and the corresponding label is performed. For example,
consider the ith example in the training set D, which is
denoted by Di and defined as

Di ¼ g1i ; g
2
i ;…; gni ; g

1
l ; g

2
l ;…; gnl ; yi

� �
; ð1Þ

where g1i ; g
2
i ;…; gni are the n expression values of gi (also

called the expression profile of gi ), g
1
l ; g

2
l ;…; gnl are the n

expression values of gl , and yi ∈ {1, −1}. The ith example
of the test set, T, is denoted by Ti and constructed as
follows:

Ti ¼ g1i ; g
2
i ;…; gni ; g

1
j ; g

2
j ;…; gnj

h i
; ð2Þ

where g1i ; g
2
i ;…; gni are the n expression values of gi , and

g1j ; g
2
j ;…; gnj are the n expression values of gj . These fea-

ture vector definitions have been used by the existing su-
pervised inference of gene regulatory networks [23–28].
After constructing the feature vectors, the learning
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algorithm is applied to D to induce (i.e., learn) the
model h. The resulting model is used to perform predic-
tion on T. The known regulations among genes enable
using the induction principle to predict new regulations
(i.e., labels): If gene gj has an expression profile that is
similar to gene gl , which is known to be regulated by gi ,
then gj is likely to be regulated by gi [29]. Genes with
similar expression profiles that are likely to be co-
regulated have been used in the unsupervised clustering
of expression profiles [30–32].

Cancer drug sensitivity prediction
The gene expression profiles denoted by X ∈ ℝp × n,
which contains p rows—each row corresponds to a cell
line or a sample—and n columns—each column corre-
sponds to a gene. Y = (y1, … , yp)

T consists of the corre-
sponding real-value drug responses (i.e., drug IC50

values) to X, where Y ∈ ℝp (i.e., the p-dimensional col-
umn vector). IC50 is defined as the concentration of a
compound that is required to produce 50% cancer cell
growth inhibition after 48 h of treatment [33]. A training
set is defined as D ¼ gi; yið Þf gpi¼1 , where gi ∈Xand yi ∈ Y.
Let the ith example of the training set D, denoted by
Di, be defined as

Di ¼ g1i ; g
2
i ;…; gni ; yi

� �
; ð3Þ

where g1i ; g
2
i ;…; gni represent the n genes of the cancer

cell line gi (also called the expression profile of gi ), and
yi ∈ ℝ is the drug response value. The ith example of the
test set T, denoted by Ti, is constructed as follows:

Ti ¼ g1j ; g
2
j ;…; gnj

h i
: ð4Þ

These feature vector definitions have been used by
existing supervised cancer drug sensitivity prediction al-
gorithms [9–11, 33–36]. A learning algorithm is applied
to D to induce model h, which is subsequently used to
perform predictions on T. Known cancer cell lines with
associated drug responses enabled the use of the induc-
tion principle: If tumor gj has an expression profile simi-

lar to gi , then gj is likely to have a drug response value

closer to the drug response value associated with gi.

Methods
The fundamental task of cancer drug sensitivity prediction
is to correctly predict the response of a tumor to the drug.
This prediction is typically achieved based on how closely
this tumor (also referred to as the test example) is related
to a known cancer cell line with the associated drug re-
sponse. Proximity, which is a measure of closeness, lies at
the heart of both link prediction in gene regulatory net-
works and cancer drug sensitivity prediction [29, 37].

Feature vector construction
To bridge link prediction and cancer drug sensitivity,
we transform the feature representations of Eqs. (3)
and (4) to the corresponding Eqs. (1) and (2) as fol-
lows: Let gi; yið Þf gpi¼1⊆D be the cancer cell lines,
where D ∈ ℝp × n + 1 , b = p.

1 Find the k’ nearest neighbors g�1; g
�
2;…; g�

k
0 of each gi

in D. (In this study k’ = 1.)
2 Generate synthetic cell lines along the lines between

the randomly selected k’ nearest neighbors and each
gi using the following lines of code:
2.1 for i = 1 to p

2.1.1 for j = 1 to k’

2.1.1.1 b = b + 1
2.1.1.2 gb ¼ gi þ g�j −gi

� �
λ

2.1.1.3 Store gi; gb; yi½ � in G
2.1.2 end for

2.2 end for

where the index b refers to only those synthetic cell lines
(e.g., gpþ1 when the index b = p + 1) that differ from the
cell lines in D, whose indexes run from 1 to p, λ = 0.3,
and G ∈ ℝp × 2n + 1 is the new feature representation of
the cell lines of the training set. Step 2.1.1.2 creates the
synthetic cell line gb . Let Gi be the ith row of G, defined
as

Gi ¼ g1i ; g
2
i ;…; gni ; g

1
pþ1; g

2
pþ1;…; gnpþ1; yi

h i
; ð5Þ

where g1i ; g
2
i ;…; gni represent n genes of the cancer cell

line gi, g
1
pþ1; g

2
pþ1;…; gnpþ1 represent the synthetic n genes

of the synthetic cancer cell line gpþ1 , and yi ∈ ℝ denotes
that both gi and gpþ1 are linked by sharing the same
drug response value. Let gi; yið Þf gqi¼1⊆T be the test set
of tumors, where T ∈ ℝq × n. Note that Steps 1–2 are
similar to the Synthetic Minority Oversampling Ap-
proach (SMOTE) [38, 39], However, Step 2.1.1.3 is a
different core step in which we increase the dimension-
ality (i.e., the number of features) instead of the size, as
SMOTE does. We then apply the previous steps (i.e.,
Steps 1 and 2—changing Step 2.1 to i = 1 to q and Step
2.1.1.3 to Store gi; gb½ � in G') to T to obtain G' ∈ ℝq × 2n.
G' is the new feature representation of the clinical trial
expression data of the test set. Let G

0
i be the ith row of

G', which is defined as

G′
i ¼ g1j ; g

2
j ;…; gnj ; g

1
pþ2k′þ1

; g2
pþ2k′þ1

;…; gn
pþ2k′þ1

h i
:

ð6Þ
where g1j ; g

2
j ;…; gnj represent n genes of tumor gj , and

g1
pþ2k

0 þ1
; g2

pþ2k
0 þ1

;…; gn
pþ2k

0 þ1
represent n synthetic genes

of the synthetic tumor gpþ2k
0 þ1 . A learning algorithm is
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called on the training set, G to induce the model h,
which is subsequently used to perform predictions on
the test set G'. The logic behind the mechanism of the
induction principle is as follows: If the expression pro-

files of the pair of tumors gj; gpþ2k
0 þ1

� �
are similar to

those of the cell lines gi; gpþ1

� �
, then gj; gpþ2k

0 þ1

� �
is

likely to have a drug response value closer to the drug

response value associated with gi; gpþ1

� �
. In machine

learning terms, let gi; gpþ1; yi
� �

∈ℝ2nþ1 be a row feature

vector that encodes information about the pair of cancer

cell lines gi; gpþ1

� �
. Given a new pair of tumors encoded

by gj; gpþ2k
0 þ1

� �
, if gj; gpþ2k

0 þ1

� �
has feature values similar

to gi; gpþ1

� �
, whose label is yi, then gj; gpþ2k

0 þ1

� �
is more

likely to have a closer response (i.e., label) value to yi.

Notations and algorithms
Notations
To provide a better understanding of our proposed pre-
diction algorithms, the notations used throughout the
remainder of this paper are summarized as follows:
Matrices are denoted by boldface uppercase letters, e.g.,
matrix X. We denote the row vectors of a matrix by
boldface uppercase letters with a subscript, e.g., Xj is the
jth row of matrix X. Vectors are denoted by boldface
lowercase letters, e.g., vector v. Vector entries are de-
noted by italic lowercase letters with a subscript, e.g., vi
is the ith entry of vector v. The number of entries of a
vector is denoted by the cardinality symbol, e.g. ∣v∣ is
the number of elements of vector v. Scalars are denoted

by italic lowercase letters, e.g., m. f , f ∗ , and h are re-
served letters, where f refers to a learning algorithm
(e.g., SVR), f ∗ refers to an induced (i.e., learned) model,
and h is an induced model used to perform predictions
on the test set. We refer to specific learning algorithms
and induced models using subscripts. For example, f i
f �i ; respectively
� �

denotes the ith learning algorithm and
induced model, respectively.

The supervised link prediction algorithm (A1)
Figure 1 outlines the supervised link prediction algo-
rithm, which we designate A1, as follows. (a) Given a
training set of cancer cell lines with associated drug re-
sponses D ∈ ℝp × n + 1 and a test set of tumors T ∈ ℝq × n

that are described as in cancer drug sensitivity predic-
tion subsection. (b) Transform D and T using the
feature vector construction method described in feature
vector construction subsection, to obtain a new feature
representation G ∈ ℝp × 2n + 1 for the training set and a
new feature representation G' ∈ ℝq × 2n for the test set.
(c) Our link filtering method aims to select a better
quality training set that works as follows: Each row (i.e.,
feature vector) in the new representations G and G' can
be viewed as a cell line or tumor, represented by a
2n–dimensional row vector when the drug responses of
the training set G are excluded. We weigh each cell line
[40] gi in the training setG by the minimum distance
from the cell line gi to all tumors g

0
j in the testing set G':

wi ¼ dist gi; g
′
j�

� �
with j�¼ arg min

j∈ 1;…;qf g
dist gi; g

′
j

� �
; ð7Þ

where gi ∈ℝ
2n, g

0
j ∈ℝ

2n, wi is the weight assigned to gi,

Clinical 
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Data
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Cell Lines 
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Representation of  

Clinical Trial
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Fig. 1 Data flow diagram that shows our supervised link prediction algorithm to predict in vivo drug sensitivity. (a) The training and test data are
provided to the supervised link prediction algorithm. (b) A feature vector construction method is applied to the training and test data, to obtain
new feature representations of the training and test data. (c) A link filtering algorithm is applied to the new feature representation of the training
data, to yield subsampled data. (d) A learning algorithm takes as input the subsampled data, to induce the model h. (e) The model h is applied
to the new feature representation of the test data, to yield predictions
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and dist gi; g
0
j�

� �
is the Euclidean distance. Let w

= (w1, w2, … , wp). Then, we perform the following steps

to select better quality training cell lines using our modi-

fied version of Query by Committee (QBC) [41–43]:

1 Let med be the median of the w vector of weights of

each gi in G

2 Let X ¼ gi; yið Þj gi; yið Þ∈G and wi≤medf g
3 Let X

0 ¼ gijgi in G andwi ≤medf g
4 Let Z ¼ gi; yið Þj gi; yið Þ ∈Gand wi ≥medf g
5 Let Z

0 ¼ gijgi in G andwi ≥medf g
6 Apply the learning algorithm, f1 or f2, to X or Z,

respectively, to induce the model f �1
f �2; respectively
� �

. (In this study, we chose ridge

regression as the learning algorithm)

7 Apply the model f �1 f �2; respectively
� �

to perform

predictions on Z' or X′, respectively) and store

predictions in v or b respectively)

8 Let q = ∣v∣ =∣b∣

9 Let P = (v, b)T

10 Let r = {yi| yi in Z} and e = {yi| yi inX}

11 Let R = (r, e)T

12 j* ¼ arg max
j∈ 1;2f g

1
q

Pj−Rj
� �2

13 S ¼ X if j� ¼ 1

Z otherwise

�

14U ¼ Z if j� ¼ 1

X otherwise

�

QBC aims to partition the training set G into S and U,
where S or U is treated as the labeled or unlabeled set,
respectively. QBC is accompanied by two major items:
(1) the set of models (i.e., the committee) that are con-
sistent with all labeled cell lines in S; and (2) given the
unlabeled set, U, the QBC applies the models (i.e., the
committee) to U to select the unlabeled tumor that
maximizes the disagreement because it represents the
most important tumor that will be added to S, in
addition to querying the drug response value associated
with the tumor. The main obstacle of the first major step
of QBC is to find models that agree on all the labels of
set S with reasonable computational complexity [43].
Thus, we relax the first major step according to Steps
1–14, where relaxation is practiced to address the first
major step [41]. Steps 1–5 partition the training set into

X and Z using the median as a threshold, where X or Z
contains cell lines fromG that are near or far, respect-
ively, from the test set G'. Steps 6–14 aim to assign the
set of cell lines where the model incurred fewer errors
(or more errors, respectively) to S or U, respectively.
The logic behind these steps (i.e., Steps 13–14) is that
we want S or U, respectively, to contain the set of cell
lines that are more or less, respectively, correctly labeled
by one model (i.e., one member of the committee). Steps
1–14 are motivated by other QBC approaches [41–43], in
which the success of the second major step of QBC is
dependent on the first major step.

15 Repeat k” times
15.1 Apply the learning algorithms f1 , f2 , … , ft on S

to induce the models (i.e., committee) f �1; f
�
2;…;

f �t . (In this study, t = 3, and the learning
algorithms include support vector regression with
a linear kernel (SVR + L), SVR with a polynomial
kernel of degree 5, and SVR with a sigmoid
kernel (SVR + S))

15.2 Let w
0
t be the weight of the ith model f �i

where w
0 ¼ Pt

i¼1w
0
i ¼ 1. (In this study, t = 3

and w
0
1 ¼ w

0
2 ¼ w

0
3 ¼ 1

3)

15.3 For each gj in U, let f
0
gj

� �
¼ Pt

i¼1w
0
if

�
i gj
� �

where f �i gj
� �

is the prediction of the ith learned

model on the jth cell line gj, and f
0
gj

� �
is the

weighted ensemble average of the jth cell line gj.

15.4 Find the cell line gj� that maximizes the

disagreement:

15.4.1. j*¼ arg max
j∈ 1;…;jvjf g

Xt

i¼1
w

0
i f �i gj

� �
−f

0
gj

� �� �2

15.5 Find the label yj� of gj� in U

15.6 Add the pair gj� ; yj�
� �

∈U to S and remove

the pair gj� ; yj�
� �

from U

15.7 Update ∣v∣ =∣v∣ − 1

16 Return S

Steps 15.1–15.4.1 return the index of the cell line in set U
that maximizes the disagreement, where disagreement is

defined in Step 15.4.1 [44]. Then, gj� ; yj�
� �

is added to or re-

moved from S or U respectively, as shown in Steps
15.5–15.6. (In this study, k” = 5.) Step 15.7 updates |v|
as the size of U is reduced after each iteration. S (Step
16) is the returned set that will be used as the train-
ing set. (d) We apply a learning algorithm on S to
induce the model h. Finally (i.e., (e in Fig. 1)), we
apply model h to perform predictions on the test set
G' (i.e., the set of new feature representations of the
clinical trial expression data). In the remainder of this
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paper, we refer to the supervised link prediction
algorithms that employ the following machine learning
algorithms (SVR and RR) as: A1 + SVR + L,
A1 + SVR + S, and A1 + RR (abbreviations are listed
in Table 1).

The extended supervised link prediction algorithm (A2)
Figure 2 shows the data flow diagram of the extended
supervised link prediction (A2). Steps (a), (b), and (c) are
the same as Steps (a), (b), and (c) of the supervised link
prediction algorithm. (d) Mahoney et al. [22] proposed
CUR matrix decomposition as a dimensionality reduc-
tion paradigm that aims to obtain a low rank approxima-
tion of matrix S, which is expressed in terms of the
actual rows and columns of the original matrix S:

S≈CUR ; ð8Þ

where C consists of a small number of the actual col-
umns of S, R consists of a small number of the actual
rows, and U is a constructed matrix that guarantees that
CUR is close to S. We select k genes based on their
importance score (refer to Equation 9), which depends
on matrix S and the input rank parameter l (in this
study, we used the default parameter value for l in CUR

function [45].) If vξj is the j-th element of the ξ − th right

singular vector of S, then the normalized statistical
leverage scores are equal to

πj ¼ 1
l

Xl

ξ¼1

vξj
� �2

ð9Þ

for all j = 1..2n, and
P
j¼1

2n
πj ¼ 1 . Statistical leverage scores

have been successfully employed in data analysis to iden-
tify the most influential genes and outlier detection [22].
A high statistical leverage score for a given gene
indicates that the gene is regarded as an important (i.e.,
influential) gene. A low statistical leverage score for a
given gene indicates that the gene is regarded as a less

important gene. We store the indexes of the highest k
leverage scores in I; these correspond to the positions of
the k most influential genes in matrix S. We select k
genes from the training set S using their positions in I
and store subsampled cell line expression data with k
genes in S'. (e) A learning algorithm is called on S' to
induce model h. (f ) The k genes in the test set G' are
selected using their positions in I and stored in G''.
Model h is applied on the test set G'' to perform pre-
dictions. We refer to the extended supervised link
prediction algorithms that employ machine learning
algorithms as A2 + SVR + L, A2 + SVR + S, and
A2 + RR (see Table 1).

Results
We empirically evaluate our proposed approach and
compare it against the baseline approach proposed by
Geeleher et al. [11] on clinical trial datasets. This section
first describes the datasets and experimental method-
ology and presents the experimental results.

Datasets
Data pertaining to breast cancer
The training set D ∈ ℝ482 × 6539 contains 482 cancer cell
lines, 6538 genes, and drug IC50 values that correspond
to a 482-dimensional column vector. The test set T ∈
ℝ24 × 6538 consists of 24 breast cancer tumors and 6538
genes. The drug IC50 values for docetaxel (a chemother-
apy drug) [46, 47] were downloaded from (http://gene
med.uchicago.edu/~pgeeleher/cgpPrediction/). The cell
line expression data were downloaded from the ArrayEx-
press repository [48] (accession number is E-MTAB-783,
also available at https://www.ebi.ac.uk/arrayexpress/ex
periments/E-MTAB-783/?query=EMTAB783). The clin-
ical trial data corresponding to the test set were
downloaded from the Gene Expression Omnibus (GEO)
repository (http://www.ncbi.nlm.nih.gov/geo/) with ac-
cession numbers GSE350 and GSE349 [49–51]. The data
with accession numbers GSE350 and GSE349 contain

Table 1 Abbreviations of the drug sensitivity prediction algorithms

Abbreviation Prediction Algorithm

A1 + SVR + L The supervised link prediction algorithm using support vector regression with a linear kernel

A1 + SVR + S The supervised link prediction algorithm using support vector regression with a sigmoid kernel

A1 + RR The supervised link prediction algorithm using ridge regression

A2 + SVR + L The extended supervised link prediction algorithm using support vector regression with a linear kernel

A2 + SVR + S The extended supervised link prediction algorithm using support vector regression with a sigmoid kernel

A2 + RR The extended supervised link prediction algorithm using ridge regression

B + SVR + L The baseline approach using support vector regression with a linear kernel

B + SVR + S The baseline approach using support vector regression with a sigmoid kernel

B + RR The baseline approach using ridge regression
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10 and 14 samples, respectively. If the remaining tumor
was <25% or ≥25%, a breast cancer patient is considered
to be sensitive or resistant, respectively, to docetaxel
treatment. All the data were downloaded and processed
according to the approach proposed by Geeleher et al. [11].

Data pertaining to multiple myeloma
The training set D ∈ ℝ280 × 9115 contains 280 cancer cell
lines, 9114 genes, and drug IC50 values that correspond
to a 280-dimensional column vector. The test set T ∈
ℝ188 × 9114 is composed of 188 multiple myeloma patients
and 9114 genes. The drug IC50 values for bortezomib
[52, 53] were downloaded from (http://genemed.uchica
go.edu/~pgeeleher/cgpPrediction/), and the data for the
cancer cell lines were downloaded from the ArrayEx-
press repository (accession number is E-MTAB-783 or
available at https://www.ebi.ac.uk/arrayexpress/experi
ments/E-MTAB-783/?query=EMTAB783). The clinical
trial data corresponding to the test set were downloaded
from the Gene Expression Omnibus (GEO) repository
(http://www.ncbi.nlm.nih.gov/geo/) with accession num-
ber GSE9782 [54]. The data were downloaded, processed
and mapped according to Geeleher et al. [11].

Data pertaining to non-small cell lung cancer and
triple-negative breast cancer
The training sets correspond to an 258 × 9508 matrix
and an 497 × 9621 matrix for non-small cell lung cancer
and triple-negative breast cancer, respectively. The test
sets correspond to an 25 × 9507 matrix (excluding labels)
and an 24 × 9620 matrix (excluding labels) for non-small
cell lung cancer and triple-negative breast cancer, re-
spectively. The data were downloaded from (http://gene
med.uchicago.edu/~pgeeleher/cgpPrediction/) [11].

Experimental methodology
Kernel-based methods, such as SVM and support vector
regression (SVR), are popular machine learning algorithms
and exhibit state-of-art performance in many applications
[55, 56], including biological fields [57]. Therefore, in our
experiments, we used SVR with linear kernel (SVR + L)
and sigmoid kernel (SVR + S) as machine learning
algorithms, coupled with our proposed link prediction
algorithms (A1 or A2). We also employed our proposed
link prediction algorithms with linear ridge regression
(RR). In total, we considered 9 drug sensitivity predic-
tion algorithms, as summarized in Table 1.
Each prediction algorithm was trained on the same

training set, whose labels are continuous to yield models
(see Methods section). Then, each model is applied to the
same test set to yield predictions, as discussed in Methods
section. The test set consists of the clinical trial expression
data of patients, including baseline tumor expression data
from primary tumor biopsies prior to treatment with an
anticancer drug. The responses (i.e., labels) of the test set
are categorical (e.g., either “sensitive” or “resistant”). These
labels were clinically evaluated by the degree of reduction
in tumor size to the given drug [11].
To evaluate whether the proposed approach exhibits

stable superior performance as the sample size changes,
we gradually reduced the sample size for the training set
by 1 to 4% in each run. That is, we have 5 runs with
sample sizes of 482, 478, 473, 468, and 463 and 280, 278,
275, 272, and 269 for the two datasets, respectively.
The accuracy of the prediction algorithms is measured

using the Area Under the ROC Curve (AUC), as shown
in [11]. The higher AUC an algorithm has, the better
performance that algorithm achieves. We denote the
mean of the AUC values averaged over the five runs of
the test set as the MAUC. A run of the test set is
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Cell Lines 
Expression 

Data

Drug IC50 

Data for
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a b e
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Expression Data
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Cell Lines
Expression Data
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Fig. 2 Data flow diagram showing the major steps in our extended supervised link prediction algorithm to predict in vivo drug sensitivity. (a)
The training and test data are provided to the extended supervised link prediction algorithm. (b) A feature vector construction method is applied
to the training and test data, to obtain new feature representations of the training and test data. (c) A link filtering algorithm is applied to the new
feature representation of the training data, to yield subsampled data. (d) A feature selection step is applied to subsampled data, to obtain subsampled
data with fewer features (i.e., genes). (e) A learning algorithm takes as input the subsampled data with fewer features, to induce the model h. (f) The
features in the test data are selected using the same positions as in the training data and the model h is applied to the test data with the selected
features, to yield predictions
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defined as predictions of a learned model on the test set,
such that the model is learned from the training set. The
size of this training set is varied to assess the stability of
prediction algorithms, in which a stable prediction algo-
rithm is one for which the prediction accuracy on the test
set does not change dramatically due to small changes in
the size of the training set [58, 59]. This type of assessment
is important in biological systems, in which the best pre-
diction algorithm outperforms other algorithms many
times in the conducted experiments. Statistical significance
is measured between all pairs of the prediction algorithms.
The software employed in this study included support

vector regressions with linear and sigmoid kernels in the
LIBSVM package [60], ridge regression [11], gene selection
using CUR and topLeverage functions in the rCUR package
[45], and R code for processing the datasets and perform-
ance evaluation [11]. We used R to write the code for the
link prediction algorithms and perform the experiments.

Experimental results
Tables 2 and 3 show the AUC of 9 docetaxel and borte-
zomib, respectively, sensitivity prediction algorithms on
clinical breast cancer or multiple myeloma trial data. For
each variation in training set size the prediction algo-
rithm with the best performance (i.e., the highest AUC)
on the clinical trial data is shown in bold.
Table 2 shows that our prediction algorithms perform

better than the baseline prediction algorithms (i.e.,
B + SVR + L and B + SVR + S) including B + RR, which is
a prediction algorithm proposed by Geeleher et al. Row
“m” and “d”, shows the number of cell lines or genes,
respectively, in the training set that were provided to each
prediction algorithm. We provided the same training set to

each prediction algorithm. Rows “m + A1” and “m + A2”,
or “d + A1” and “d + A2” show the number of selected cell
lines or genes, respectively, that were used in the predic-
tion algorithms that employed our approach for learning
the models. The results of our prediction algorithms are
dominant compared with the baseline prediction algo-
rithms that employ clinical trial data of breast cancer in
terms of the AUC of four runs and the MAUC. In contrast
to the baseline prediction algorithms, the performance of
our prediction algorithms on the test set outperforms in
terms of the AUC when we reduce the training set size.
Table 3 shows that our prediction algorithms perform

better than the baseline prediction algorithms (i.e.,
B + SVR + L and B + SVR + S) and B + RR, which is a pre-
diction algorithm proposed by Geeleher et al. Row “m” or
“d”, respectively, shows the number of cell lines or genes,
respectively, in the training set that were provided to each
prediction algorithm. We provided the same training set to
each prediction algorithm. Rows “m + A1” and “m + A2”
or “d + A1” and “d + A2” show the number of selected cell
lines or genes, respectively, used in the prediction algo-
rithms that employ our approach for learning the models.
The results of our prediction algorithms are dominant
compared with the baseline prediction algorithms on the
multiple myeloma clinical trial data in terms of the AUC of
each run and the MAUC. In particular, A2 + RR achieves
the highest mean AUC (MAUC) of 0.693 and performed
the best in all runs. In contrast to the baseline prediction
algorithms, the performance of A2 + RR on the test results
in the best AUC as we reduce the training set size, which
indicates that A2 + RR has a stable performance.
Table 4 shows the p-values of the two-tailed Wilcoxon

signed rank test [61, 62] to measure the statistical

Table 2 AUC scores of docetaxel sensitivity prediction algorithms
in breast cancer patients on the test set

m 482 478 473 468 463 MAUC

d 6538 6538 6538 6538 6538 −

A1 + SVR + L 0.878 0.864 0.871 0.857 0.871 0.868

A1 + SVR + S 0.871 0.857 0.814 0.828 0.878 0.849

A1 + RR 0.850 0.828 0.821 0.850 0.842 0.838

m + A1 246 244 242 239 237 −

d + A1 13,076 13,076 13,076 13,076 13,076 −

A2 + SVR + L 0.892 0.857 0.864 0.864 0.864 0.868

A2 + SVR + S 0.871 0.850 0.814 0.814 0.878 0.845

A2 + RR 0.857 0.842 0.835 0.835 0.835 0.841

m + A2 246 244 242 239 237 −

d + A2 13,000 13,000 13,000 13,000 13,000 −

B + SVR + L 0.835 0.814 0.800 0.821 0.835 0.821

B + SVR + S 0.842 0.871 0.864 0.857 0.857 0.858

B + RR 0.814 0.814 0.821 0.821 0.821 0.818

The algorithm with the highest AUC is shown in bold. MAUC = mean AUC

Table 3 AUC scores of bortezomib sensitivity prediction algorithms
in multiple myeloma patients on the test set

m 280 278 275 272 269 MAUC

d 9114 9114 9114 9114 9114 −

A1 + SVR + L 0.668 0.669 0.665 0.663 0.656 0.664

A1 + SVR + S 0.638 0.623 0.637 0.642 0.662 0.640

A1 + RR 0.685 0.673 0.679 0.677 0.690 0.681

m + A1 145 144 143 141 140 −

d + A1 18,228 18,228 18,228 18,228 18,228 −

A2 + SVR + L 0.678 0.678 0.671 0.668 0.654 0.670

A2 + SVR + S 0.661 0.657 0.659 0.659 0.668 0.661

A2 + RR 0.686 0.689 0.696 0.695 0.699 0.693

m + A2 145 144 143 141 140 −

d + A2 9114 9114 9114 9114 9114 −

B + SVR + L 0.613 0.609 0.622 0.628 0.632 0.621

B + SVR + S 0.602 0.600 0.601 0.605 0.598 0.601

B + RR 0.614 0.611 0.603 0.607 0.606 0.608

The algorithm with the highest AUC is shown in bold. MAUC = mean AUC
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significance between the prediction algorithms using
clinical trial data of breast cancer and multiple myeloma
patients. The p-values indicate that our A1 + SVR + L
and A2 + SVR + L prediction algorithms significantly
outperformed the baseline prediction algorithms
B + SVR + L, B + SVR + S, and B + RR. The remaining
prediction algorithms that employ our approach are not
statistically different from B + SVR + S.
Figures 3 and 4 show the ranking of all prediction al-

gorithms from the highest to the lowest MAUC using
clinical trial data pertaining to breast cancer and mul-
tiple myeloma patients, respectively. Each MAUC is calcu-
lated over the 5 runs of the clinical trial data. As shown in
Figs. 3 and 4, our prediction algorithms outperform the
baseline prediction algorithms [11] w.r.t the MAUC.
Figure 5 shows the predictions of three prediction al-

gorithms on the test set (clinical data samples of 24
breast cancer patients) when the prediction algorithms
were trained on a dataset with the size m = 482 (i.e., the
complete training set without any reductions). Figure
5a–c show the predictions of A2 + SVR + L A1 + SVR + L
and B + SVR + S, respectively. For A2 + SVR + L in
Fig. 5a, the difference between the predicted drug

sensitivity in breast cancer patients was highly statisti-
cally significant (P=472 × 10−6 from the result of a t-test)
between the trial-defined sensitive and resistant groups.
The result of A1 + SVR + L in Fig. 5b was also highly
statistically significant (P=614 × 10−6 from a t-test).
B + SVR + S in Fig. 5c achieved statistical significance
(P=1176 × 10−6 from a t-test). Higher sensitivity or higher
resistance, respectively, denote the greater or lesser ef-
fectiveness of the drug. In Fig. 5d, the ROC reveals AUC
values of 0.892, 0.878 and 0.842 for A2 + SVR + L,
A1 + SVR + L, and B + SVR + S, respectively, as shown
in Table 2.
In Fig. 6, the predictions of three prediction algorithms

are reported on the test set (clinical trial data of 188
multiple myeloma samples of patients) when prediction
algorithms learned models from a training set of size
m = 280 (i.e., the training set without any reductions).
Figure 6a–c show the predictions of the A2 + RR,
A1 + RR, and B + RR, algorithms, respectively. For
A2 + RR (Fig. 6a), the difference between the predicted
drug sensitivity in multiple myeloma patients was highly
significant (P=8 × 10−6 from a t-test) between trial-
defined responder groups and non-responder groups.

Table 4 P-values of Wilcoxon signed rank test (two-tailed) between all pairs of prediction algorithms

A1 + SVR + S A1 + RR A2 + SVR + L A2 + SVR + S A2 + RR B + SVR + L B + SVR + S B + RR

A1 + SVR + L 0.0160 0.5092 0.3077 0.0836 0.8807 0.0051 0.0149 0.0051

A1 + SVR + S − 0.1675 0.0208 0.1282 0.0929 0.0051 0.1830 0.0080

A1 + RR − − 0.2846 0.5418 0.0672 0.0051 0.1388 0.0076

A2 + SVR + L − − − 0.0587 0.5754 0.0051 0.0207 0.0047

A2 + SVR + S − − − − 0.1388 0.0069 0.0836 0.0124

A2 + RR − − − − − 0.0076 0.1675 0.0051

B + SVR + L − − − − − − 0.5754 0.1609

B + SVR + S − − − − − − − 0.2040

Values with statistical significance (p < 0.05) are shown in bold

Fig. 3 Mean AUC (MAUC) results of docetaxel sensitivity prediction algorithms in breast cancer patients ranked from the highest MAUC (left) to
the lowest MAUC (right)
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The result of A1 + RR was also highly significant
(P=11 × 10−6 from a t-test), while B + RR achieved statis-
tically significant result (P=2612 × 10−6 from a t-test).
Figure 6d–f break down the responders and non-
responders of Fig. 6a–c, respectively, to CR, PR, MR,
NC or PD. In Fig. 6g, The ROC reveals AUCs of 0.686,

0.685, and 0.614 for A2 + RR, A1 + RR, and B + RR,
respectively, as shown in Table 3.
We also evaluated the performance of prediction algo-

rithms on the clinical trial data pertaining to non-small
cell lung cancer patients and the triple-negative breast
cancer patients. We observed similar results that our

Fig. 4 Mean AUC (MAUC) of bortezomib sensitivity prediction algorithms in multiple myeloma patients ranked from highest MAUC (left) to
lowest MAUC (right)

a b

c d

Fig. 5 Prediction of docetaxel sensitivity in breast cancer patients. Strip charts and boxplots in (a), (b), and (c) show the differences in predicted
drug sensitivity for individuals who are sensitive or resistant to docetaxel treatment using the prediction algorithms A2 + SVR + L, A1 + SVR + L
and B + SVR + S, respectively, while (d) shows the ROC curves of prediction algorithms, revealing the proportion of true positives compared to
the proportion of false positives. ROC = receiver operating characteristics
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prediction algorithms noticeably outperform the baseline
prediction algorithms (See Additional file 1: Tables S1
and S2).
It is worth mentioning that we also assessed the per-

formance of other machine learning algorithms, including
random forests [63], support vector regression with a poly-
nomial kernel of degree 2, and support vector regression

with a Gaussian kernel. Moreover, we applied other dimen-
sionality reduction methods such as principal component
analysis (PCA) [64] based on the prcomp package in R
[65], sparse PCA [66, 67], non-negative and sparse cumula-
tive PCA, and negative and sparse PCA [68, 69]. However,
they did not exhibit acceptable predictive performance;
consequently, their results are not included in this paper.

a b c

d

g

e f

Fig. 6 Prediction of bortezomib sensitivity in multiple myeloma patients. Strip charts and boxplots in (a), (b), and (c) show predicted drug
sensitivity for in vivo responders and non-responders to bortezomib using A2 + RR, A1 + RR and B + RR prediction algorithms, respectively. Strip
charts and boxplots (d), (e), and (f) further break down responders and non-responders of strip charts and boxplots (a, (b,) and (c) as showing CR,
PR, MR, NC or PD using A2 + RR, A1 + RR and B + RR, respectively, prediction algorithms. (g) ROC curves illustrating estimated prediction accuracy
of prediction algorithms. CR, complete response; PR, partial response; MR, minimal response; NC, no change; PD, progressive disease
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Discussion
Gene (feature) selection is important to the success of the
proposed method. After many years of biomedical
research, some signaling pathways have been known for
being implicated in various cancers. It is tempted to
exploit this pathway information for feature selection. For
example, we might consider adding the signaling pathways
as a constraint to get reliable feature sets. Consequently,
we assessed the performance of the proposed prediction
algorithms using only the genes in the signaling pathways
that are known to the cancers. We obtained inferior results
(See Additional file 2 for details). It is noted that the
current pathway information is limited. If we consider only
those signaling genes, we may miss those important genes
not identified yet by domain knowledge. This may hurt the
overall performance as shown in our case. Therefore, a
better strategy may be to include all genes but assign more
weights to those signaling pathway genes. This is an inter-
esting direction, and we leave it to our future work.

Conclusion
In this paper, we introduce a link prediction approach to
cancer drug sensitivity prediction. The benefit of introdu-
cing a link prediction approach is to obtain satisfactory
feature representation for better prediction performance.
We propose two algorithms that employ the link predic-
tion approach: (1) A supervised link prediction algorithm,
which selects better quality training cancer cell lines using
a modified version of QBC; and (2) An extended super-
vised link prediction, which selects both better training
cancer cell lines and a subset of important genes using
state of the art CUR matrix decomposition.
In our study, the link prediction algorithms use two

machine learning algorithms: support vector regression
and ridge regression. The experimental results demon-
strate the stability of the proposed link prediction algo-
rithms, which outperform drug sensitivity prediction
algorithms of an existing approach as measured by their
higher and statistically significant AUC scores.

Additional files

Additional file 1: Performance evaluation of prediction algorithms on
clinical trial data pertaining to non-small cell lung cancer patients and
triple-negative breast cancer patients. (DOCX 31 kb)

Additional file 2: Performance of prediction algorithms using signaling
pathways as a constraint to get reliable feature set. (DOCX 25 kb)
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