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Abstract

Background: Previous studies suggested that cancer cells possess traits reminiscent of the biological mechanisms
ascribed to normal embryonic stem cells (ESCs) regulated by MYC and Polycomb repressive complex 2 (PRC2).
Several poorly differentiated adult tumors showed preferentially high expression levels in targets of MYC, coincident
with low expression levels in targets of PRC2. This paper will reveal this ESC-like cancer signature in high-risk
neuroblastoma (HR-NB), the most common extracranial solid tumor in children.

Methods: We systematically assembled genomic variants, gene expression changes, priori knowledge of gene
functions, and clinical outcomes to identify prognostic multigene signatures. First, we assigned a new,
individualized prognostic index using the relative expressions between the poor- and good-outcome signature
genes. We then characterized HR-NB aggressiveness beyond these prognostic multigene signatures through the
imbalanced effects of MYC and PRC2 signaling. We further analyzed Retinoic acid (RA)-induced HR-NB cells to
model tumor cell differentiation. Finally, we performed in vitro validation on ZFHX3, a cell differentiation marker
silenced by PRC2, and compared cell morphology changes before and after blocking PRC2 in HR-NB cells.

Results: A significant concurrence existed between exons with verified variants and genes showing MYCN-dependent
expression in HR-NB. From these biomarker candidates, we identified two novel prognostic gene-set pairs with multi-
scale oncogenic defects. Intriguingly, MYC targets over-represented an unfavorable component of the identified
prognostic signatures while PRC2 targets over-represented a favorable component. The cell cycle arrest and neuronal
differentiation marker ZFHX3 was identified as one of PRC2-silenced tumor suppressor candidates. Blocking PRC2
reduced tumor cell growth and increased the mRNA expression levels of ZFHX3 in an early treatment stage. This
hypothesis-driven systems bioinformatics work offered novel insights into the PRC2-mediated tumor cell growth and
differentiation in neuroblastoma, which may exert oncogenic effects together with MYC regulation.

Conclusion: Our results propose a prognostic effect of imbalanced MYC and PRC2 moderations in pediatric HR-NB for
the first time. This study demonstrates an incorporation of genomic landscapes and transcriptomic profiles into the
hypothesis-driven precision prognosis and biomarker discovery. The application of this approach to neuroblastoma, as
well as other cancer more broadly, could contribute to reduced relapse and mortality rates in the long term.
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Background
Neuroblastoma (NB), the most frequent childhood ex-
tracranial solid tumor, is characterized by heterogeneous
clinical and biologic behaviors. Despite aggressive multi-
modal therapy, the mortality rate for patients with high-
risk neuroblastoma (HR-NB) remains greater than 60%
[1]. Therefore, exploring common mechanisms under-
lying heterogeneous patients would aid in developing
additional prognostic indicators and combination
treatments for patients.
The implications of multigene models in precise

medicine remain inexplicable largely due to unclear
biological pathways underlying each multigene model.
Previous studies have developed multigene models
from transcriptomic profiles that were prognostic for
HR-NB [2, 3]. These multigene models are cohort- and
parameter-dependent since they were derived through a
supervised machine-learning method. Such dependence
is impracticable because researchers have to normalize
the profiles of a large-sized cohort before a prediction,
meaning estimates can change when adding additional
samples. We recently proposed an approach [4, 5] that
analyzes relative expression levels of gene-set pairs
(RXA-GSP), which can derive a personalized prognostic
index from gene expression profiles. Nevertheless, this
method requires two groups of predefined gene candidates:
one group marks favorable outcomes and the other group
marks unfavorable outcomes. Therefore, a critical step
towards innovative NB risk stratification using RXA-GSP is
to not only reveal novel biomarkers but also understand
their underlying functional genomics.
It is increasingly accepted that cancer cells show behavior

reminiscent of the biological mechanisms ascribed to
normal embryonic stem cells (ESCs) (reviewed in [6]). An
ESC-associated prognostic expression pattern, the high-
expression of transcription factor c-Myc/MAX co-targets
combined with the low-expression of Polycomb repressive
complex 2 (PRC2)-silencing genes, has been found in
multiple types of poorly differentiated tumors particularly
adult tumors [7]. In neuroblastoma, both MYC and PRC2
play critical roles. On the one hand, we recently presented
a subnetwork of Myc family gene c-Myc enriched for genes
previously reported as ESC-like cancer signatures by a net-
work analysis of transcriptome data [8]. The other MYC
family gene MYCN is ESC-functionally essential and
sufficient to produce tumors in mouse and zebrafish
models [9, 10] and all patients with amplification of the
MYCN oncogene are considered high-risk [11, 12].
High-risk patients, even with normal MYCN copy
numbers, frequently overexpress targets of Myc family
genes [13, 14]. Furthermore, therapeutic targeting of
the MYCN or c-MYC signal has been proposed for HR-
NB treatment [15, 16]. On the other hand, reactivation
of PRC2 targeted tumor suppressors has been proposed

for HR-NB [17]. Furthermore, an ESC-like signature
was derived from multiple aggressive tumors consisting
of both a PRC2 module and a MYC module [18].
Collectively, these previous work suggest an ESC-like
mechanism underlying the tumorigenesis of HR-NB.
We hypothesize that the imbalance between MYC-driven

oncogenesis and PRC2-induced repression determines, at
least in part, the poor prognostic phenotypes shared by
heterogeneous HR-NB tumors. A critical sub network
underlying this systematical imbalance is frequently
disturbed by polymorphisms or somatic mutations and by
transcriptional dysregulation, thus can be retrieved
from “-omic” landscapes. Advances in high-throughput
sequencing have provided an unprecedented opportun-
ity to interrogate genome, transcriptome and functional
genomics systematically and facilitate this knowledge
discovery. Therefore, to test this hypothesis, this study
designs a systems bioinformatics analysis of multiple
genome-scale datasets; and characterizes therapeutic
candidates by comparing high-risk tumor cells with
their differentiation-induced cells, the control compo-
nents. Retinoic acid (RA) induces HR-NB cell growth
and differentiation and thus reverses malignant growth
in vitro and in vivo [19–21], therefore RA is used to
induce cell differentiation.

Results
Identifying prognostic gene-set pairs (GSPs) from significant
concurrence of genes showing MYCN-associated expression
and exons with verified variants in HR-NB (Fig. 1)
Given the genetic heterogeneity of HR-NB, we investigated
the concurrence of somatic mutation and transcriptomic
dysregulation in patients, in which the needs for genomic
and translational advances are both pressing. From
published data sets (Additional file 1: Table S1), we
identified 4425 genes termed “MYCN-associated” that
were significantly up-regulated in MA patients (MA_hi)
or MN patients (MN_hi), respectively (Stoffer meta-
analysis FDR < 0.001). Comparing these 4425 MYCN-
associated genes with a collection of 197 unique genes
harboring verified exonic variants (Additional file 1:
Table S2) resulted in 55 (28%) genes in common,
including 28 MA_hi and 27 MN_hi genes (Fig. 1a). We
performed the Fisher’s exact test (FET) using a back-
ground of around 21 k human protein-coding genes.
An over-representation of genomic mutations among
the MYCN-associated genes (P < 0.02, odds ratio = 1.4)
suggests a common downstream effect on HR-NB
tumorigenesis existing among sporadic variation and
usually-observed MYCN-associated dysregulation.
We thus hypothesized that diverse genetic and tran-

scriptomic disturbances can lead to a critical signaling
pathway dysregulation that underlies tumorigenesis in
multiple HR-NB subtypes. To reveal this potential
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Fig. 1 (See legend on next page.)
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functional commonality, we performed pathway en-
richment analysis for these gene signatures (Fig. 1b),
using KEGG pathways collected by the MSigdb data-
base (v5.1) [22]. Only one KEGG pathway—the cell
cycle pathway—was significantly enriched among both
the genes with verified mutation and the MA_hi genes
(enrichment criterial: FET FDR < 0.01, odds ratios > 2).
In contrast, somatic mutated genes significantly overlapped
with MN_hi genes at the pathway level (26 common path-
ways, OR = 20, P = 7e-3). Of these 26 commonly enriched
pathways, the MAPK signaling pathway and the neurotro-
phin signaling pathway have been reported to play roles in
regulating the malignant transformation of neuroblasts to
neuroblastoma cells [23, 24]. Notably, one third of these 26
commonly enriched pathways—for example, the non-small
cell lung cancer pathway (Additional file 1: Table S3)—were
cancer-specific pathways. These data suggest that diverse
genetic and transcriptomic disturbances may lead to a
critical signaling pathway dysregulation underlying tumori-
genesis shared among multiple cancer types.
From thousands of genes with MYCN-associated dys-

regulation, the observed over-representation of genomic
variation suggested a way for us to prune the critical
signaling pathway dysregulations that could be triggered
by diverse genetic or transcriptomic disturbances. From
55 MYCN-associated genes that harbor verified genomic
mutations in HR-NB, we focused on the 21 best candidate
genes that harbor recurrent, verified missense variants
(Table 1). Two gene groups were remarkable: the first was
ten MA_hi genes (AHCTF1, ALK, ATM, FANCM,
MRPS27, MSH2, MYCN, NCAN, STAG1, and BARD1),
and the second was eleven MN_hi genes (ARID1A,
CACNB3, IL16, INPP5D, LRRTM4, MLL5, NCAM1,
NRAS, SYNRG, TLN2, and LMO1).
We hypothesized that a unifying prognostic signature

exists among HR-NB tumors regardless of the MYCN
status. To derive this signature, we applied our previ-
ously published RXA-GSP approach [4, 5] to these two
gene-groups. We identified two unifying prognostic
gene-set pairs (GSPs) from these 21 best candidate genes
using a collection of 251 HR-NB samples (Cox regres-
sion p < 0.05 for event-free survival in all four training
cohorts and Liptak joint FDR <0.05) (Fig. 1c). Figure 1d
illustrates the evaluation of prognostic significance in an

independent cohort (theoretical P = 0.042, 0.0078 for
event-free survival, and empirical P = 0.115 and 0.027,
respectively). These two GSPs also predicted overall
survival significantly (theoretical P = 0.003, 0.001 as
shown in Fig. 1e and empirical P = 0.027 and 0.015, re-
spectively). Note that the somatic mutations of 12 (57%)
candidates occurred in both MA and MN patients.
However, eight (38%) genes harbor the recurrent som-
atic mutations of only MN patients while one gene (5%)
harbors the recurrent mutations of only MA patients,
suggesting a preference of genomic variants in patients
carrying the normal MYCN copy numbers.

Functional enrichment and network analysis link the HR-
NB prognostic GSPs with two components of an ESC-like
cancer signature (Fig. 2)
To understand the biology underlying the identified
prognostic GSPs, we performed functional gene-set
enrichment analysis (MSigDB v3.1, Fig. 2a). Among the
HR-NB associated genes (including the two prognostic
GSPs, the MA_hi and MN_hi genes, and the genes with
somatic mutations), we discovered eight commonly
enriched transcription regulators and a cancer module
previously described in multiple cancer types (KRAS,
EED, HFH3, SMAD4 and PRC2 components for MN_hi
whereas MYCN, MYC and E2F4 for MA_hi genes,
FDR < 0.01, odd ratio = 2). These eight regulatory
models indicated critical upstream regulators of tumori-
genesis in heterogeneous HR-NB. For example, the first
GSP was enriched for tumor suppressors (eg, the targets
of PRC2 component EED given that PRC2 has been pre-
viously reported to repress tumor suppressors [17])
whereas the second GSP was enriched for targets of
oncogenes (such as FGFR1, MYCN, genes in the neurite
outgrowth pathway, and common cancer module #1
[25]). In consistent, the MN_hi signature exhibits a
relatively favorable prognostic component (tumor sup-
pressor SMAD4-induced targets (p < 0.0009) [26] and
oncogenic KRAS suppressed targets (p < 0.0006) [27])
while the MA_hi signature denotes an unfavorable prog-
nostic component (oncogenic E2F4 induced targets [28]
(p < 1e-8)). These observations together with the prefer-
ence of genomic variants in MN_hi signature genes

(See figure on previous page.)
Fig. 1 The connection between prognosis, genomic variation, and transcriptional MYCN-association in HR-NB. a Significant overlap (p = 0.02,
OR = 1.5) exists between the 197 genes harboring verified variants at exon and the 4425 MYCN-associated genes. The latter includes those highly
expressed in MYCN-amplified patients or in patients with the normal MYCN copy numbers. b The pathways that are enriched among genes with
verified variants at exon over-represent the pathways that are enriched among genes highly expressed in patients with MN HR-NB (OR = 20,
P = 7e-3), but are depleted for the pathways that are enriched among genes highly expressed in patients with MA HR-NB (OR = 0.16, P = 0.048).
c Kaplan–Meier plots of two identified prognostic GSPs in four independent training cohorts. d Kaplan–Meier analysis of the two GSPs in an
independent cohort for event free survival (EFS) and overall survival (OS). In panels c-d, the red lines represent patients with positive indicators
(ie, the median expression of the identified genes in red is higher than that of the genes in blue), and the black lines represent patients with
negative indicators
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suggest that loss of tumor suppressing function is a
major role of genomic variation.
We next aimed to further reveal the regulatory mecha-

nisms underlying these eight regulatory models in HR-NB
(Fig. 2b), or more broadly, other aggressive tumors where

similar common pathways contribute to oncogenesis. To
this end, we further performed protein-protein-interaction
(PPI) analysis. We collected 4460 genes, including not
only the ‘HR-NB associated genes’ (differentially expressed
and the somatic mutated ones) but also the targets of the

Fig. 2 Functional enrichment and network analysis link the HR-NB prognostic signatures with the MCY and PRC2 components of an ESC-like gene
signature. a Among the three multigene signatures, we evaluated the over-representation of all six types of functional gene-sets downloaded from
MSigDB v3.1. The enriched gene-sets (FDR < 0.01, GS size < 2000) show significant concurrence of MA_hi genes and MN_hi genes (p < 2e-16, odds
ratio > 8, the pink and blue circles), regardless of their non-overlap on the gene-level. Additionally, these gene-sets significantly co-occur with the
gene-sets what were enriched among genes harboring verified variants at exon (p < 2e-16, odd ratios > 100, the saffron circle and the union of the
other two circles). b Rank the 4460 HR-NB associated proteins according to their topological betweenness in the PPI network. c A model of imbalanced
ESC-like signatures with PRC2-targets and MYC/MAX-targets at the transcript and protein-protein-interaction (PPI) levels. Weinberg’s group reported
that this human ESC-like signature was associated with histologically poorly differentiated tumors (breast, glioma, and bladder cancers). PPI (STRING
v9.05) reveals a critical role of MYCN, TP53 and NCAM1 in tuning the prognostic imbalance. Distinct colors code genes for genomic variants, showing
transcriptional MYCN-association, or both. We highlight the genes of the identified prognostic GSPs with a larger node-size in the network. d MYC
proteins preferentially target MA_hi genes. Network-node colors decode genes with genomic exonic variants, genes showing transcriptional
MYCN-association, or both. TF: transcript factor
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eight regulators (Additional file 1: Table S4) that were
identified by a gene-set enrichment analysis of these
HR-NB associated genes. These regulators were:
MYCN or Myc/Max complex, three core components
of PRC2 (EED, EZH2, and SUZ12), and the other
identified transcription regulators (FGFR1, KRAS,
E2F4, HFH3, SMAD4). We hereafter name this PPI
subnetwork as ‘HR-NB associated PPI’.
In the HR-NB associated PPI, topological bottlenecks

(network nodes with high betweenness that could greatly
influence information flows) highlighted the potentially
essential network nodes. A PPI bottleneck analysis pin-
pointed both MYC protein family (NMYC and MYC)
and the core PRC2 components (SUZ12, EED) (Fig. 2b),
consist with a published ESC-like signature derived from
multiple types of aggressive tumors [18]. Given that we
have observed that diverse genomic and transcriptomic
disturbances dysregulated the same signaling pathway
and MYC oncogenes frequently played as critical re-
gulators, we concluded that a linkage exists between
the two HR-NB prognostic GSPs and the ESC-like
cancer signature in HR-NB.
To understand the potential underlying mechanism

of ESC-like signature in the identified GSPs, we
induced the HR-NB associated PPI by both GSP
markers and network bottlenecks. We observed that
histologically poorly differentiated tumors show preferen-
tial overexpression of MYC-targeted genes combined with
repression of PRC2-targeted genes [7]. On the one hand,
we identified four PRC2-silencing targets (ARID1A,
CACNB3, NCAM1, LMO1) being as MN_hi (up-regulated
in relatively favorable outcome MN patients), which were
previously found to be repressed by PRC2 components [7]
(Fig. 2c, blue nodes). Three out of these four MN_hi genes
in the first GSP significantly over-represent EED targets in
human ESCs (FET p = 0.00014). As expected, EED, which
is required for maintenance of the self-renewal in mouse
ESCs [29, 30], was more highly expressed in MN samples
than in MA samples (fold changes > 1.35 in both plat-
forms, Stouffer FDR < e-10). Two MN_hi genes within
the second prognostic GSP, NCAM1 and CACNB3, were
targets of epigenetic repressor H3k27me3 that prefe-
rentially associated with PRC2 (FET p = 0.0064) [7, 31].
On the other hand, the c-Myc/Max complex [7] prefe-
rentially targeted the MA_hi genes (Fig. 2d, red nodes).
MYCN/c-MYC are important as they directly regulate
TP53 which is a pro-apoptotic gene overexpressed in
HR-NB and are independent of other markers [13].
Collectively, these results indicate that deregulation of
several key regulators systematically tunes the imba-
lance of unfavorable and favorable features, including
tumor-suppressors TP53, ATM and SMAD4, oncogenes
KRAS and E2F4, and genes with both potentials
(MYCN and E2F4 [32, 33]).

Both MYC-binding targets and PRC2-silencing targets
over-represent cell differentiation markers, but PRC2
repressed targets are preferentially mutated in HR-NB
(Fig. 3)
We hypothesized that HR-NB aggressiveness requires
the mediation of not only MYCN but also PRC2 based
on the observation that PRC2 preferentially repressed
outcome-favorable MN_hi genes. We also showed the
concurrent somatic mutations and MN_hi genes in HR-
NB. To further understand the effects of PRC2 targeting
in HR-NB, we used Retinoic Acid (RA) as a study model
of HR-NB cell differentiation [20, 21]. We identified a
core set of 199 “cell-differentiation markers” (Fig. 3A1) that
were consistently RA-inducible from two out of three pub-
lished transcriptomic datasets using a RA-sensitive HR-NB
cell line SK-N-BE(2) [34, 35] or SK-N-SH (ENCODE).
These 199 RA-induced cell-differentiation markers signifi-
cantly over-represented a function of cellular growth and
proliferation (97 involved genes, overall p < 2.0e-4, IPA
analysis, Fig. 3A2).
We further asked the question whether there is a

measurable relationship among the identified progno-
sis, cell differentiation, and ESC-like signatures. We
evaluated enrichment among these gene signatures
and found that loss of PRC2 inhibition interrupts
tumor cell differentiation in HR-NB. The cell-
differentiation markers in HR-NB remarkably over-
represented not only the 2104 outcome-favorable
MN_hi genes (71 overlap, p = 4.8e-16, odds ratio = 3.6)
but also the PRC2 core targets in ESCs [7] or cancer
(Fig. 3b). We identified 43 cell-differentiation markers
targeted by PRC2 (either showing EZH2-repression in
prostate cancer or PRC2-silencing in ESC), presenting
a significant enrichment among RA-induced genes
and PRC2-silencing targets (p = 1e-8, odds ratio = 3).
Such enrichment increases if we concentrate on the
subsets of genes harboring recurrent somatic muta-
tions (odd ratios = 153, Fig. 3b), which suggests that
these gene mutations are critical to PRC2 function.
Additional enrichments existed between the PRC2
targets and the outcome-favorable MN_hi genes har-
boring recurrent somatic variants (p = 9.3e-5, odds
ratio = 2.6), and between the RA-induced cell-
differentiation markers and the MN_hi genes harbor-
ing recurrent somatic variants (p = 3.2e-8, odds
ratio = 89). Specifically, five RA-inducible genes
(ZFHX3, NAV2, NCAM1, PANX1, and TNFRSF21)
were the PRC2 targets that harbor recurrent somatic
mutations. Published time-course experiments verified
the RA-inducible feature for these five markers (Fig. 3c)
which are anti-correlated with the expression levels of
PRC2 coding genes (Fig. 3d).
As a control, we identified a set of 156 “cell-dediffe-

rentiation markers” that were consistently RA-repressed
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(Additional file 2: Figure S1A). These 156 “cell-dedif-
ferentiation markers” significantly over-represented
the 775 MYC/MAX targets identified by ChIP-on-
ChIP [7] (21 overlap, p = 3.1e-7, odds ratio = 4.1,
Additional file 2: Figure S1B). Interestingly, no
recurrent somatic mutation was reported for these
cell-dedifferentiation markers. We conclude that a
high rate of the mutated differentiation markers over

the mutated dedifferentiation markers may be associated
with aggressiveness in HR-NB.

Inhibiting PRC2 decreased cell growth after increased the
expression of ZFHX3 in HR-NB cells (Fig. 4)
Of the five PRC2-targeted cell-differentiation markers
with somatic mutations in HR-NB, we focused on the
transcription factor ZFHX3 (zinc finger homeobox 3).

Fig. 3 RA-induced cell-differentiation markers in HR-NB over-represent the PRC2-silencing targets and somatic mutations. a Identification and
functional enrichment analysis of RA-dependently expressed genes. Sub-panel 1 is Venn diagrams demonstrating how to identify the core set of
RA-dependent differentiation markers. Sub-panel 2 is a bar plot of the Fisher’s exact test results for the enriched functions among the RA-induced
biomarkers (Ingenuity pathway analysis). b Venn diagram of the targets of PRC2, RA-induced genes, and genes harboring recurrent somatic
mutations in HR-NB. Significance of enrichment is estimated using the Fisher’s exact test against approximately 21,000 human genes. c
The mRNA levels of the five markers pinpointed in Panel B1 increased after RA-induced cell differentiation. The mRNA levels of the PRC2
components decreased after RA-induced cell differentiation. Box-and-whisker plots represent individual value distributions that are categorized
as vehicle (left) and RA-treated (right) along with treated hours (x-axis) in the SK-N-BS cells (GSE45587). The central box represents the values
of an expression (y-axis) from the lower to upper quartile. The middle line represents the median. The horizontal line extends from the
minimum to the maximum value within 1.5 times of the interquartile range from the box. d The mRNA levels of three genes encoding
PRC2 component increased after RA-induced cell differentiation
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ZFHX3, also known as AT motif binding factor 1
(ATBF1), has been reported to induce differentiation
and cell cycle arrest in neuronal cells [36]. To confirm
that ZFHX3 marks HR-NB cell differentiation, we car-
ried out real-time quantitative PCR analysis in cells with
and without RA treatment (Fig. 4a). The mRNA levels of

ZFHX3 were consistently increased and significantly in-
creased in three RA-sensitive NB cell lines (SY5Y,
LAN1, LAN5) after RA-treatment, but remained un-
changed within 24 h in two RA resistant cell lines
(GIMEN, SKNAS). This data confirms that ZFHX3 is a
cell differentiation marker in RA-sensitive HR-NB cells.

Fig. 4 Inhibiting PRC2 component affects cell morphology and increases the mRNA expression of cell differentiation marker ZHFX3. a ZFHX3
mRNA expression increases after RA-treatment in three RA-sensitive cells but not the two RA-insensitive cells. The MYCN amplification status and
the RA-sensitive or resistant states of five human NB cell lines are given at the top of this panel. X-axis gives the RA-treatment hours, and Y-axis
presents the fold change (2^-ddCt) of relative transcript level using RT-PCR at each time point. Data represent mean values ±95% confidence intervals
on the estimates of the means from 2 to 6 biological replicates, each with two technical repeats. The significance for fold-change after RA-treatment
without blocking PRC2 using the one-tailed Student t-test is represented as: (0.05 ≤ p < 0.1), * (0.01 ≤ p < 0.05), ** (0.001 ≤ p < 0.01). b Genomic view
(hg19) of the gene ZFHX3. Three red arrows point reported somatic mutations in HR-NB. The red box highlights a PRC2 occupancy at ZFHX3 promoter
in human ESC cells (ENCODE data). c Cell morphology was examined in the LAN5 cell line after 24 h of treatment with vehicle (A1), DZNep (A2), RA
(A3), or DZNep and RA (A4), respectively. Pictures were taken using the 20-fold magnification of a Leica DM IRB light microscope. d The ZFHX3 mRNA
levels were increased after 8 h of DZNep treatment. X-axis gives the three HR-NB cell lines, and Y-axis presents the DMSO-normalized relative transcript
level (RTL). Real-time PCR was employed to examine quantitative differences in mRNA expression between dimethyl sulfoxide (DMSO)
and DZNep-treated cells. These relative expression levels (fold change (2^-ddCt)) were initially normalized to the mean of Glyceraldehyde
3-phosphate dehydrogenase (GAPDH). Data shown are mean relative expression levels ± standard deviation of experiments. The p-value
of a two-tailed t-test is given in each scenario, followed by the number of biological replicates
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We assumed that PRC2 repression plays a role in
blocking NB differentiation and inducing proliferation,
which is partly measurable through ZFHX3. This hy-
pothesis was based on the three observations: 1) ZFHX3
was targeted by PRC2 in ESC cells. 2) Reduced or absent
ZFHX3 expression characterized extremely malignancy
in neuroblastoma and other solid tumors with a high
frequency of metastasis [37–41]. 3) The PRC2 complex
proteins intensively occupy ZFHX3 promoter in human
ESCs (Fig. 4b).
To test the hypothesis that PRC2 impacts the

pathway signaling of cell differentiation and tumor
growth, we treated HR-NB cells with DZNep (depsi-
peptide, 3-deazaneplanocin A - an inhibitor of cellu-
lar methyltransferase that reactivates PRC2-repressed
genes in neuroblastoma) by dissociating the PRC2
complex [17, 42] (Fig. 4c). The RA-sensitive LAN5
cells were pretreated for 24 h with vehicle (DMSO)
or DZNep in vehicle. In terms of cell morphology,
we found a decreased percentage of cell survival
after treating cells with DZNep for 24 h and an
increased percentage of cell survival after treating
cells with RA for 24 h. Interestingly, we observed a
stronger cell apoptosis induced by DZNep treatment
than a cell differentiation induced by RA treatment
in the LAN5 cells (Fig. 4c). Thus, the pharmaco-
logical inhibiting PRC2 in RA-treated SH-SY5Y cells
may antagonist the role of RA in cell differentiation.
This result serves as a functional validation that
PRC2 pharmacological inhibition with DZNep in-
creases tumor cell apoptosis which we and others
have observed in HR-NB and colon cancer [43].
To quantitatively evaluate the impact of PRC2 on its

targeted cell-differentiation marker ZFHX3, we mea-
sured the expression changes after inhibiting PRC2 using
DZNep (Fig. 4d). In the early DZNep treatment stage
(8 h) in three RA-sensitive HR-NB cell lines, ZFHX3
mRNA expression increased significantly (P = 0.026,
0.06, and 0.044, respectively). Collectively, our data
suggests that PRC2 histone methyltransferase activity
may constitute a new epigenetic therapeutic strategy to
mediate tumor cell growth and differentiation in HR-NB
by rescuing PRC2-silencing.

Discussion
Cancer cells have deviated from the normal genome by
acquiring and selecting a set of mutations that enable
their malignancy [44]. These changes can be germline
variations, somatic mutations, or upstream regulators
that trigger the cancer process. By assembling and cross-
analyzing genomic variants, gene expression changes,
prior knowledge, clinical outcomes, and using the RA-
induced cell differentiation model, we modeled HR-NB
aggressiveness beyond prognostic multigene signatures.

One knowledge gap we have addressed here is that
previous prognostic gene signatures lack overlap. As a
solution, our model uses an individualized index of
relative expression between poor- and good-outcome
markers. Our results indicate the existence of unified prog-
nostic signature in HR-NB that is MYCN-amplification
independent. For example, NCAM1 (also known as CD56)
is a main carrier for the neural crest stem cell marker and
its reduced expression is correlated with unfavorable prog-
nosis in neuroblastoma with distant metastases, regardless
of the MYCN amplification status [45, 46].
The two identified prognostic gene-set pairs for indi-

vidual patients pinpointed essential HR-NB biomarkers.
Among the six relatively poor prognostic markers, ALK
and BARD1 have been reported as neuroblastoma
predisposition genes [47, 48]. The gain-of-function mu-
tation in ALK acts synergistically with MYCN to drive
NB development and indicates worse event-free survival
[49, 50]. BARD1β not only presents the characteristics
of neuroblastoma oncogenes but also enhances MYCN-
stabilized high-risk phenotypes [48]. These reports
confirm the unfavorable prognostic effects of ALK and
BARD1 alongside the MYCN amplification in the two
gene-set pairs. Among the eight relatively good prognos-
tic markers, the neuroblastoma oncogenic roles of the
highly-expressed LMO1 and the deletion of ARID1A
have been evaluated [51, 52]. On the other side, somatic
copy number gains of LMO1 were significantly corre-
lated with MYCN none-amplification, consistent with its
MN_hi classification [52]. Tumor suppressor potential
of ARID1A has been reported [53], in accordance with
the relatively favorable prognostic roles of the MN_hi
signature. What stands specifically intriguing is the
MYCN-independent prognosis of the relative expression
of these markers in individuals. This finding is important
as among high-risk population none of the established
risk markers including the MYCN copy number can
efficiently stratify outcomes [54].
Of particular interest is the PRC2 targets anchored with

the ESC-like features which are measurable by RA-
induced cell differentiation. Genes in the two identified
prognostic multigene signatures added a new pediatric
cancer type, neuroblastoma, to the impacts of the cancer
prognostic ESC-like signature showing preferential high-
expression of MYC targets combined with low-expression
of Polycomb-regulated genes [7]. We identified five PRC2-
repressed cell-differentiation markers with reported som-
atic mutations (ZFHX3, NAV2, NCAM1, PANX1, and
TNFRSF21) in HR-NB. Among them, we found that the
mRNA expression of ZFHX3 is RA-inducible in HR-NB,
which agrees with studies on ZFHX3 in normal cerebellar
neurons [21, 55, 56]. We further validated that blocking
PRC2 using the inhibitor DZNep increased the mRNA
expression of ZFHX3. These data suggest that PRC2-
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silencing plays an important role in tumor cell differenti-
ation that can be measured by ZFHX3. Mutation of
ZFHX3 has been reported for HR-NB and autism [37, 57],
however, its functional impacts remain unclear. One pre-
vious research study proposed ZFHX3 as a tumor
suppressor in non-small cell lung cancer [58]. We propose
ZFHX3 to be a new tumor suppressor candidate in HR-
NB, which is worth further investigation.
Innovatively—in terms of cancer biology, our results

highlight MYC and PRC2 as stem-cell-associated,
tumor-specific regulators [59, 60] in pediatric HR-NB.
Recent study suggested that MYC proteins maintain
stem cell identity through recruiting PRC2 repression in
mouse ESCs [61]. A deeper understanding about the
cross-talk between the MYC proteins and PRC2 compo-
nents represented in ESC-like signature, and how does
an imbalance in this cross-talk lead to malignancy,
would shed novel light on a reduced relapse and mortality
rate of unfavorable cancers.
Approaching systematic modeling from the computa-

tional aspect, instead of focusing on individual aberra-
tions, multiple genomic scales enables a holistic view of
how multiple aberrations alter one signaling network
within high-risk tumor cells [62, 63]. These models, how-
ever, need to be integrated in an iterative way wherein
predictions that arise from informatics are constrained by
experimental evaluation. This study demonstrates the
benefit of integrating systems bioinformatics with cancer
researches. Two robust mythologies can be applied to
other aggressive tumors for biomarker discovery. First, the
novel multi-scaled functional enrichment and network
analysis established a link between the prognostic tran-
scription, the somatic mutation with low frequency (noisy
observations), and the ESC-like gene signature (priori
knowledge). This linkage was confirmed by in vitro exper-
iments in HR-NB cell lines. Second, an index of prognosis
was designed for individualized expression profiling,
which helps build new biological hypotheses.

Conclusion
This work demonstrates a hypothesis-driven incorpor-
ation of genomic landscapes and transcriptomic pro-
files into a knowledge-based precision prognosis and
biomarker discovery. This systematics approach can be
applied to more biological hypotheses, and even
broadly to other aggressive tumor studies.

Methods
Data
Transcriptome
We downloaded gene expression profiles of 488 patients
with HR-NB and their clinical information from GEO
[64] or ArrayExpress [65] (Additional file 1: Table S1).
Additionally, we collected gene expression data pertaining

to RA-treatment in HR-NB from the Broad Institute [34]
and GEO (GSE45587 [35]) for a cell line SK-N-BE(2) and
from ENCODE for another cell line SK-N-SH.

Exonic variants
We collected verified, somatic missense-variants at exon
from three resources: those identified from TARGET (the
National Cancer Institute’s Therapeutically Applicable
Research to Generate Effective Treatments, tier 1 data,
n = 240) [37], supplementary materials in two recent
whole-genome sequencing studies [37, 53, 66], and recur-
rent germline genomic variants that predispose individuals
to HR-NB from GWAS [52, 67]. For simplicity, we refer
to both types of variants as “genomic variants” hereafter.
The collection resulted in a set of 987 genes harboring
HR-NB-associated, recurrent variants. From which, the
genomic variants of 197 genes have been validated using
mass-spectrometric genotyping, PCR-based re-sequencing
[37] and an additional SNP array [67], or linkage disequi-
librium analysis [66] (Additional file 1: Table S2).

MYC and PRC2 target genes
PRC2 targets were identified by ChIP-on-chip in human
ESCs for the polycomb proteins H3K27me3, SUZ12, and
EED [7, 31]. We additionally collected ChIP-seq data
from ENCODE [68] for PRC2-binding (H3K27me3,
SUZ12, and EED) in human ESC cells.

Identification of MYCN-associated gene signature via
meta-analysis of expression profiles
We compared the transcriptomic profiles of patients
with MYCN-amplification (>ten copies, MA) to those
with the normal copy numbers of MYCN (2 copies,
MN) in a collection of 556 primary patients from four
independent studies (Additional file 1: Table S1). To
increase the statistical power, we pooled samples mea-
sured on the same platform into a large dataset after
normalization [69] and then applied an empirical Bayes
approach [70] to shrink the batch effect [71]. We
performed differential expression meta-analysis as previ-
ously described [72]. Under a false discovery rate (FDR)
less than 0.001, we identified 2321 and 2104 MYCN-as-
sociated genes significantly up-regulated in MA patients
(MA_hi) and MN patients (MN_hi), respectively. The
expression levels of these genes exhibited cross-platform
consistency on both the gene- level and the exon- level
(or were significant on one platform but were not
covered by the other platform) after pooling samples
and performing meta-analysis [70], thus ensuring the
statistical sensitivity.

Integrating transcriptomic and genomic information
We intersected the genes harboring germline or verified,
missense variants at exon with the MYCN-associated
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signature and found a 55-gene overlap. We evaluated
the chance of overlap between gene signatures using the
Fisher’s exact test (FET). We further focused on a subset
of 21 genes for the downstream analyses, which har-
bored recurrent mutations in HR-NB and one germline
variant that may play more critical roles than those non-
recurrent variants.

Identification of prognostic gene-set pairs (GSPs)
We defined the poor-outcome candidates from the
MA_hi genes and the good-outcome candidates from
the MN_hi genes, based on the two following observa-
tions. First, the MYCN-associated signature covers well-
known HR-NB prognostic signatures in HR-NB and the
functional MYCN signature (p < 0.004). Second, the
distribution of coefficients of all 2 million possible GSPs
gives more positive (unfavorable) predictions than by
chance in a stratified Cox proportional hazards model.
We evaluated all 2,062,468 possible combinations of

GSPs and selected the prognostic indicators with the
GSPs meeting two following criteria: 1) The GSPs were
significant in survival meta-analysis (FDR <5%), ensuring
a cohort-independent and array-independent prognosis. 2)
The GSPs indicated adverse EFS with a hazards ratio
larger than 1 and the survival log-rank tested p < 0.05 in
each computational cohort.

Functional enrichment and regulatory network analysis
We examined pathway enrichment on the genes harbor-
ing verified genomic variants and the identified MYCN-
associated genes using the Bioconductor seq2pathway
package [73]. Among 185 KEGG pathways (MSigDb v5.1),
those met the criteria of an odds ratio > 2 and a FDR < 0.01
were identified (Fig. 1b). We further evaluated the enrich-
ment for MSigDB (v3.1)-defined functional gene-sets. A
HR-NB-associated network was built based on the identi-
fied gene signatures and the over-represented upstream
transcription factors. Network linkage was generated for
any two genes if their protein products interact (STRING
v9.05) [74] or exhibit protein-DNA/RNA interactions
(MSigDB), using Cytoscape software [75].

Identifying RA-responsive genes
For the differential expression analysis between the RA-
treated and control samples [34, 35], we calculated both
static and dynamic statistics using the Bioconductor
Limma [76], DEseq2 [77], and edgeR [78] packages.
Specifically in the SH-N-BS(2) cells, 281 genes were
significantly up-regulated after 5d of RA-treatment com-
pared with the vehicle (ethanol) (limma test, FDR < 0.05,
FC > 1.5), and 385 genes were significantly up-regulated
during 6-24 h of RA-treatment (generalized linear ana-
lysis of variance, FDR < 0.05, FC > 1.5). Additionally,
2724 genes were significantly up-regulated in the RA-

treated SK-N-SH cells compared with non-treated cells
(FDR < 0.05, FC > 2). Overlaying these three sets, 199
repeatedly RA-induced genes without conflicts are the
identified core set (Fig. 3a).

RA-response experiments using RT-PCR
Materials
All trans-RA was bought from Sigma (St Louis, MO,
USA, Sigma R2625-50 mg). RA was dissolved in ethanol
to make a 5 mM stock. 3-Deazaneplanocin A (DZNep),
an EZH2 inhibitor, was purchased from Cayman Chemical
(Ann Arbor, MI, USA). DZNep was dissolved in dimethyl
sulfoxide (DMSO) and stored at 5 mM concentration.

Cells and drug treatment
Human neuroblastoma cell lines were kindly provided
by the Cohn Lab at the University of Chicago. We chose
five cell lines due to their differing RA sensitivity and
genomic characteristics: LAN1, LAN5 are RA-sensitive
cell lines [79, 80] exhibiting MYCN amplification,
SKNAS and GIMEN are RA-resistant cell lines [80, 81]
showing MYCN normality, and SY5Y is an RA-sensitive
cell line [80] showing MYCN normality. Cells were
cultured in RPMI (Roswell Park Memorial Institute)
supplemented with 10% fetal bovine serum and 1% peni-
cillin/streptomycin and maintained at 37 °C with 5%
CO2. For drug response, cells were seeded the day
before the treatment and dissolved in DMSO. Cells were
treated with 5 μM DZNep or reagent (Sigma) for 48 h,
and retinoic acid (Sigma) at 10 μM for another 24 h.

RT-PCR amplification analyses
We extracted RNA from a maximum of 2–3 million cells
per sample using TRIzoL Reagent (Ambion, Invitrogen)
according to the manufacturer’s instructions. After RNA
extraction, equal amounts of total RNA from different cell
lines (1μg) were retro-transcribed using the SuperScript
III First-Strand Synthesis System for RT-PCR (Invitrogen,
Carlsbad, CA, USA) in the conditions described by the
manufacturer. The primer sequences used for RT-PCR
amplifications were given in Table 2.

RT-PCR data analysis
The comparative method (ΔΔCt) was used to calculate
relative quantities of gene expression levels. To measure

Table 2 RT-PCR used primer sequences

Gene Primer sequences used for amplifications

GAPDH-F 5′ GGAGTCCACTGGCGTCTTC 3′

GAPDH-R 5’ATCTTGAGGCTGTTGTCATACTTC3’

ZFHX3-F 5′ TTCTTTTCCTCCTCTCTCCTCATC 3′

ZFHX3-R 5′ CGGTCCGTCGGACTTTTG 3′
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the RA-dependent gene expression changes, we used the
24 h pre-treated cells before RA-treatment as the cali-
brator samples. To estimate the DZNep-induced gene
expression changes, we used non-pre-treated cells at
time zero as the calibrator samples. For both cases, we
used GAPDH as an endogenous control when calculate
the ΔCt. Two-tailed t-test was used to estimate the
significance.

Cell morphology experiment
The LAN5 cells were plated at 40% confluence and
allowed to grow for 24 h. DZNep (5uM), vehicle control
(DMSO), retinoic acid (RA, 10μM) and DZNep + RA
were added and cells were maintained for another 24 h.
Cell morphology was examined and pictures were taken
using the 20-fold magnification of a Leica DM IRB light
microscope.
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