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A novel interaction perturbation analysis
reveals a comprehensive regulatory
principle underlying various biochemical
oscillators
Jun Hyuk Kang1,2 and Kwang-Hyun Cho1,2*

Abstract

Background: Biochemical oscillations play an important role in maintaining physiological and cellular homeostasis
in biological systems. The frequency and amplitude of oscillations are regulated to properly adapt to environments
by numerous interactions within biomolecular networks. Despite the advances in our understanding of biochemical
oscillators, the relationship between the network structure of an oscillator and its regulatory function still remains
unclear. To investigate such a relationship in a systematic way, we have developed a novel analysis method called
interaction perturbation analysis that enables direct modulation of the strength of every interaction and evaluates
its consequence on the regulatory function. We have applied this new method to the analysis of three
representative types of oscillators.

Results: The results of interaction perturbation analysis showed different regulatory features according to the
network structure of the oscillator: (1) both frequency and amplitude were seldom modulated in simple negative
feedback oscillators; (2) frequency could be tuned in amplified negative feedback oscillators; (3) amplitude could be
modulated in the incoherently amplified negative feedback oscillators. A further analysis of naturally-occurring
biochemical oscillator models supported such different regulatory features according to their network structures.

Conclusions: Our results provide a clear evidence that different network structures have different regulatory
features in modulating the oscillation frequency and amplitude. Our findings may help to elucidate the
fundamental regulatory roles of network structures in biochemical oscillations.

Keywords: Biochemical oscillators, Network structure, Regulation of frequency and amplitude, Perturbation analysis,
Systems biology

Background
Oscillations are commonly observed phenomena in bio-
logical systems and perform crucial functions in regulat-
ing physiological or cellular processes [1]. The beating of
the heart, the breathing motion of the lungs, and the cir-
cadian rhythm of sleep and wakefulness can be regarded
as oscillations to maintain physiological homeostasis [2].

Glucose metabolism, cyclic adenosine monophosphate
(cAMP) generation, mitogen-activated protein kinase
(MAPK) signaling, and cell cycle progression are well-
known cellular oscillations [3].
Oscillators appear to have different requirements for

regulating the frequency and amplitude depending on
their biological functions. Both frequency and amplitude
of a circadian oscillator need to be regulated against
fluctuations in order to maintain robust 24-h rhythms
[4–6]. In the heart beating, the frequency has to be in-
creased according to the intensity of physical activities
[7]. In neuronal firings, proper regulation of the fre-
quency is essential for information transmission in the
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brain. However, both the heart beating and neuronal fir-
ings are seldom required to modulate the amplitude. On
the other hand, in glycolytic and cAMP oscillators, the
regulation of the amplitude is as important as the regu-
lation of the frequency since the amplitude plays a sig-
nificant role in the activities of glycolysis and the protein
kinase A (PKA) signaling pathway [8, 9].
Thus, how do these oscillators meet such different re-

quirements for regulating the frequency and amplitude?
Novak et al. classified biochemical oscillators into three
classes: class I oscillators (delayed negative feedback os-
cillators), class II oscillators (amplified negative feedback
oscillators), and class III oscillators (incoherently ampli-
fied negative feedback oscillators) [10]. This classifica-
tion was based solely on the network structure of the
oscillator. However, interestingly, the different regulatory
requirements seem to be reflected in this classification
in view of the fact that (i) the circadian rhythm oscillator
belongs to class I oscillators; (ii) the sinus node oscillator
and neuronal oscillator belong to class II oscillators; and
(iii) the glycolytic and cAMP oscillators fall into class III
oscillators. Therefore, a particular type of network struc-
ture appears to serve a particular regulatory requirement
better than other types, and this implies that there is an
association between network structures and regulatory
functions.
Such an association between them could also be in-

ferred from the previous study by Tsai et al. in which it
was revealed that an interlinked positive and negative
feedback structure outperforms a simple negative feed-
back structure in tuning the frequency of an oscillator
[11]. In addition, a positive feedback was revealed to
promote the oscillation of a negative feedback oscillator
[12]. However, the detailed relationship between various
network structures and regulatory functions has only
been partially explored till now. To investigate the rela-
tionship in detail from a systems perspective, we con-
structed all possible three-node oscillator models of
maximum four links using ordinary differential equa-
tions (ODEs) to represent six conceptual network struc-
tures of biochemical oscillators, and then performed
interaction perturbation to systematically analyze the
regulatory pattern of the frequency and amplitude of
each model.
So far, the parameter perturbation method has been

used to study the properties of oscillators. However, this
method might not be adequate to analyze the network-
level characteristics of oscillators. Because a parameter
can represent various biological functions (e.g., the rate
of synthesis or degradation of a molecule, the strength
of binding between two molecules and the sensitivity of
a reaction), perturbation of a parameter may not corres-
pond to the variation of an interaction in the network.
Moreover, the same molecular interaction can be

represented in multiple ways (see Additional file 1:
Notes). For instance, the interaction ‘X activates Y’ can
be represented in several ways:

dY
dt

¼ k1⋅X ð1Þ

dY
dt

¼ k1⋅X⋅Y ð2Þ

and

dY
dt

¼ k1⋅X
Km þ X

ð3Þ

In the three equations, the parameter k1 represents dif-
ferent biological processes, and thus, the perturbation of
k1 will yield various results. In particular, a single param-
eter can be involved in two interactions (eq. (2) repre-
sents two interactions, ‘X on Y’ and ‘Y on Y’), and more
than two parameters can represent a single interaction
(in eq. (3), k1 and Km are involved in the interaction ‘X
on Y’). In these cases, the role of an interaction cannot
be assessed independently through parameter perturb-
ation analysis. A solution to such limitations could be to
modulate the interactions rather than the parameters.
For this purpose, we developed a novel perturbation
strategy called the interaction perturbation method
which directly modulates the strength of an interaction
between two nodes in a network. By using this method,
we found that a strong association exists between net-
work structures and regulatory patterns of the frequency
and amplitude of biochemical oscillators. In simple
negative feedback oscillators, both the frequency and
amplitude were found to be rarely modulated. In con-
trast, the frequency could be tuned in amplified negative
feedback oscillators while the amplitude could be modu-
lated in incoherently amplified negative feedback oscilla-
tors. Our analysis shows that different regulatory
properties can emerge from different network structures
of biochemical oscillators.

Results
Analyses of 3-node biochemical oscillators
Because biochemical oscillator models are too diverse in
their size and complexity to be investigated individually, we
constructed all possible representative three-node oscillator
models that consist of maximum four links. We began by
determining the parameter sets and then conducted ana-
lyses of each model based on the interaction perturbation
method. The procedures are provided in detail in the
METHODS (Fig. 1 and Additional file 1: Figure S1).
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Network structures of six 3-node biochemical oscillator
models
Each model includes three nodes (X, Y, and Z) and nine
possible types of interactions (Lxx, Lxy, Lxz, Lyx, Lyy,
Lyz, Lzx, Lzy, and Lzz) (Fig. 2). In all six models, the
term X, Y, and Z denote the ‘activator’, ‘inhibitor’, and
‘mediator’, respectively, that is, X activates Y; Y inhibits
X, and Z mediates the activation or inhibition.
The simple negative feedback oscillator (simple NFO)

has a negative feedback loop only (Fig. 2a). For the sim-
ple NFO to be able to oscillate, at least three nodes have
to be included in its negative feedback loop since the
time delay required for the sustenance of the oscillation
cannot be sufficiently provided with only two nodes.
Adding a third node (denoted by Z in Fig. 2a) generates
an appropriate time delay. In this structure, Lyx, Lzy,
and Lxz form a negative feedback loop where X activates

Y directly, and Y inhibits X through Z, which is consist-
ent with the denoted function of X and Y: X as ‘activa-
tor’, and Y as ‘inhibitor’. In the activator-amplified
negative feedback oscillator (activator-amplified NFO), X
and Y form a two-node negative feedback loop (Lxy and
Lyx), and Z amplifies X (Lxz and Lzx) (Fig. 2b). This
amplification by Z plays an important role in maintain-
ing oscillation [13]. In the inhibitor-amplified negative
feedback oscillator (inhibitor-amplified NFO), X and Y
form a two-node negative feedback loop (Lxy and Lyx),
and Z amplifies Y (Lyz and Lzy) (Fig. 2c). Like the
activator-amplified NFO, the amplification by Z is essen-
tial for the maintenance of oscillation [13]. Each
incoherently-amplified negative feedback oscillator (in-
coherently-amplified NFO) has a negative feedback loop
containing one incoherent link. We constructed three
incoherently-amplified NFOs: type 1 incoherently-

Fig. 1 Analysis workflows for three-node oscillator models. Step 1. Construct six 3-node oscillator models using first-order ODEs; Step 2. Generate
1000 random parameter sets for each ODE; Step 3. Reformulate first-order ODEs into second-order ODEs by differentiation with respect to time
and locate elements of Jacobian matrix by decomposition of the reformulated second-order ODEs; Step 4. Establish the conditions for the
perturbations: determine the type of interactions to be perturbed and the strength of the perturbations; Step 5. Conduct perturbations under the
established conditions; Step 6. Measure the resultant frequency and amplitude; and Step 7. Create density plots to depict the
results schematically
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amplified NFO; type 2 incoherently-amplified NFO; and
type 3 incoherently-amplified NFO (Fig. 2d, e, and f).
Among all the types of incoherently-amplified NFOs,
Lyx, Lzy and Lxz form a negative feedback loop contain-
ing an incoherent link. An incoherent link makes the
function of a node become inconsistent with its denoted
function as an activator or inhibitor. For instance, in the
type 1 incoherently-amplified NFO, Y inhibits X via Z
(Lzy and Lxz) and directly activates X (Lxy) simultan-
eously. Thus, Y is no longer an ‘inhibitor’. The incoher-
ent link is Lxy in the type 1 and type 2 incoherently-
amplified NFO and Lyz in the type 3 incoherently-
amplified NFO.
According to the classification by Novak et al., the

above six models can be classified into three classes: the
simple NFO belongs to class I oscillators; the activator-
amplified NFO and the inhibitor-amplified NFO belong
to class II oscillators; and all types of incoherently-
amplified NFOs belong to class III oscillators [10].

Analysis results of the six 3-node oscillation models
To investigate the regulatory patterns of the three-node
oscillators, we performed perturbations by weakening
each interaction by 1%, 2%, 4%, and 8% (a weakening
factor of 0.99, 0.98, 0.96, and 0.92, respectively) and ob-
served the changes in the frequency and amplitude. The
interaction perturbation was implemented by multiply-
ing a weakening factor to the element of Jacobian matrix
that is to be perturbed during one period of oscillation.
Fig. 3 shows the results of the perturbations in the dens-
ity plots (see the METHODS for details). In these plots,
the regulatory characteristics of the frequency and amp-
litude are represented by the distribution patterns of the
density. The concentrated density near the point (1, 1)
indicates that the frequency and amplitude are robust to
perturbations. The horizontal distribution of the density

denotes that the change in the frequency is larger than
the change in the amplitude, and the vertical distribution
of the density denotes the opposite.
To represent the results quantitatively, we grouped the

changes in the frequency and amplitude into three pat-
terns: In pattern R, both the frequency and amplitude
changed by less than 1%; in pattern F, either the fre-
quency or the amplitude changed by more than 1% and
the changes in the frequency were greater than the
changes in the amplitude; in pattern A, either the fre-
quency or the amplitude changed by more than 1% and
the changes in the amplitude were greater than the
changes in the frequency. Table 1 shows the distribution
of the patterns in each 3-node oscillator model (a full
description of the distribution of the patterns generated
by the perturbation of each interaction is provided in
Additional file 1: Table S1).
The simple NFO showed the highest robustness to

perturbations regardless of the types of perturbed inter-
actions (Fig. 3a and Additional file 1: Figure S2). The
rates of change in both the frequency and amplitude
were less than 1% in 92.9% of the perturbation results
(Table 1) and are depicted as the darkest density concen-
trated on the point (1, 1) (Fig. 3a).
In the activator-amplified NFO and inhibitor-

amplified NFO, the change in the frequency was larger
than the change in the amplitude. The results are
shown in Fig. 3b and c, in which the density is spread
in a nearly horizontal direction. These changes in the
frequency were caused by the perturbations of Lxx or
Lxy (Additional file 1: Figure S3 and Additional file 1:
Figure S4). In both oscillators, pattern F was observed
in more than 30% of the perturbation results.
In contrast to the regulatory patterns observed in the

activator-amplified NFO and the inhibitor- amplified
NFO, all the incoherently-amplified NFOs showed

Fig. 2 Schematic diagrams of the network structures of the six 3-node biochemical oscillator models. Each model includes three nodes (X, Y, and Z)
and nine possible interactions (Lxx, Lxy, Lxz, Lyx, Lyy, Lyz, Lzx, Lzy, and Lzz). The term ‘Lpq’ denotes an interaction in which node P is influenced by
node Q. For instance, Lxy denotes an interaction in which node X is influenced by node Y. The figure shows the six network structures: a simple NFO;
b activator-amplified NFO; c inhibitor-amplified NFO; d type 1 incoherently-amplified NFO; e type 2 incoherently-amplified NFO; and (f) type 3
incoherently-amplified NFO in order of appearance
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moderate changes in the amplitude. In the type 1
incoherently-amplified NFO, the amplitude was slightly
more adjustable to perturbations than the frequency
while in the type 2 incoherently-amplified NFO, the
amplitude was changed to a large extent (Fig. 3d and e).
In the type 3 incoherently-amplified NFO, the frequency
and amplitude were changed to various extents (Fig. 3f ).
Both in the type 2 incoherently-amplified NFO and the
type 3 incoherently-amplified NFO, pattern A was ob-
served in more than 50% of the perturbation results.
For the six 3-node oscillator models, the perturbation

results obtained by weakening each interaction by 2%,
4%, or 8% had qualitatively the same regulatory patterns
as those obtained by weakening each interaction by 1%
(Additional file 1: Figures S2-S7).
In summary, a distinct regulatory pattern was observed

in each 3-node oscillator. Class I oscillator (the simple
NFO) is robust to perturbations while for class II

oscillators (the activator-amplified NFO and the
inhibitor-amplified NFO), the frequency can be select-
ively regulated. In class III oscillators (types 1, 2, and 3
incoherently-amplified NFOs), the amplitude can be reg-
ulated. Based on these observations, we deduced the
regulatory principle that the differences in network
structures give rise to different regulatory patterns of the
frequency and amplitude.

Mathematically controlled comparisons between
structurally related biochemical oscillators
Class I, class II and class III oscillators are structurally
related to one another, and their structural differences
arise from an added link. A class II oscillator can be
formed by adding a link to the activator (X) or inhibitor
(Y) of a class I oscillator. A class III oscillator can be
formed by adding an incoherent link to a class I
oscillator.
This prompted us to assume that the added links

could bring about changes to the regulatory patterns of
the oscillators. To examine this idea, we performed
mathematically controlled comparisons between struc-
turally related oscillators.

Construction of structurally related three-node models for
mathematically controlled comparisons
We developed three additional three-node oscillator
models which contain one additional link to the
backbone of a simple NFO. A self-activating positive
feedback link was added to the activator (X) and in-
hibitor (Y) of the simple NFO to generate an

Table 1 Regulatory patterns of the frequency and amplitude
arising from interaction perturbation

Network structure of oscillators Distribution of patterns (%)

Pattern R Pattern F Pattern A

Simple NFO 92.9% 0.7% 6.4%

Activator-amplified NFO 61.5% 32.3% 6.2%

Inhibitor-amplified NFO 34.1% 43.6% 22.3%

Type 1 incoherently-amplified NFO 72.2% 10.1% 17.7%

Type 2 incoherently-amplified NFO 39.5% 5.5% 55.0%

Type 3 incoherently-amplified NFO 16.9% 27.0% 56.1%

Fig. 3 The density plots of the six 3-node oscillator models. In these plots, the regulatory characteristics of the frequency and amplitude are
represented by the distribution patterns of the density. The density is increasing over a continuum starting from white followed by yellow, red,
and black. This figure shows the six network structures: a simple NFO; b activator-amplified NFO; c inhibitor-amplified NFO; d type 1 incoherently-
amplified NFO; e type 2 incoherently-amplified NFO; and (f) type 3 incoherently-amplified NFO in order of appearance
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activator-amplified NFO variant and an inhibitor-
amplified NFO variant, both of which belong to class
II oscillators. Adding Lxy to the simple NFO gener-
ated a variant of the type 1 incoherently-amplified
NFO (hereinafter called the type 1 incoherently-
amplified NFO variant), which belongs to class III
oscillators. Simulation of the simple NFO was per-
formed with a representative parameter set suggested
by Novak et al. [10]. The parameters of the newly
generated oscillators (the activator-amplified NFO
variant, the inhibitor-amplified NFO variant and the
type 1 incoherently-amplified NFO variant) were de-
termined with methods for mathematically controlled
comparisons [14]. The full ODEs are provided in
Additional file 1: Eq. A1, and the full parameters are
provided in Additional file 1: Table S3.

Analysis results of the structurally related models
Perturbations on the oscillators were performed by
weakening each interaction by 1% during one period of
oscillation. A distinct regulatory pattern for each model
could be identified despite the fact that the frequency

and amplitude changed by less than 1% compared to the
unperturbed cases in all four models (Fig. 4). In the
activator-amplified NFO variant and the inhibitor-
amplified NFO variant, the frequency was more adjust-
able than the amplitude, whereas in the type 1
incoherently-amplified NFO variant, the amplitude was
more adjustable than the frequency. Overall, adding an
amplifying link could enhance the ability to regulate the
frequency of the oscillator whereas adding an incoherent
link could enhance the ability to regulate the amplitude
of the oscillator.

Analyses of naturally-occurring biochemical oscillator
models
To explore whether the regulatory principle suggested
here could also apply to naturally-occurring biochemical
oscillator models, we performed analyses of nine well-
known biochemical oscillator models which were con-
structed based on experimental data. For each model,
perturbations were conducted by weakening each inter-
action by 1% during one-period of oscillation. The sub-
sequent changes in the frequency and amplitude are

Fig. 4 Mathematically controlled comparisons among the simple NFO, the activator-amplified NFO variant, the inhibitor-amplified NFO variant,
and the type 1 incoherently-amplified NFO variant. Schematic representations and frequency-amplitude plots for the four oscillator models are
presented for comparison. In these plots, the changes in the frequency and amplitude due to the perturbations are expressed as a ratio to the
frequency and amplitude before the perturbations
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shown in Fig. 5. The ODE equations and the parameters
are provided in the Additional file 1: Eq. A2.
The circadian rhythm model by Goldbeter [15], the

circadian rhythm model by Leloup et al. [16] and the
repressilator [17] are well-known examples of class I os-
cillators (a class I oscillator consists of a negative feed-
back only). These oscillators showed the highest
robustness to perturbations: both the frequency and
amplitude rarely changed in response to the perturba-
tions. The sinus node model by Yanagihara et al. [18],
the neuronal excitation model by Hodgkin and Huxley
[19] and the cell cycle model by Pomerening et al. [20]
can be classified as class II oscillators (a class II oscilla-
tor includes a positive feedback). These class II oscilla-
tors worked better in adjusting the frequency than in
adjusting the amplitude; the perturbations induced more
changes to the frequency than to the amplitude. On the
other hand, in the cAMP oscillator model [21] and the
glycolysis models [22, 23] that belong to class III oscilla-
tors (a class III oscillator includes an incoherent link),
the amplitude was more adjustable than the frequency:
the amplitude changed more than the frequency.
In summary, the regulatory principle suggested here in

the three-node oscillator models could also apply to
naturally-occurring biochemical oscillator models.

Discussion
Our analysis based on the interaction perturbation
method revealed the regulatory principle that different
network structures of biochemical oscillators give rise to
different regulatory patterns of the frequency and ampli-
tude; for class I oscillators, the frequency and amplitude
are seldom regulated; for class II oscillators, the fre-
quency is more adjustable than the amplitude; for class
III oscillators, the amplitude is more adjustable than the
frequency. The results of the mathematically controlled
comparisons further demonstrated the reliability of this
regulatory principle and its potential for application to
naturally-occurring biochemical oscillator models.
In systems biological studies, the parameter perturb-

ation method has been widely used to investigate the re-
lationship between network structures and their
biological functions [24–29]. In addition, various math-
ematical methods have been developed to analyze the
characteristics of oscillators. The sensitivity heat map
and parameter sensitivity spectrum developed by Rand
et al. have been utilized to provide a more integrated
picture of the overall sensitivities of a system and to
probe how the function of a network depends upon its
structure and parameters [30]. Irene et al. proposed an
optimization-based approach to investigate what

Fig. 5 Analyses of naturally-occurring biochemical oscillator models. The changes in the frequency and amplitude are represented in the
frequency-amplitude plots for the following: a circadian rhythm model by Leloup et al.; b circadian rhythm model by Goldbeter; c repressilator by
Elowitz and Leibler; d sinus node model by Yanagihara et al.; e neuronal model by Hodgkin and Huxley; f cell cycle model by Pomerening et al.;
g cAMP model by Martiel and Goldbeter; h glycolysis model by Sel’kov; and (i) glycolysis model by Higgins. In these plots, the changes in the
frequency and amplitude due to perturbations are expressed as a ratio to the frequency and amplitude before the perturbations
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environmental conditions drive specific oscillatory net-
work [31]. The state sensitivity decomposition method
developed by Wilkins et al. is useful in analyzing the in-
fluence of parameter changes on period, amplitude and
relative phase of oscillation [32]. In addition, robustness
and dynamical characteristics between various oscillatory
systems could be effectively compared by using bifur-
cation analysis, parameter sensitivity analysis, and sto-
chastic simulation [33, 34]. However, since all these
methods somehow focus on “parameters”, they can be
classified as a parameter perturbation analysis in a broad
sense. On the other hand, as far as the network topology
is concerned, the biological meaning of a parameter does
not always correspond to specific interaction. Hence,
there is still difficulty in attributing the perturbation of a
particular interaction in a regulatory network to the
perturbation of a parameter in the corresponding math-
ematical model.
The interaction perturbation method proposed in this

study has several advantages over the parameter perturb-
ation method. First, the result of an interaction perturb-
ation analysis can be properly interpreted in the context
of a biological network since the perturbation directly
modulates a link of the network structure. Second, this
method can provide a more pertinent comparison be-
tween different network structures by allowing the focus
of the comparison to be placed on the difference of the
interaction in the network, not on the indirect difference
of the underlying biological process. If the network
structures have the same number of nodes, the compari-
son can be performed more effectively between them as
they have a Jacobian matrix of the same size (three-node
networks have a Jacobian matrix of 3 by 3). Third, this
method can simplify analysis procedures. Previously sug-
gested methods (e.g., optimization-based method, state
sensitivity decomposition method, etc) for the analysis of
biochemical oscillators can provide meaningful insights
into the nature of oscillators, but most of them require a
certain level of expert knowledge on mathematics [31,
32]. In contrast, with a given parameter set, we just need
to transform first-order ODEs into second-order ODEs
and integrate the second-order ODEs using a perturbed
Jacobian matrix without going through any other com-
plicated procedures such as selection of a bifurcation
parameter, identification of a Hopf bifurcation point and
numerical continuation [35].
In this study, we demonstrated that the regulatory pat-

terns of the frequency and amplitude depend on the net-
work structures of the biochemical oscillators. Notably,
even for the same class of network structures, different
regulatory patterns were observed. For instance, for the
activator-amplified NFO, the amplitude was adjustable
although the range was narrow whereas for the
inhibitor-amplified NFO, modulation of the amplitude

was negligible. The regulatory range of the amplitude
was wider for the type 2 incoherently-amplified NFO
than that for the type 1 or a type 3 incoherently-
amplified NFO. For the type 3 incoherently-amplified
NFO, both the amplitude and frequency could be regu-
lated to a various extent. Thus, not only overall network
topologies but the interlinkage of nodes appear to be in-
volved in the formation of regulatory patterns of the fre-
quency and amplitude.
It may also be noteworthy to mention that, in this

study, the chosen parameter set and the kind of interac-
tions were identified as a minor contributory factor that
could affect the regulatory patterns of the frequency and
amplitude, though not significantly. For class I oscilla-
tors, the frequency and amplitude were changed by less
than 1% for most of the parameter sets (pattern R)
except for a few parameter sets where the amplitude was
changed by more than 1% (pattern A). For class II oscil-
lators, the frequency was adjustable for more than one
third of the parameter sets (pattern F) whereas, for the
others, the frequency was not changed (patterns R and
A). For class III oscillators, the amplitude was adjustable
for a relatively greater part of the parameter sets (pattern
A) whereas, for the others, the amplitude was not
changed (patterns R and F).
For the activator-amplified NFO and inhibitor-

amplified NFO, by perturbation of Lxx or Lxy, the
frequency was adjusted whereas the perturbations did
not significantly change the frequency or amplitude. In
the incoherently amplified NFOs, only some kinds of
interactions seem to be involved in modulation of the
amplitude.
Our analyses of naturally-occurring biochemical oscil-

lator models showed that the regulatory principle sug-
gested here may have applications in naturally-occurring
biochemical oscillation models. A question then might
arise as to what functional benefits can be derived from
a particular network structure in naturally-occurring
biochemical oscillators? Both frequency and amplitude
of a circadian oscillator need to be regulated against
fluctuations in order to maintain robust 24-h rhythms
[36, 37]. This requirement can be satisfied by the net-
work structure of a class I oscillator. When an incoher-
ent feedforward structure is added to such a circadian
oscillator, a stable oscillator with a different frequency
can be generated and used to meet other biological
needs [38]. Sinus nodal cells and neurons should be able
to tune their frequency to transmit the information to
neighboring cells appropriately [39] and cell cycles have
to regulate the rate of their progression appropriately in
response to environmental changes. To this end, the net-
work structure of a class II oscillator might be a suitable
one. In the glycolysis and cAMP models, regulation of
the amplitude has greater importance since the
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amplitude of phosphofructokinase and cAMP, which are
actively involved in metabolic and signaling processes re-
spectively, has a significant role in cellular functions.
Therefore, the network structure of a class III oscillator
can be a better choice for these cases.
From an evolutionary point of view, the fact that class

II and class III oscillators are frequently found in natural
biological examples can be considered as important
evidence implicating that they might have some
performance advantages over class I oscillators. This
study suggests that such advantages might be found
from the ability to tune the frequency in class II
oscillators and the ability to regulate the amplitude in
class III oscillators.
Our study has the following limitations. Firstly, our

study employed the Jacobian matrix which describes the
interactions between state variables instead of employing
the monodromy matrix (i.e., the state transition matrix
over one period) or Floquet multipliers (i.e., eigenvalues
of the monodromy matrix) which have been widely used
to determine the oscillatory properties of a system with
a limit cycle. Therefore, our scope of analysis was largely
confined to examining influences of interaction perturb-
ation on the oscillatory properties. Secondly, interaction
perturbation was performed during one cycle of oscilla-
tion because longer duration of perturbation destabilized
the oscillation in most cases. Thirdly, our analysis of
structurally related models may not be sufficient to in-
vestigate the general characteristics of each structure in
greater detail since it was performed under the pre-
defined parameter combinations.

Conclusions
From the analyses based on the interaction perturbation
method, we found a new regulatory principle that differ-
ences in network structures can give rise to different
regulatory patterns of the frequency and amplitude. This
finding could serve as a basis for further investigation
into the underlying mechanism for the regulation of the
frequency and amplitude in existing biochemical oscilla-
tors as well as for designing synthetic oscillators with a
specific regulatory function.

Methods
Analysis procedures for 3-node biochemical oscillators
We constructed six representative oscillator models and
generated random parameter sets for each model ensur-
ing its sustained oscillation under the parameter sets.
Then, we converted the interactions in the model into
corresponding elements of the Jacobian matrix and per-
formed perturbations of the elements. After the pertur-
bations, we measured resulting changes of the frequency
and amplitude. The analysis workflows are described in
Fig. 1 and Additional file 1: Figure S1.

Construction of six representative models for biochemical
oscillators
Each three-node oscillator model was described in terms
of three coupled ODEs with the combinatorial use of
mass action laws and Michaelis-Menten kinetics. The
ODEs of the six 3-node oscillator models are provided
in the Additional file 1: Eq. A1. In every oscillator
model, the oscillations were sustained under specific
parameter sets. After an initial transient, integrations
that started under different initial conditions quickly
converged to a common trajectory with the same fre-
quency and amplitude, namely, a limit-cycle oscillation.

Random parameter generation for the six 3-node biochemical
oscillator models
Determining the parameter values constitutes an import-
ant process to create sustained oscillations. We chose to
determine parameter values by extensive search of the
parameter space because an analytical approach does not
lend itself to dealing with a large number of parameters.
Random parameter sets were generated for each three-

node oscillator model by selecting parameters from an
exponential distribution within the range of 0.001 to
1000, using the Latin hypercube sampling method [40].
This range corresponds to biologically reasonable values
typically used to model biological systems [41–45]. All
parameters except for the Hill coefficients were
randomly generated. For each parameter set, we verified
whether the model produced a limit-cycle oscillation
[46]. Through this process, a total of 1000 parameter
sets were generated for each model, and consequently,
each three-node oscillator model yielded 1000
parameter-value-assigned models.

Algebraic representation of interaction using Jacobian
matrix
A network topology shows clearly whether an inter-
action is activating or inhibiting. However, when this
network is represented by the system of ODEs, the func-
tion of interaction is not easily identifiable. To represent
an interaction as an algebraic object, the Jacobian matrix
will be a reasonable choice since an element of the
Jacobian matrix corresponds to an interaction. Because
an element of the Jacobian matrix cannot be obtained
directly from first-order ODEs, we differentiated the
first-order ODEs with respect to time to generate
second-order ODE systems (step 3 in Fig. 1). Thus, this
system can be represented by the matrix product of the
Jacobian matrix and first-order ODEs. Here, the Jacobian
matrix is defined as aij = ∂fi/∂xj, where i and j denote the
row and column indices of the Jacobian matrix, respect-
ively. A non-zero value of aijmeans that variable xj influ-
ences the evolution of variable xi; in other words, an
interaction from node j to node i exists [47].
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First-order ODEs were numerically integrated using
various initial conditions until they converged to a limit-
cycle oscillation. In order to confirm that second-order
ODEs are good approximations to first-order ODEs, we
simulated second-order ODEs and first-order ODEs
using a point in a limit-cycle oscillation as an initial
point. The results showed almost no differences (see
Additional file 1: Table S2 for the mean differences
between the two simulations).

Perturbation conditions
Because the aim of this study is to investigate the differ-
ence in the regulatory patterns of the frequency and
amplitude between network structures, the following
perturbation conditions for each parameter-value-
assigned model were set so that the regulatory patterns
should not be influenced by perturbation conditions: the
type of interaction to be perturbed; the perturbation
strength; the perturbation duration; and the perturbation
starting point.
Every type of interaction was perturbed one by one

since the function of an interaction may not be distin-
guishable if more than two interactions were perturbed
simultaneously. The strength of the perturbations was
weakened by 1%, 2%, 4%, and 8%, which correspond to
weakening factors of 0.99, 0.98, 0.96, and 0.92, respect-
ively. These weakening degrees were selected because
weakening perturbations by more than 8% often destabi-
lized the limit cycle oscillation.
After determining the type of interactions and weaken-

ing factors, we multiplied a weakening factor by the cor-
responding element of the Jacobian matrix to construct
the Jacobian matrix of the perturbation. For instance,
when we perturbed Lyx with a weakening factor of 0.99,
we multiplied 0.99 to the element at the second row and
first column of the Jacobian matrix leaving all other
remaining elements the same.
The perturbations were performed during one

period of oscillation since the results could vary
according to the oscillatory phases. We established 40
starting points of perturbations which were evenly
distributed along the time cycle to prevent the trajec-
tories from being influenced by the positions where
the perturbations began.

Perturbation processes
A first-order ODE was numerically integrated using vari-
ous initial conditions until it reached a starting point of
perturbation. We simulated a second-order ODE using
the perturbed Jacobian matrix during one period of
oscillation. After that, the second-order ODE was
integrated using the unperturbed Jacobian matrix until
the oscillation was stabilized.

Representation of perturbation results
We measured the frequency and amplitude when the os-
cillation was stabilized after completion of a perturb-
ation while excluding the case of damped oscillations.
The percentages of the parameter sets out of total par-
ameter sets for 3-node oscillators that did not show sus-
tained limit-cycle oscillations are provided in Additional
file 1: Table S4. The change in the frequency and ampli-
tude is presented as a ratio to the frequency and ampli-
tude of the oscillation before the perturbation. For
instance, the ratio (2, 0.5) means that the frequency
doubled and the amplitude halved.
The perturbations of a three-node oscillator model

generated around 1000,000 results. To make the results
more intuitive and easily understood, we depicted them
in density plots. We divided the whole frequency-
amplitude domain into 10,000 equal-sized sub-domains,
and calculated the number of results that belong to each
sub-domain and the percentage that it occupies in the
total number of results, and then converted the calcu-
lated percentage into density and each color-coded sub-
domain according to its density; in the plots, the density
is increasing over a continuum starting from white
followed by yellow, red and black.

Mathematically controlled comparisons
To determine the parameter sets for the activator-
amplified NFO variant, the inhibitor-amplified NFO
variant, and the type 1 incoherently-amplified NFO vari-
ant, we adopted a method for mathematically controlled
comparisons proposed by Michael A. Savageau [14].
First, the values of the parameters for the unaltered pro-
cesses of one system are assumed to be identical with
those of the corresponding parameters of the other
system. For instance, in the activator-amplified NFO
variant, degradation of X, synthesis of Y, degradation of
Y, synthesis of Z, and degradation of Z are unaltered
processes in comparison to the simple NFO. So, parame-
ters for those processes (kdx, k1, k2, Km, and k3) in the
activator-amplified NFO variant are equal to the corre-
sponding parameters of the simple NFO. Second, param-
eters associated with altered processes are free to
assume any values. In the activator-amplified NFO vari-
ant, parameters related with the synthesis of X are
assumed to have any values. Third, the parameters of
the altered processes are determined by imposing
constraints on the external behavior of the system. For
the above three oscillation models, the following two
constraints were imposed to determine the free parame-
ters: (i) integration of the ODE models with the specified
parameter sets have to be able to generate a limit-cycle
oscillation; (ii) the frequency and amplitude of the oscil-
lation have to be similar to those of the simple NFO.
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After determination of the parameters, perturbations
were performed in the same manner as in the concep-
tual three-node models. Then, the changes in the
frequency and amplitude in the four oscillator models
(the simple NFO, the activator-amplified NFO variant,
the inhibitor-amplified NFO variant, and the type 1
incoherently-amplified NFO variant) were compared.

Additional file

Additional file 1: Details on methods and results of the interaction
perturbation analysis for comprehensive assessment of the regulatory
principle underlying various biochemical oscillators. (PDF 3894 kb)
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