
RESEARCH Open Access

Reconstructing evolutionary trees in
parallel for massive sequences
Quan Zou1,2,3, Shixiang Wan1, Xiangxiang Zeng4* and Zhanshan Sam Ma3*

From IEEE BIBM International Conference on Bioinformatics & Biomedicine (BIBM) 2016
Shenzhen, China. 15-18 December 2016

Abstract

Background: Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial.
However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is
also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for
the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and
evolutionary reconstruction in parallel.

Results: HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the
>1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for
reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help
on population evolution research and metagenomics analysis.

Conclusions: In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction
software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel.
Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with
source codes via http://lab.malab.cn/soft/HPtree/.
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Background
The reconstruction of evolution trees and alignments for
large data are still open challenges for bioinformatics re-
searchers [1, 2]. The third generation sequencing tech-
niques promoted massive metagenome sequences, which
call for OTU clustering and taxonomic labelling [3].
Besides deep understanding on the genes, population,
species evolutionary relationships, evolutionary tree
reconstruction also benefits for the metagenome and
microbial genomics research.
Evolutionary tree reconstruction could be divided into

three different situations. The first one is different spe-
cies genomes evolutionary relationship reconstruction,
which considers the influence from horizontal gene

transfer [4, 5], incomplete lineage sorting [6, 7], gene or-
ders with insertions and deletions [8], and rearrange-
ment [9]. The second situation considers different
homologous genes [10], where the maximum likelihood
method is usually chosen for their perfect mathematical
explanation [11]. Some researchers considered that net-
works could represent the evolutionary process better
than trees [12]. The third one is to analyze the evolu-
tionary relationships among the individuals in a popula-
tion. In this case, massive similar sequences should be
handled, and computer memory limitation often
becomes the bottleneck.
Multiple sequence alignment is necessary for evolu-

tionary tree software tools, including MEGA [13],
MAFFT [14], SATe-II [15], IQ-TREE [16], iGTP [17],
FastTree [18], and phangorn [19]. Most multiple se-
quence alignment tools cannot deal with massive se-
quences (eg. >10,000 sequences). Therefore, evolutionary
tree reconstruction independent of multiple sequence
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alignment was developed [20], which is called the next-
generation phylogenomics [21]. The divide-and-conquer
algorithm [22] and distance model [23] have been
employed, and the sequence distance was be computed
according to different types of kmers [24, 25], word fre-
quencies [26] or average common substrings [27]. They
can avoid the time cost from pairwise sequence align-
ment. However, the performance would be decreased
[28]. Due to the lack of evolutionary reconstruction
tools together with multiple sequence alignment for
massive unaligned sequences, it is essential and ne-
cessary to solve this problem with latest parallel com-
putation techniques.
Some parallel techniques were tested for evolutionary

tree, including multi-cores [29, 30], MPI [31–33], grid
computing [34], GPU [35, 36], etc. However, there are
no related references on the Hadoop and Spark plat-
form. Hadoop has been utilized in multiple sequence
alignment for handling large scale data in our previous
work [37]. Here we build the evolutionary tree for
massive unaligned DNA sequences with Hadoop and
Spark framework.

Results
Data
TreeBase [38] was selected as the golden benchmark in
most of the current evolutioanry reconstruction software
tools. But the data from TreeBase are rather small. We
try to solve the massive sequences problem, so TreeBase
is not suitable in this work. Since there is no large scale
benchmark datasets, we only selected running time as
the performance measurement.
Human mitochondrial genomes [39] and 16S rRNAs

[40] were employed for testing in our work. There are
672 human mitochondrial genomes in the human mito-
chondrial genomes dataset. In order to test the “big

data” performance, the data were duplicated 20, 50, and
100 times separately. In these datasets, sequences were
similar. We also tested the performance in the 16S
rRNAs datasets, in which sequences have low similarity.
There are two differnt files. The first file is 156 MB,
while the second is 1.4 GB. All the datasets seemed
more bigger than TreeBase.

Comparison with the state-of-the-art software tools
We have tried our datasets with MEGA [13], MAFFT
[14], SATe-II [15], RAxML [33], STELLS [41], MrBayes
[30], Beagle [42], Beast [43], and PLL [31]. However,
most of them cannot even handle the smallest dataset.
So we only compare the performance with RAxML,
Phangorn, STELLS and IQ-Tree [16]. All these three
software tools need the aligned files as the input. So we
firstly emloyed HAlign [44] for multiple sequence align-
ment before the evolutionary trees reconstruction.
The running time was compared and showed in Fig. 1.

The initial human mitochondrial genomes dataset is
about 10 MB. After the duplicating, the 100× file is more
than 1 GB. Since other tools can only work on single
node, all the software tools were testing in one computer
instead of the cluster. In Fig. 1, it seemed that HPTree
outperform other tools even on a single node. Phangorn,
RAxML and STELLS could handle the 1× file but can-
not deal with the larger files.
For the massive high-similarity DNA sequences,

HPTree can build the evolutionary tree for over 1 GB
file in several minutes. Then we tested the performance
with low-similarity sequences. In our testing experi-
ments, only HPTree could handle the two 16S rRNA
datasets. The consuming time was shown in Fig. 2. For
the low-similarity datasets, HPTree still works for the
more than 1GB files.

Fig. 1 The running time on mt genome datasets with different numbers of Hadoop nodes. Running time of different software tools on
mtDNA datasets
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Speed up of the parallel mechanism
Single node performance of HPTree was shown in Figs. 1
and 2. Here we employed Hadoop on 2–4 nodes, and
showed the performance of HPTree in clusters. Table 1
showed the running time of different nodes comparison.
The parallel efficiency and the speed-up ratio of HPTree
with Hadoop and Spark can be viewed from Table 1.
The multi-codes cluster would accelerate and benefit for
the massive big files. Besides, we can see that Spark plat-
form has a better average performance than native
Hadoop, which owes to the memory computing technol-
ogy in Spark. For Hadoop MapReduce operator, all inter-
mediate data will be saved in hard disk for disaster
recovery, which is suitable for massive data processing
but reduces the efficiency of programs. For Spark plat-
form, intermediate data will be saved in memory as
much as possible for reiterative computing, and the rest
of intermediate data will be saved in hard disk [45].
Hence, our experiment result shows that Spark acceler-
ate HPTree more remarkably than Hadoop.

Performance on the unaligned sequences
We have employed Halign for multiple sequence align-
ment as preprocess in the above testing. The most im-
portant point of HPTree is the ability of handling
unaligned sequences, which is the key advantage beyond

other evolutionary reconstruction tools. Multiple se-
quence alignment for massive sequences is also challen-
ging and time/space consuming. HPTree also deals with
this problem in parallel.
Tables 2 and 3 shows the running time of aligned and un-

aligned data on Hadoop and Spark platform, respectively.
Our bigdata sets, including human mitochondrial genomes
and 16S rRNAs, were both tested. Because no other soft-
ware tool could deal with the unaligned sequences, we just
show the expresiment results of HPTree. Tables 2 and 3
showed several interesting results. We conclude that
HPTree runs observably faster on Spark platform than on
Hadoop platform. As the sequence number grows larger,
the multiple sequence alignment would occupy littler in the
total running time. In the 1× and 20× datasets, running
time increased sharply for the unaligned sequences. But in
the 50×, 100× and 16 s rRNA datasets, which contain more
than 10, 000 sequences, multiple sequence alignment
would not influence the time performance sharply. Neigh-
bour joining occupied most of the running time. It suggests
that multiple sequence alignment is not the only problem
for massive sequences, but the tree topology and branch
distance computation is also the key challenge.

Comparison with HPTree on Hadoop and spark
Hadoop and Spark are popular distributed computing
frameworks. Fault-tolerant for the former relied on
HDFS system based on backups on hard disk. Such a

Fig. 2 The running time on mt genome datasets with different numbers of Spark nodes. Running time with HPTree on 16S rRNA datasets

Table 1 The running time of differen nodes comparison on
human mitochondrial genomes dataset (Unit: seconds)

1× 20× 50× 100×

4-nodes(Hadoop) 72 198 988 2657

3-nodes(Hadoop) 110 324 1631 3487

2-nodes(Hadoop) 157 494 2235 5384

4-nodes(Spark) 27 65 423 1095

3-nodes(Spark) 35 96 765 1770

2-nodes(Spark) 67 189 1232 2586

Table 2 The running time of human mitochondrial genomes
datasets between aligned and unaligned sequences (Unit: seconds)

1× 20× 50× 100×

Unaligned(Hadoop) 213 851 1722 4365

Aligned(Hadoop) 72 198 868 2657

Unaligned(Spark) 56 238 846 1720

Aligned(Spark) 27 65 423 1095
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design is suitable for ultra-large dataset (larger than TB
class) because memory is not able to load such ultra-
large dataset. Facts proved that Hadoop framework has
achieved great success on the distributed computing
field based on MapReduce programming model. Fault-
tolerant for Spark relied on RDD data structure based
on backups on memory and hard disk. From the above
experiment result, efficient reiterative computing on
HPTree for Spark runs faster than HPTree on Hadoop.
However, Spark is closely associated with Hadoop, and
HDFS system would not be replaced. Ultra-large dataset
need to be persisted on Hadoop HDFS system based on
hard disk and need to be efficient computed on Spark
MapReduce framework. Our experiments show that
Spark and HDFS system can cope with ultra-large mul-
tiple sequence alignment and evolutionary analysis issue.

Discussion
Evolutionary tree reconstruction for massive unaligned se-
quences is still an open challenge. In this paper, we
employed the Hadoop and Spark platform for the massive
DNA sequences evolutionary relationship analysis in par-
allel. In order to decrease the running time, the
neighbour-joining model is chosen for the tree building.
Different from the common neighbour-joining algorithm,
sequence clustering is done first and multiple sequence
alignment and sub-evolutionary tree construction are
excuted in parallel on each node. The final tree is built
combining the subtree results. HPTree could handle the
unaligned massive sequences, while the state-of-arts tools
cannot. In the more than 1 GB files experiments, HPTree
works well on both high and low similarity sequences.
In this work, edit distance is chosed to measure the

evolutionary distance because of simplicity and speed.
Indeed, more complex evolutionary distance models
should be considered, which is the future work. A smar-
ter data structure on edit distance [46, 47] would facili-
tate the acceleration of parallel computing, which is also
an opportunity for future work and improvement.
RNA is viewed similarly to DNA in this work. The

RNA secondary structure information [48–51] is not
considered in the alignment or involved in the evolu-
tionary tree built by HPTree. RNA clustering or evolu-
tionary analysis always requires secondary structure or
base pair-matching information, such as microRNA

family annotation in the miRBase [52] and RFam data-
base [53, 54]. Therefore, a Hidden Markov Model is al-
ways employed in the alignment and distance computing
process, but it is rather time consuming and unsuitable
for ultra-large data.
Moreover, evolutionary networks are superior to trees

for large-scale and complex evolutionary analysis. Our
parallel strategy also suits network reconstruction. How-
ever, this approach is somewhat complicated and will be
undertaken in the future.

Methods
Although MapReduce frame was employed in HPTree
similar to multiple sequence alignment, the core tech-
niques were totally different from HAlign. The main
core problem is the subtree partition, which involved the
load balancing in each node in the next step. Here we
also employed MapReduce to clustering the massive se-
quences firstly. If some clusters are more bigger or
smaller than others, we will split the big clusters and
combine the small ones. Related techniques were intro-
duced in our previous work [55, 56].
After clustering, we chose neighbour-joining (NJ)

model for the subtree construction. Comparing with
maximum parsimony and maximum likelihood models,
neighbour-joining is fast and least time/space consum-
ing. Maximum parsimony and maximum likelihood
models are both complex and not suitable for the
MapReduce frame.
The major advantage of HPTree is the ability for un-

aligned sequences. We employed Hadoop and Spark for
the multiple sequence alignment in the preprocess. Then
we introduced the detailed process respectively.

Multiple sequence alignment with Hadoop
We aimed at the ultra-large scale data. So in every step
we selected the simplest model and method. Here center
star multiple sequence alignment algorithm was chosen
instead of tree based alignment algorithm. In center star
algorithm, “centre sequence” is chosen as a standard
one, and every other sequence would be aligned with the
“centre sequence” pairwisely. After the pairwise align-
ments, all the spaces inserted to the “centre sequence”
would be summed up, and the other sequences will be
supplied the corresponding spaces. Finally, all the se-
quences will have the same length. This is the whole
process of the center star multiple sequence alignment.
We employ Hadoop to accelerate this process in paral-

lel. So all the sequences would be divided into several
parts. In order to save time, we randomly selected a
sequence as the “centre sequence”.
It is known that the entries in Map Reduce are

recorded using the (key, value) format. We use key to
denote the sequence name and value for the DNA

Table 3 The running time of 16S rRNA datasets between
aligned and unaligned sequences (Unit: seconds)

Small Big

Unaligned(Hadoop) 15,736 106,400

Aligned(Hadoop) 12,464 86,400

Unaligned(Spark) 4739 35,869

Aligned(Spark) 3159 30,012
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sequence. Before the parallel computing, we pre-process
the input sequences and delete the illegal characters and
strange sequences. Then, all the input sequences are for-
matted as (key, value) pairs for Hadoop. As all the se-
quences are similar, the first sequence is selected as the
centre sequence.
In the first stage of the Map function, the data file is

divided automatically into several split files of size
64 MB or less. These split files are sent to different data
nodes and aligned to the centre sequence in parallel.
After the alignment, the centre sequence and the se-
quence in the split file are updated with inserted spaces.
They are still recorded using the (key, value) format,
where the key is the sequence name and the value is the
updated two aligned sequences. Then, the output (key,
value) pairs enter the Reduce stage.
In the first stage of the Reduce function, data are not

processed and are output to the HDFS file system dir-
ectly. The data are then collected from the HDFS file
system to a local computer, and the aligned centre se-
quences are extracted and gathered. For the n aligned
centre sequences, we count the maximum spaces be-
tween every two neighbouring characters. The maximum
spaces are retained for the Final Centre Sequence.
The second Map-Reduce phase is similar to the first

stage. All the aligned sequences in the first stage are
aligned again to the Final Centre Sequence. As the Final
Centre Sequence has the maximum spaces between all
characters, there will be no spaces inserted into the Final
Centre Sequence. Thus, all the other sequences will be
aligned to the same length with the Final Centre Se-
quence, producing the final alignment result. Indeed, the
original centre star method records the inserted space
positions for the Final Centre Sequence instead of the
second alignment. However, when handling massive
data, the distributed storage of the records is a problem.
As the DNA sequences are similar, the k-band alignment
is linearly time consuming. Thus, the second Map-
Reduce alignment is employed.

Multiple sequence alignment with spark
Hadoop mainly contains Hadoop Distributed File System
(HDFS) for distributed storage and MapReduce pro-
gramming model for big datasets. HDFS stores data on
inexpensive machines, providing dependable fault-
tolerant mechanism and high-aggregate bandwidth
across clusters. Spark aims to blueprint a program-
ming model that extends applications of MapReduce
model and achieves high computational efficiency-
based memory cache.
Spark designs an abstract data structure named resili-

ent distributed datasets (RDDs) to support efficient com-
puting and to ensure distribution of datasets on cluster
machines. RDDs staying in memory cache will visibly re-
duce load time when requiring replication, especially in
iterative operations. From Fig. 3, to further reduce time
and cost, two types of operations in RDDs are designed:
transforms and actions. Transforms only deliver com-
puting graphs, which only describe how to compute and
not how to carry out computing operations, such as
map and filter operation. Actions carry out comput-
ing, such as reduce and collect operations, results of
which are stored as new RDDs. Based on these opera-
tions, RDDs are efficiently executed in parallel. To
ensure dependable fault tolerance, RDDs will be
recomputed after data loss, for example, because of
halting of individual machines. Based on RDDs, Spark
can implement up to 100 times theoretical speed than
Hadoop in real-world datasets.
As mentioned before, based on parallel computing, we

first cluster all MSA results into several clusters. Then,
we calculate individual phylogenetic tree based on indi-
vidual clusters. Last, all phylogenetic trees are merged
on clusters into the final evolution tree. The approach
comprises two key steps: initial clustering and MSA.
MSA methods are determined by trie trees algorithm for
similar nucleotide sequences. Then, we highlight the ini-
tial clustering procedure. Approximately 10% of all
sequences are selected by random sampling for initial

Fig. 3 MSA procedures based on Spark distributed framework
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clustering. Then, functional distance of each pairwise se-
quence is calculated, clustered, and labeled until all se-
quences are identified. When few clusters whose
number of elements is over 10%, then they are merged
into other clusters; otherwise, they are divided into more
balanced clusters until balanced construction. The entire
procedure is designed for Spark parallel model.

Implementation
HPTree is licensed under the GPL license and is imple-
mented using Java, which can work on multiple operation
systems. Hadoop 2.0 and Spark 2.0 are required for the
parallel tool. We have constructed the web site http://lab.-
malab.cn/soft/HPtree/ for sharing the data, codes and
software tools. A friendly web server is also developed.
Users with just internet browser could draw the evolution-
ary trees by uploading their zipped fasta files.

Conclusions
In this paper, we accelerate the evolutionary tree recon-
struction with Hadoop and Spark. The ability of handling
big data is also improved, especially unaligned sequences
would be dealt with. Besides evolutionary analysis, the tree
would also benefit for several other applications, such as
DNA/protein sequence representation [57].
It can be anticipated that the proposed computational

pipeline will have many potential applications. The multiple
sequence alignment is one of the key techniques in bio-
logical sequence analysis. The proposed methods are able
to efficiently reduce the computational cost, and therefore,
they would be applied to protein, RNA, and DNA sequence
analysis [58]. Recently, some algorithms have been pro-
posed to extraction the evolutionary information from mul-
tiple sequence alignments, such as Pse-Analysis [59], and
pseudo proteins [60]. Future studies will focus on extracting
features from the evolutionary information.
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