
Smith et al. BMC Systems Biology (2017) 11:118
DOI 10.1186/s12918-017-0499-9

METHODOLOGY ARTICLE Open Access

Designing synthetic networks in silico: a
generalised evolutionary algorithm approach
Robert W. Smith1,2† , Bob van Sluijs1† and Christian Fleck1*

Abstract

Background: Evolution has led to the development of biological networks that are shaped by environmental signals.
Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems
& Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction
rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary
algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple
defined objectives (phenotypes).

Results: The key step to our approach is to translate a schema/binary-based description of biological networks into
systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic
information about an evolved networks functionality. Initially we benchmark algorithm performance by finding
optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on
oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for
robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and
feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and
build on previous observations but we also provide new designs of synthetic oscillators for experimental construction.

Conclusions: In this work we have presented and tested an evolutionary algorithm that can design a biological
network to produce desired output. Given that previous designs of synthetic networks have been limited to
subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic
Biologists to construct new systems with the potential to display a wider range of complex responses.

Keywords: Evolutionary algorithm, Synthetic biology, Network design

Background
Through the efforts of Systems and Synthetic Biologists,
we have come to understand that responses of large,
complex biological networks are mediated by a series of
smaller, interconnected modules or motifs [1, 2]. In com-
bination with synthetic implementation of these network
motifs, mathematical modelling has aided the design and
exploration of system properties [3–5]. A classic example
of the ‘forward engineering’ approach is the Repressi-
lator [3]. Elowitz & Leibler constructed the Repressila-
tor motif in E. coli and, using a mathematical model,

*Correspondence: christian.fleck@wur.nl
†Equal contributors
1Laboratory of Systems & Synthetic Biology, Wageningen UR, PO Box 8033,
6700EJ Wageningen, The Netherlands
Full list of author information is available at the end of the article

found that tuning the promoter strength and the pro-
tein lifetimes within their plasmid constructs enhanced
the likelihood of obtaining oscillations [3]. These initial
findings were extended by Tsai et al. who mathematically
analysed different Represillator-based network structures
and parameter sets, finding that strong auto-regulation
of a single Repressilator component enhances the robust-
ness of oscillations [6]. More recently, Potvin-Trottier et
al. have improved the performance of the Repressilator
experimentally by reducing the effects of noise on the
system [7]. Similar work has been performed with tog-
gle switches and feed-forward loops, providing us with
a range of modular networks that can reliably produce
different responses [4, 5].

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0499-9&domain=pdf
http://orcid.org/0000-0001-9657-7477
mailto: christian.fleck@wur.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Smith et al. BMC Systems Biology (2017) 11:118 Page 2 of 19

Whilst the forward engineering approach has proven
highly successful, the opposite challenge (‘reverse engi-
neering’ a network design from a known desired response)
is also of importance. Notably this would allow one to
obtain novel network designs that may possess complex
functionality. In terms of network design, there are two
levels that need to be explored [8, 9]. The first level
to be explored is the ‘network space’ where all possible
network topologies exist. One method commonly used
to optimise the topology of promoter circuits is Mixed
Integer Non-Linear Programming, a minimisation opti-
misation routine where parameters can be altered within
certain ranges [10–12]. This method has been extended
to optimise networks for multiple objectives, resulting in
a Pareto front that allows one to observe the trade-offs
between different system constraints [10]. The second
level is the ‘parameter space’ that contains the reaction
rates for a given network topology. Importantly for syn-
thetic network design, recent focus has been to find
parameter sets that are robust to stochastic fluctuations
thereby increasing the likelihood of successful experimen-
tal implementation [7, 13–15]. However, efficient means
of executing and solving the reverse engineering problem
have yet to be developed in a generalised manner for the
synthetic biology community.
A family of techniques that are currently garnering

attention for network design are Evolutionary Algorithms
(EAs; for reviews see [16, 17]). These methods, in princi-
ple, have three advantages over conventional optimisation
techniques for synthetic network design:

1. The ‘design space’ — consisting of both the network
and parameter spaces — is efficiently explored to
find the systems that are able to generate a desired
phenotype.

2. One can track the effects of random system
perturbations over the course of cellular evolution,
much in the same way as observed during laboratory
evolution experiments.

3. From the resulting evolutionary trajectories, one may
be able to understand how simple motifs have
naturally evolved into the much larger and complex
networks we observe today in biological systems.

Note that the ‘design space’ is highly multi-dimensional
and unbounded implying that a number of different sys-
tems can be found that yield the same phenotype. Thus,
through the use of EAs, one is left with a number of locally
optimal networks to test and validate experimentally.
A review of different EAs has shown that they are able
to find optimal networks from synthetic datasets [18].
The principles of EAs are in accordance with steps seen
in evolution: starting from an initial population, the
fitness of the individuals is assessed against some criteria,

reproduction (either sexual or asexual) takes place to
produce offspring networks that then undergo random
mutations before a subsection of the individuals in the
population are removed, undergoing the same cycle until
some termination criteria are met [19]. Furthermore,
these optimisation routines can be extended to incorpo-
rate multiple objectives whereby the resulting population
of optimal individuals lies on the Pareto front. Along the
Pareto front lies the set of ‘non-dominated’ solutions,
i.e. a solution cannot become improved for one perfor-
mance criterium without becoming weaker in another
[19, 20]. Thus, the Pareto front provides us with a suite
of functionally unique systems that can be constructed
experimentally with different properties.

Small modular networks, such as the Repressilator and
feed-forward loops, have proved to be good test-cases for
EAs [3, 4]. Francois & Hakim analysed the evolution of
bi-stable switches and oscillating motifs using ordinary
differential equations (ODEs) and asexual reproduction
of networks [21]. They observed that post-translational
reactions are important for the generation of oscillating
systems [21]. Using a different mathematical representa-
tion of reactions, Paladugu et al. also obtained a range
of small networks able to produce desired responses
whilst noting the computational difficulties of evolving
large networks using such amathematical framework [22].
Consequently, recent studies have concentrated on net-
works of limited size or of limited reactions to find motifs
that robustly produce oscillations or respond to inputs
[23–27]. Notably, it has been observed that robustness of
an oscillator is related to cooperativity between transcrip-
tion factors (as determined by Hill coefficients greater
than 1) rather than system complexity [26]. By increas-
ing the cooperativity between components the system
becomes more non-linear, which is an important design
feature for oscillating networks [28]. Futhermore, Rodrigo
et al. have tracked the evolution of small oscillating net-
works to propose how circadian clocks have adapted
through evolution [29]. Thus, EAs allow us to understand
a broad range of system dynamics and their occurrence in
nature.
To alleviate the computational load of searching

such a large ‘design space’, different methods of model
description have been considered. First, Feng et al. used
rule-based modelling whereby all the model information
is contained in schema (strings and matrices) to evolve
protein signalling networks [30, 31]. Second, Chang
et al. have translated the schema into formatted ODEs
to evolve synthetic oscillators of different size [32]. One
advantage of containing system information in schema is
that mutation and sexual reproduction (or crossover) of
model pairs can be performed easily [19]. Finally, none of
the above cases have taken into account multi-objective

Smith et al. BMC Systems Biology (2017) 11:118 Page 3 of 19

optimisation. Recently, Boada et al. have incorporated
multi-objective EA steps into their parameter optimisa-
tion for a type-1 incoherent feed-forward loop [4, 33].
The resulting Pareto front highlighted how to tune system
responses between different desired situations. Conse-
quently, understanding the trade-offs of certain system
properties is an important aspect of systems design.

In this work, we introduce a generalised EA to solve the
reverse engineering problem for synthetic biology. The
EA combines schema representation, which allows for
reproduction between networks, with a mathematically-
tractable framework that can obtain optimal networks of
any size for any desired response. This brings together
the ideas of Chang et al. and Feng et al. with those of
Francois & Hakim and Paladugu et al. [21, 22, 30, 32].
Using oscillatory systems and feed-forward loops (see
Supplementary Information) as test cases, we build on
and generalise previous observations to design oscillating
systems. Finally, we incorporate multiple objectives (as in
Boada et al.) within our network optimisation [33]. To the
best of our knowledge such multi-objective optimisation
of network topologies (not just reaction rates) has not yet
been utilised for biological systems.

Methods
Here, we shall describe how our EA is encoded and pro-
vide details as to the tests performed in this study. The
most important concept within the EA is to translate
binary strings/schema into reaction schemes for simula-
tion by ODEs. This allows the EA to assess and opti-
mise networks based on dynamic behaviours. In the
Additional file 1, interested readers can find extra details
about our EA implementation and possible extensions.
The Python scripts are available at https://gitlab.com/
wurssb/Evolutionary_Algorithm_Network_Design.

Network structure
Within our EA we describe biological networks at three
levels: i) at the node level whereby a binary string deter-
mines how a node within the network is regulated and
how it functions, ii) an adjacency matrix that shows how
the nodes are connected, and iii) a set of parameters that
determine the rate of each reaction. Ultimately, for a gen-
eral network containingM components andN irreversible
reactions (note that reversible reactions can be split into
two irreversible reactions), we look to construct a reaction
scheme

M∑

i=1
RijXi

kj−→
M∑

i=1
PijXi, (1)

where j ∈ [1,N]. Thus, R and P are N × M matrices
representing the number of reactants and products in a

reaction, respectively, and k is a vector ofN reaction rates.
This is a similar style to that used by [30, 32] and is dis-
cussed in [19]. Here, we shall give an overview of how a
network is constructed with examples.

Individual genes
Each node of the network represents a single gene.
By default, each gene contains the fundamental base
reactions required to transcribe DNA (no superscript),
translate mRNA (superscript m) into functional proteins
(superscript p) that can form dimers (superscript ∗). For
example the gene G in node X has the following reactions
by default

GX
k1−→GX + Gm

X (Transcription)

Gm
X

k2−→Gp
X (Translation)

Gp
X + Gp

X
k3�
k4

G∗
X (Dimerisation)

Gm
X

k5−→(mRNA Degradation)

Gp
X

k6−→(Protein Degradation)

G∗
X

k7−→(Dimer Degradation).

(2)

To determine how each of the reactions is regulated
by other components of the system and how the result-
ing protein regulates other components in the system,
a binary string relates pre-defined regulatory steps to
a nodes reaction scheme (Fig. 1). The binary string is
divided up into sections each representing a different
part of the genes regulation or function. For example, in
Fig. 1, the red sections refer to how a node is regulated by
other nodes, i.e. whether a transcription factor represses
or activates transcription (‘Interaction’), whether the gene
is constitutively expressed or not (‘Expression’), and how
the transcription factor binds to the promoter (‘Gate’).
The blue regions of Fig. 1 determine how the resulting
protein functions, i.e. the protein is a transcription factor
(‘Product’), or made of multiple subunits (‘Subunits’), or
forms higher level complexes (‘Binding’). These regions

Fig. 1 Schematic overview of binary strings describing node
regulation and function. Red section denotes the promoter sequence
that determines how the node is regulated by a transcription factor
(TF, Additional file 1: Table S1). Blue section denotes the function of
the resulting protein as determined by the reactions outlined in
Additional file 1: Tables S2-S5. Importantly, the order in which these
sections appears in the binary string is not important for the function
of the EA

https://gitlab.com/wurssb/Evolutionary_Algorithm_Network_Design
https://gitlab.com/wurssb/Evolutionary_Algorithm_Network_Design

Smith et al. BMC Systems Biology (2017) 11:118 Page 4 of 19

are ultimately important when one considers how nodes
interact on a network level.
Given the different regulatory and/or functional options

each gene can have, the EA takes the string sections from
the binary string and compares them to dictionaries that
have to be pre-defined at the start of the EA. For example,
in Fig. 1, the second subsection (‘Expression’) determines
whether the genes mRNA is regulated consitutively or
requires a TF via logic-gate regulation. This string is of
length 3 bits, thus there are 23 = 8 different possible
strings. These 8 strings are randomly divided over the two
possibilities based on probabilities defined by the user at
the start of each EA run, i.e.

Expression Probability Binarystrings
Constitutive 3/8 (0, 0, 0), (1, 0, 1), (0, 0, 1)
Regulated 5/8 (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)

.

Hence, as our example gene contains a (1, 1, 1) string
then we know the mRNA expression is regulated by
the transcription factor(s) of other nodes in the net-
work. In our EA implementation, transcription factors can
regulate mRNA production through three effective reg-
ulatory gates: competitive binding between monomeric
transcription factors, cofactor regulation whereby multi-
ple transcription factors are required for expression, or
competitive binding of protein complexes. In this final
scenario, complexes of activating (or inhibiting) transcrip-
tion factors compete for a single binding region of the
target promoter.
These dictionaries are maintained for the rest of the EA.

The same idea is applied for all regions of the gene binary
string and allows our EA to translate the evolving strings
into functional modules.

Network description
To determine how nodes within a network are connected,
we use adjacency matrices from graph theory [34]. A sin-
gle M × M matrix, A, contains all the information about
a network (Fig. 2). An element of A, Aij, is ‘1’ if a connec-
tion between node i and j exists, and is ‘0’ otherwise. Each
row, Ai∗, states that node i regulates other nodes in the

Fig. 2 Example illustrating the adjacency matrix for a network.
Schematic overview and the adjacency matrix for a given network.
Columns of the matrix represent how a node is regulated by other
components of the networks. Rows show how a given node
regulates other components in the network

system. Each column, A∗j, details how node j is regulated
by other nodes in the system. Thus, from the network of
Fig. 2, one can see that node 2 is regulated by nodes 1 and
3 (due to the 1’s in entriesA12 andA32) and goes on to reg-
ulate node 1 (due to the 1 in A21). As we shall see below,
this allows for the easy addition, deletion and mutation of
network connections during the EA. Note that the adja-
cency matrix contains no information about the nature of
the regulation between nodes.

Gene regulation
The EA maps the information contained in the binary
genes and the adjacency matrix to a user-defined reac-
tion library (Additional file 1: Figure S1). The reaction
library is a list of potential reactions that are sequentially
ordered to construct reaction schema (Additional file 1:
Tables S2-S6). Each of these reactions is given a unique
name (Additional file 1: Figure S2). Ultimately, the order-
ing of preferred reactions influences the resulting dynam-
ics of the system. To clarify this point more directly we
present a simple example.

Example #1: gene interactions
From the network of Fig. 2, we can see that gene 3
(G3) regulates gene 2 (G2). In our example the genes are
described by the following binary strings

G : [Interaction | Expression | Gate | Product | Subunit | Binding]

G2 : [101 | 111 | 111 | 10101 | 10101 | 10101]

G3 : [100 | 011 | 101 | 01110 | 10110 | 01101] .

(3)

These strings tell us that G2 is activated (assuming that
101 refers to transcriptional activation) by G3 complexes
(if 01101 refers to protein-protein binding taking place)
and goes on to form a monomeric protein that represses
G1 (assuming 10101 refers to a transcription factor func-
tion and 10101 leads to monomeric proteins). Here, we
will also assume that G3 regulates G2 in an uncompetitive
manner with G1 (see Fig. 2). Now we define the reaction
list at the start of the EA as

• Transcription
• Translation
• Protein-Protein Binding
• Gene Activation

(Note that the reaction list can be longer, but if the reac-
tion does not appear in the gene strings then it is ignored
— see Additional file 1.) Based on this list we see that
interaction of proteins is given precedence over its tran-
scriptional regulation activity. Consequently, we can write
down the following reaction scheme for the interaction
betweenG3 andG2 (ignoring degradation reactions) using
the gene strings defined above:

Smith et al. BMC Systems Biology (2017) 11:118 Page 5 of 19

G2 → G2 + Gm
2 (Transcription)

G3 → G3 + Gm
3 (Transcription)

Gm
2 → Gp

2 (Translation)

Gm
3 → Gp

3 (Translation)

Gp
3 + Gp

3 � G∗
3 (Dimerisation; given byGBinding

3 : [01101])

G∗
3 + G2 → G∗

3 + G2 + Gm
2 (Gene Activation;GProduct

3 : [10110] ,

GInteraction
2 : [101]).

(4)

Here, Gf
i : [x] implies that function f of gene Gi is found

by comparing string [x] to the reaction dictionaries dis-
cussed above — i.e. GBinding

3 : [01101] tells us that Gp
3

forms a protein complex as [01101] is found in the appro-
priate reaction dictionary. Now, let’s assume that the pre-
defined reaction list is altered such that ‘Gene Activation’
is given precedence over ‘Binding’. This would lead to a
different reaction scheme

G2 → G2 + Gm
2 (Transcription)

G3 → G3 + Gm
3 (Transcription)

Gm
2 → Gp

2 (Translation)
Gm
3 → Gp

3 (Translation)
Gp
3 + G2 → Gp

3 + G2 + Gm
2 (Gene Activation)

Gp
3 + Gp

3 � G∗
3 (Dimerisation) (5)

that, upon translation in ODEs (see below), would pro-
duce different dynamics to Eq. (4). Notably, in Eq. (5),
the dimer sequesters the transcription factor rather than
helping to produce the mRNA of G2.

Mathematical formulation of reaction networks
In order to simulate the biological network, the reac-
tion scheme developed above is translated into a system
of ODEs following general mass action (GMA) kinetics
[35, 36]. One can translate the reaction scheme of Eq. (1)
into a system ofM ODEs:

d �X
dt

= S · v(�X), (6)

where S = (P − R)T is the stoichiometry matrix of the
system and

vj(�X) = kj
M∏

i=1
XRij
i ,

is the flux vector as defined in [36]. The initial conditions
are given by �X0 and can be set in a user-defined manner.

Evolutionary algorithm
In the following, we shall discuss the concepts of the steps
taken during our EA. The schematic outline of the EA can
be seen in Fig. 3 and follows steps described in [16, 17, 19].
We endeavour to keep the descriptions as general as pos-
sible since many options are user-defined for specific
problems of interest.

Initialisation
To start the EA, an initial population of individual net-
works needs to be constructed. The user can define the
size of these initial networks or leave this to be randomly
chosen from a uniform distribution between the allowed
minimum and maximum network size. The maximum
network size, defined by the number of gene nodes in
the network, can be specified by the user. The initial set
of networks are then created randomly by constructing
adjacency matrices (with at least 1 connection between
nodes) and random schema describing each node. One
could also decide that all initial networks are the same
by prescribing specific adjacency matrices and node
schema.

Determining reaction rates
Parameter rates for each reaction within the network
can be predefined or are obtained from a user-defined
probability distribution P(kj). If the parameters of the
initial networks are known then the parameter can be
set to provide this value. In the mutation step of the
algorithm, parameter values can be re-selected from the
initial ‘global’ probability distribution, P(kj), or from a
user-defined local probability distribution that restricts
changes in reaction rates to a small region relative to the
original value. Additionally, one can define a subset of
parameters within the network that do not undergo muta-
tion or, in the event that a new node or connection is
created within the network, new parameters are selected
from P(kj).

Selection
Upon the generation of an initial population, the indi-
viduals are assessed for their fitness by calculating their
respective fitness scores �. Selection then takes place by
ranking the individuals based on these scores. Here we
examine three ranking methods [19]:

• Proportional : the probability of selection is related to
the relative fitness of the individual as compared to
all other individuals within the population. Thus, the
fittest networks are not always selected as parents.

• Semi-proportional : the fittest individual is selected as
one parent, and the second parent is selected using a
proportional method. This is set as the default option
in our EA, as shall be justified in the “Results” section.

Smith et al. BMC Systems Biology (2017) 11:118 Page 6 of 19

Fig. 3 Schematic overview of the evolutionary algorithm. An initial
population defined by user-selected inputs is generated. The
individuals are simulated and scored to determine their phenotypic
fitness. Based on their respective fitnesses, two individuals are
selected for recombination to produce offspring networks. These
child networks are then randomly mutated and scored for their
respective fitnesses. If the child is fitter than the parents then it is kept,
otherwise the child is rejected and a new offspring is created. These
steps are repeated until pre-defined termination criteria are met

• Elite: the two fittest individuals are selected for
recombination. The use of elitist methods has been
shown to increase the speed of convergence towards
an acceptable solution [19].

Given the selection of two individuals, these parental
networks go on to form child networks via recombina-
tion and mutation steps (if a child has a lower fitness
than the parental networks then this child is rejected and
replaced by a fitter child) that make up the next generation
of individuals. Thus, over the generations, the population
of networks is consistently increasing in fitness/match to
the desired response.

Recombination
Recombination between networks takes place by sharing
information contained within the adjacency matrices. The
recombination process is, essentially, a matrix transfor-
mation that combines the adjacency matrices of the two
parent networks (A0 of size m × m and A1 of size n × n
with n ≥ m) into a child adjacency matrix of size l × l
(m ≤ l ≤ n), i.e. Rm×m × R

n×n → R
l×l. The size of the

child adjacency matrix l is chosen from the distribution

P(l) = 2n−l

2n−m+1 − 1
, n ≥ l ≥ m. (7)

Given this distribution, the probability of creating a
large child network each generation is lower than the
probability of creating small or medium sized networks.
Next, a random binary vector, �w, of length l is generated

such that

wi =
{
p, p ∈ {0, 1} with P(p) = 1

2 , 1 ≤ i ≤ m
1, m < i ≤ l. (8)

From this vector we can define W = diag(�w) and �̄w =
diag(�̄w), where �̄w is the binary complement of �w. Further,
we define the matrices I0 and I1 to be l × m and n × l
matrices, respectively, that containm×m and l×l identity
matrices augmented with extra l −m and n− l zero rows.
Finally, we can construct the child adjacency matrix using:

A = W̄I0A0I�0 + WI�1 A1I1. (9)

Example #2: recombination
To show how recombination works, we provide a brief
example. The parent adjacency matrices are given by:

A0 =
[
0 1
1 0

]

A1 =
⎡

⎣
1 1 0
1 0 1
0 1 0

⎤

⎦ . (10)

The size of the resulting child matrix can then be either
l = 2 or l = 3 with P(l = 2) = 2/3 and P(l = 3) = 1/3.
Let’s assume the child matrix will be of size l = 3.We then
construct �̄w = (1, 0, 1) where w1 and w2 are randomly
drawn and w3 = 1 since l > m. In the case that l = 2, �w

Smith et al. BMC Systems Biology (2017) 11:118 Page 7 of 19

is of length 2 without the additional 1. Thus, �̄w = (0, 1, 0)
and

A = W̄I0A0I�0 + WI�1 A1I1

=
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦

⎡

⎣
1 0
0 1
0 0

⎤

⎦
[
0 1
1 0

] [
1 0 0
0 1 0

]

+
⎡

⎣
1 0 0
0 0 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 1 0
1 0 1
0 1 0

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

=
⎡

⎣
1 1 0
1 0 0
0 1 0

⎤

⎦ . (11)

Hence, the child matrix is highly reminiscent of A1 with
a missing connection between genes 2 and 3.

Mutation
After recombination, the generated child network is then
randomly mutated at both the network and parameter
level. The EA contains six potential network mutations
(Fig. 4): mutations of a genes function (flipping a bit in the
binary string), adding or deleting a gene (adding or delet-
ing a row/column from the adjacency matrix), adding or
deleting a connection between genes (flipping a bit in the

Fig. 4 Possible network mutations. aMutating the binary gene: The
binary schema of a gene can be mutated by changing a ‘0’ to a ‘1’ (or
vice versa) in the nodes string. b, c Adding or deleting nodes: Nodes
can be added or deleted by altering the number of columns and rows
in the adjacency matrix. New nodes are given random
functionality/binary strings. d, e Adding or deleting connections:
Connections within the network can be added or deleted by
changing ‘0’s and ‘1’s in the adjacency matrix. fMoving connections:
Connections can be moved in the network by swapping bits within
the adjacency matrix

adjacency matrix), and moving a connection (switching
values in the adjacency matrix). Each of these mutations
can take place with a given user-defined probability. Upon
the selection of a particular network property that is
mutated, the binary element of the gene string or adja-
cency matrix that is ultimately mutated is drawn from a
uniform distribution (Fig. 4).

Example #2 continued: mutation
Now we have a child matrix A, we need to determine
whether a network mutation takes place. Let’s say that
a connection will be lost and, in particular, the self-
regulation of gene 1. Thus

A =
⎡

⎣
1 1 0
1 0 0
0 1 0

⎤

⎦ −→
⎡

⎣
0 1 0
1 0 0
0 1 0

⎤

⎦ = A∗. (12)

Scoring functions
To evaluate the phenotypic fitness of the individual
networks within the EA, we need to compare sim-
ulations with a specific phenotype. In the main text
we shall discuss the cases of matching concentration
profiles, obtaining oscillations using both single- and
multi-objective criteria and how oscillating mechanisms
can be checked for robustness to internal fluctua-
tions. In the Supplementary Information we investigate
feed-forward loops. The scoring functions, �, for all
cases are discussed in detail in the Supplementary
Information.

In our EA, we are able to optimise networks both for sin-
gle and multiple objectives. In the case of single objective
optimisation, this implies that the characteristics of model
simulations and their comparison to the desired criteria
can be aggregated into a single value, � = ∑n

i=1 δi, where
δi are independently-calculated objective scores. In the
case of multiple objectives, the comparison between the
desired system function and simulations yields a vector of
objective scores, �� = {δ1, δ2, ..., δn}. So that two parents
can be selected for recombination, we need to reduce
this vector of scores to a single number for each network
that allows us to more easily compare the performance of
different systems. For this purpose, we use a ranking sys-
tem within our EA. Similar methods of multiple objective
scoring have been used previously in evolutionary algo-
rithms that are known to perform well and find results
that are optimal for multiple criteria (i.e. the Pareto
front) [19, 37].

How the networks are ranked can be determined by the
user. Here we will discuss two such methods. Given a set
of N objective scores for M networks, one can obtain a
matrix of scores �:

Smith et al. BMC Systems Biology (2017) 11:118 Page 8 of 19

� =

⎡

⎢⎢⎢⎣

δ1,1 δ2,1 . . . δN ,1
δ1,2 δ2,2 . . . δN ,2
...

...
...

...
δ1,M δ2,M . . . δN ,M

⎤

⎥⎥⎥⎦ . (13)

Taking the Ln-norm of each column in � yields the vec-
tor �� = (‖δ1∗‖, ‖δ2∗‖, . . . , ‖δN∗‖). By ranking these scores
(where 1 is the lowest score for an objective and M is the
highest score) one obtains �(��), where min(�(��)) is the
optimal network.
An alternative approach would be to calculate the rank

matrix � based on the scores in �:

� =

⎡

⎢⎢⎢⎣

ξ1,1 ξ2,1 . . . ξN ,1
ξ1,2 ξ2,2 . . . ξN ,2
...

...
...

...
ξ1,M ξ2,M . . . ξN ,M

⎤

⎥⎥⎥⎦ , (14)

with �� = (‖ξ1∗‖, ‖ξ2∗‖, ..., ‖ξN∗‖) representing the
Ln-norm of each column. The optimal network is then
obtained from min(��). Notably, these two methods result
in differing results — using �(��) leads to networks that
perform well in one of the N objectives being favoured
over those that are able to equally balance multiple objec-
tives, obtained from min(��).

Settings to obtain presented results
In the examples we present in the “Results” section, we use
the following options:

• The initial conditions for each component in each
network, �X0, are set to 0.01.

• Initial networks are either randomly generated or
fixed to specific network topologies (e.g. Repressilator
or feed-forward loop).

• Parameters are drawn globally from a uniform
distribution

kj ∼ U
(
kLj , kUj

)
, (15)

where kLj and kUj are the lower and upper bounds of
the parameter space set in Additional file 1: Table S7,
respectively, and;

• Local parameter mutations are found by randomly
selecting a new parameter value with 10% deviation
from the original value.

• The probability of specific network mutations are set
in Additional file 1: Table S8.

• The reaction library available to each network in the
EA is discussed in the Supplementary Information.

• Networks are ranked and selected using min(��)

using the L1-norm.
• In the tests for Fig. 6d and e, the following user-

defined parameters have been randomised: selection

method, optimisation objective (i.e. data from
Fig. 6a-c that model is compared with), maximum
number of genes allowed in each network, size of
network populations, number of allowed network &
parameter mutations, parameter mutation method
(global or local), probability of gene addition, deletion
or mutation, and probability of added, deleted or
mutated network connection. In each of the 1933
successful EA runs, each option for the user-defined
parameters (e.g. there are three types of selection
method possible: proportional, semi-proportional,
and elitist) had equal probability of being selected.

Termination
We have two termination criteria:

1. If the score of the fittest network has not changed for
250 generations, i.e. the optimisation has converged
to a solution, and;

2. The maximum number of generations (2500) has
been evaluated without convergence.

Whilst it is possible that the fittest network obtained
after 2500 generations is only suboptimal, studies have
shown that elitist EAs have the capability to find the global
optimum within a finite number of generations [38].

Programs and solvers
The algorithm is written in Python version 2.7 (Python
Software Foundation, www.python.org). Implementation
details can be found in the Additional file 1. The source
code is available at https://gitlab.com/wurssb. The GMA
models are simulated deterministically using ODEINT
from the Scipy package or stochastically using the Gille-
spie algorithm [39]. However, whilst we have provided
code to simulate systems using the Gillespie algorithm,
note that this greatly increases the computational time of
the EA.

Results
Benchmarking algorithm performance
Before applying our EA for the purposes of network
design, we wished to determine how algorithm perfor-
mance depends on the user-defined settings and scor-
ing functions. Subsequently, we performed two tests (see
Additional file 1). First, we calculated the duration of com-
putational time taken to simulate a generation of oscil-
lating networks of different sizes for 6000 time-points.
Second, we randomly selected algorithm parameters for
1933 successful EA runs (see “Methods” section). Based
on these results we could determine which algorithm set-
tings had the largest influence on the results and are
optimal for use.
As shown in Fig. 5, the computational time required

to simulate a single generation of 10 oscillating networks

Smith et al. BMC Systems Biology (2017) 11:118 Page 9 of 19

increases with network size. For networks containing
6 nodes, the population can be simulated in under 5 s,
whilst approximately 4 min is required for systems con-
sisting of 40 nodes (Fig. 5). This is in accordance with
previous observations that performance robustness of
gene networks — an important factor for synthetic sys-
tems— does not increase in larger networks that maintain
oscillations [27].
We next set the maximum network size to 10 and used

the semi-proportional ranking method to find optimal
networks compared to time-series data.We simulated 611
successful runs of the EA for 2500 generations in the cases
of parameter optimisation (with a fixed network, Fig. 6a),
parameter and node connection optimisation (a fixed net-
work size, Fig. 6b) and full network optimisation (Fig. 6c).
In Fig. 6a we compare the desired time-series simulation
of node ‘0’ in each network (blue line) with the result-
ing simulation from the fittest individual (red line). When
fixing the network structure and optimising for parame-
ters, our EA yielded simulations that show a close match
with the desired time-series for two of our objectives (left
and centre). We observed similar results when increas-
ing the search space to incorporate network connections
and network size (Fig. 6b and c). However, our algorithm
struggled to perfectly match more complex time-series
behaviour, such as damped oscillations. Upon increas-
ing the maximum number of generations to 40000 we
saw a notable improvement in fit (Fig. 6a—c, right, green
line). This suggests that the EA algorithm functions as we
desire and is able to find optimal networks given a desired
criteria to match within a finite number of generations.

Fig. 5 Simulation time of a single generation increases with network
size. We ran the EA 25 times for oscillating networks of different sizes
N (from 3 to 42 nodes). We recorded the average simulation time, T ,
for a single generation. Error bars represent standard deviation. By
calculating log10(T) = αlog10(N) + β we found α = 1.7-1.8 implying
that simulation time increases nearly quadratically with network size

We next wished to determine how the performance
of our EA (in terms of finding optimal networks) was
effected by the use of different EA settings. To make this
analysis as unbiased as possible on user-defined choices,
we randomly selected EA settings for each of the 1933
algorithm runs (see “Methods” section) and calculated the
convergence ratio of the final score compared to the initial
scores using

�C = �final
�initial

,

where �final and �initial are the scores � of the fittest
individual in the final and initial generations, respectively.
Thus, if the optimal score is much less than the ini-
tial network used in optimisation then the convergence
ratio will tend to zero, but if the optimisation process
does not converge then the ratio will be 1 or greater. By
correlating the convergence scores with the presence or
value of a particular algorithm property, we found that the
selection method (bar 11), had the largest influence on
algorithm performance (Fig. 6d). For example, the 25 EA
runs with the highest convergence scores (i.e. the optimi-
sation routine did not function as desired) all employed
the proportional selection method (Fig. 6e). Conversely,
the best performing 25 EA runs with the lowest conver-
gence ratio employed a mix of selection criteria with elite
selection being slightly favoured. Thus, the convergence
ratio is correlated with the presence of proportional selec-
tion criteria. Similarly, the rate of parameter mutation
(Fig. 6d, bar 10) and probability of adding network con-
nections (Fig. 1d, bar 9) also had a strong influence on
whether or not the EA converged to an optimal solution.

Parameter optimisation of Repressilators provides targets
for directed evolution studies
Using our EA, we next wished to investigate the design of
oscillating networks, starting from the synthetic Repres-
silator system as an example [3]. For details about the
scoring function used see the Additional file 1. First, we
performed parameter optimisation on the fixed Repres-
silator network with our EA (Fig. 7a). We ran our EA
successfully 1025 times, and divided the resulting param-
eter sets into those where stable and damped oscillations
could be observed (Fig. 7b). The presence of oscilla-
tions was checked manually by determining whether
maxima and minima in the time-series simulations were
present and then observing whether these are repeated
over the last 10 oscillatory periods of the time-series
— if the last 10 periods are identical then the system
exhibits stable oscillations, otherwise the system pro-
duces damped oscillations. To confirm that our EA can
find oscillating networks, we plotted time-series of our
optimal network compared to a suboptimal Repressilator
(Additional file 1: Figure S3). We found that 20% of the

Smith et al. BMC Systems Biology (2017) 11:118 Page 10 of 19

a

b

c

d e

Fig. 6 Assessing the influence of different algorithm settings on performance. a-c Optimal simulations (red lines: after 2500 generations; green lines:
after 40000 generations) are compared to the input time-series data (blue lines) for the three objective functions used. (A) Optimisation where
network size and connections are fixed. b Optimisation where connections between nodes is left free. c Optimisation where network size and
connections can be chosen freely. d Algorithm settings were randomly selected 1933 times and the convergence between initial and final scores
was recorded (see Additional file 1). The convergence score for each property was then averaged across all EA simulations and normalised to
property 11. Property 1 = ‘Probability of gene addition’; 2 = ‘Network mutation rate’; 3 = ‘Probability of moving a connection’; 4 = ‘Probability of
deleting a connection’; 5 = ‘Probability of gene mutation’; 6 = ‘Maximum number of offspring’; 7 = ‘Optimisation objective’; 8 = ‘Parameter mutation
method’; 9 = ‘Probability of adding a connection’; 10 = ‘Parameter mutation rate’; 11 = ‘Selection method’. e The best and worst performing 25 EA
runs were analysed to determine which selection method was used in the EA run

resulting parameters allowed the Repressilator to exhibit
stable oscillations (Fig. 7c).
To determine which parameters have the largest impact

on determining whether a system oscillates or not, we
plotted the objective score against individual parameter
values (Fig. 7d). This analysis allowed us to determine,

based on the steepness of the relationship between param-
eter value and score, which rates had the largest impact on
determining whether a system was more likely to oscillate
or not. The results highlight that binding rates between
the proteins within the Repressilator are an important
factor that determines the presence of oscillations. The

Smith et al. BMC Systems Biology (2017) 11:118 Page 11 of 19

ba

c d

e f

Fig. 7 Parameter optimisation of Repressilator systems. a Schematic of Repressilator system. b Evolution of the average optimal score across
generations. Red lines = systems that show limit cycle oscillations over 10 periods, blue lines = systems that show damped oscillations over 10
periods. c Percentage of EA runs that produced optimal networks with stable or damped oscillations. d Relationship between individual parameters
and the objective score (black lines). Selected lines represent the binding rates of Repressilator proteins (blue, dark blue and green lines). e Pairwise
correlation between system parameters and the objective score (see Additional file 1: Table S9). f The number of generations from 272 EA runs until
stable oscillations are found when either only the binding rates are evolved or all parameters are allowed to evolve

importance of post-translational protein cooperativity on
oscillating systems has been noted previously [21, 26].
Given the non-linear relationship between components
within the Repressilator system, it is likely that combina-
tions of parameters have a larger impact on oscillations
than singular parameter perturbations. Further evalua-
tion of the top 25 parameter sets showed that pairs of
parameters with highest correlation to the score were pro-
duction and degradation rates (Fig. 7e and Additional
file 1: Table S9). Thus, tuning production and degradation
would influence the presence of oscillations as has been

observed in the initial Repressilator design and optimisa-
tion studies since [3, 14, 32].
Based on our analysis one could envisage that specifi-

cally tuning the protein binding affinities would increase
the chance of observing oscillations. By only allowing
for the targeted mutation of interaction rates between
Repressilator components we determined the number of
generations required for the EA to find an oscillating
parameter set. As observed in Fig. 7f, the average num-
ber of generations from 272 successful EA runs required
to produce oscillating systems is 3.5 times lower when the

Smith et al. BMC Systems Biology (2017) 11:118 Page 12 of 19

binding rates are specifically targeted. One could, poten-
tially, test such a scenario experimentally using directed
evolution to select for systems with weak interaction
rates [40, 41].

Network optimisation improves objective scores for
oscillations
We next wished to look whether other networks can be
obtained with increased likelihood of oscillations. First,
we fixed the network size to 4 nodes and allowed for TFs in
the system to either have single (inhibition or activation)
or multiple regulatory functions (Fig. 8a). We found that
approximately 15% of the 250 evolved networks had stable

limit cycle oscillations from visual inspection (as above).
Notably, the likelihood of finding a limit cycle oscillation
did not depend on whether TFs had dual functions or not.
However, the phenotypic fitness score for systems con-
taining dual-functioning TFs was improved compared to
those where TFs function solely as inhibitors or activators
(Fig. 8b).
Interestingly, by removing constraints on network size

we obtained similar results with regards to the likelihood
of finding an oscillating system with both single- and
multi-functioning TFs (Fig. 8c). However, by comparing
how the percentage of oscillating networks depends on
network size, one can see that having TFs with multiple

a b

c d

Fig. 8 Network optimisation of oscillating systems. a Network size is fixed to 4 nodes but connections can be evolved and TF proteins can function
as either activators or inhibitors (blue bars) or both (red bars). The final networks are analysed to determine whether they possess limit cycle
oscillations. b The evolution of the average score across generations from 250 EA runs. Blue line represents evolution of networks with single
function TFs, red line represents networks with multi-function TFs. c Same as (a) except for full network evolution (network size is not fixed). d
Evolution is performed for post-translational oscillators and networks are analysed for the presence of limit cycle oscillations

Smith et al. BMC Systems Biology (2017) 11:118 Page 13 of 19

functions improves the likelihood of oscillations in larger
networks (Additional file 1: Figure S4). Consequently, the
likelihood of oscillations does not depend on network size,
but on the function of system components, as has been
suggested previously [26].
Finally, we looked at the likelihood of oscillating net-

works being generated by a post-translational network
(i.e. there is no gene regulation, Fig. 8d). A classic example
of a post-translational oscillator is the cyanobacterial
circadian clock that functions due to phosphorylation
cycles [42]. These results show that the probability of
finding stable or damped oscillations decreases compared
to transcriptional-translation systems. Thus, one could
speculate that transcription-translation networks produce
more robust oscillations compared to post-translational
oscillators, as has been observed previously [43].
One potential underlying cause for this is the increased
non-linearities and time-delays maintained within a
system that incorporates both transcriptional regulation
and post-translational processes rather than protein
interactions alone [26, 28].

Improving the robustness of oscillating networks
Using the oscillating networks obtained in Fig. 8c, we
checked the systems robustness to parameter perturba-
tions and whether oscillations still occur (see Additional
file 1). The networks were then ranked based on
the robustness of their system phenotypes (blue dots,
Fig. 9a). As in [27], we define robustness to be the
maintenance of system functionality in the face of
parameter perturbations. Thus, we calculate robustness
as the fraction of networks with parameter perturba-
tions that produce oscillations (see Additional file 1).
Interestingly, only ∼ 60 of the networks we obtained from
the EA showed the correct oscillatory behaviour for> 10%
of the tested parameter sets, whilst less than 20 networks
showed oscillations for 20% of the tested parameter per-
turbations (Fig. 9a). This suggests that a large number
of found networks are very sensitive to perturbations in
reaction rates.
To counter this, we wondered whether robustness

could be used as an objective for our EA. Due to
each parameter of each network needing to be per-
turbed, the computational time increases dramatically.
Thus, we limited our routine to 4 EA runs as a proof
of principle (red dots, Fig. 9a). The networks that were
evolved specifically for robustness showed an increase
in the fraction of perturbed networks that still main-
tained oscillatory behaviour. As a comparison of a
robust and sensitive oscillating network, we simulated
the most robust oscillator (Fig. 9b) and a sensitive net-
work both deterministically (Additional file 1: Figure
S5A) and stochastically using the Gillespie algorithm [39].
The power spectra of the robust network was similar

both when calculated from deterministic and stochas-
tic trajectories with a single dominant peak (Fig. 9c).
Notably, within this system, there is not a dominant set
of parameter pairs that determine oscillatory behaviour,
suggesting that the presence of oscillations may be more
likely caused by structural features (Additional file 1:
Figure S6). However, for a sensitive system, the domi-
nant peak seen in deterministic simulations is lost when
simulated stochastically (Fig. 9d). This is indicative of
internal fluctuations of the network obscuring the under-
lying low amplitude system dynamics (Additional file 1:
Figure S5B).

Multi-objective analysis provides a set of oscillators with
different properties
Whilst optimisation of networks towards a single objec-
tive is common in the literature, multi-objective optimi-
sation allows one to look at multiple system properties at
the same time [10, 20, 33]. We thus optimised oscillating
systems for three properties: high amplitude, higher fre-
quency and minimal width of the resulting power spectra
(see Additional file 1). Minimising the width of the power
spectra helps to ensure that the resulting oscillations are
not a complex combination of multiple sine functions.
The amplitude and frequency properties of the resulting
optimal networks are shown in Fig. 10a (blue dots). From
this, we see that oscillators generating rhythms of the
same frequency can have a range of different amplitudes
and vice versa. This suggests that amplitude and frequency
can be tuned independently of one another. Interestingly,
weighting the objectives to favour higher frequencies (that
was weighted twice asmuch as the other two scoring crite-
ria; red dots in Fig. 10a)marginally increased the chance of
obtaining higher frequency oscillators. To illustrate how
one can obtain a Pareto front from the multi-objective
optimisation, we draw the Pareto front of oscillating net-
works in Fig. 10a (black line). Along this line, the optimal
networks cannot obtain a higher amplitude without a
decrease in frequency or a higher frequency without a
smaller amplitude. Time-series concentration profiles of
the networks along the Pareto front are shown in Fig. 10b
and, as expected, each network has a unique period length
and amplitude.
In Fig. 10c—e, we highlight the network structures that

lie along the Pareto front (a Python script to simulate
these systems can be found in Additional file 2). Inter-
estingly, each of these designs are extensions of minimal
motifs that have been studied previously. First, the opti-
mal structure for high amplitude, short frequency oscil-
lations is a small extension to the Repressilator system
(Fig. 10c). Second, to generate an oscillation of medium
amplitude and frequency, a network consisting of cou-
pled positive and negative feedbacks is Pareto optimal
(Fig. 10d). This network has been studied previously in

Smith et al. BMC Systems Biology (2017) 11:118 Page 14 of 19

a

dc

b

Fig. 9 Evolving to obtain robust oscillating networks. a Networks obtained from EA runs are scored for robustness (see Additional file 1). Blue dots =
networks from Fig. 8c, red dots = networks obtained when robustness is included as an objective function. b Schematic of the network with highest
robustness score. c Comparison of power spectra obtained after (left) deterministic and (right) stochastic simulations of the network in (a). d Same
as (c) for the network with lowest robustness score. Power spectra are the average spectra from (c) 2000 and (d) 6500 stochastic simulations,
respectively

the context of bi-stable motifs to determine how feedback
strength can lead to systems switching between steady-
states [44]. Finally, in Fig. 10e, the Pareto optimal solution
for low amplitude and long frequency oscillations is, to the
best of our knowledge, a novel network design built upon
a negative feedback loop.

Feed-forward loops have distinct responses to pulsed
inputs
To highlight the utility and generality of our multi-
objective EA, we have also analysed the family of feed-
forward loops (FFLs; see Additional file 1) [4, 33].

Previous analysis had focussed on one specific member
of the FFL family (the type-1 incoherent FFL with AND-
gate logic). For this motif we obtained a similar Pareto
front to previous publications whereby the network motif
can be tuned to either respond maximally to input sig-
nals (sensitivity) or show the correct relaxation response
back to pre-input conditions (precision; Fig. 11a) [33].
This, again, confirms that our EA produces results that
are consistent with previous observations. Furthermore,
by weighting one objective to be twice as influential as the
other, we obtained solutions clustered at either end of the
Pareto front. Simulations of optimal time-series confirms

Smith et al. BMC Systems Biology (2017) 11:118 Page 15 of 19

a c

d

b

e

Fig. 10Multi-objective optimisation of oscillating networks for desired amplitudes and periods. a The obtained Pareto front of oscillating networks
that have optimal amplitude and period properties (black line). Blue dots = optimal systems obtained when objectives have equal weight. Red dots
= optimal systems when frequency objective is weighted to double that of other objectives. b Deterministic time-series simulations of all networks
that lie along the Pareto front. c-e Schematics of a network with (c) high amplitude, low frequency; (d) median amplitude and frequency, and;
(e) low amplitude, high frequency

the trade-off in feed-forward loop dynamics between sen-
sitive and precise responses (Fig. 11b).
We next asked whether the analysis can be expanded

to incorporate all FFLs by evolving parameters and net-
works connections, whereby different sets of connec-
tions (activation/inhibition) are related to different FFL
topologies [4]. Additionally, the types of external inputs
into the networks (continuous or pulsed) and the reg-
ulatory logic gates (AND- or OR-gate) were varied.
Interestingly, the results differ depending on the input sig-
nal into the system and the type of logic gate employed

within the network (Additional file 1: Figure 7). In the
case of continuous inputs, it is hard to observe a relation-
ship between FFL topology and functionality (Additional
file 1: Figure S7A, B). However, with pulsed inputs, differ-
ent FFL topologies are clustered around different regions
of the Pareto front, whereby coherent FFL 4 and incoher-
ent FFL 1 possess opposite relationships between system
sensitivity and precision (Additional file 1: Figure S7C, D).
By analysing this Pareto clustering effect for more motifs,
researchers can look to design families of networks with
highly specified or tunable functions.

Smith et al. BMC Systems Biology (2017) 11:118 Page 16 of 19

a b

Fig. 11 Pareto front for incoherent feed-forward loops as in [33]. a Pareto front obtained by weighting different scoring functions. Grey dots = both
objectives are equally weighted. Blue dots = sensitivity objective is weighted to double that of the precision objective. Red dots = precision
objective is weighted to double that of the sensitivity objective. b Simulations from Pareto optimal networks. Blue line is simulation of network
optimised for sensitivity to inputs. Red line is simulation from a network optimised for a precise return to pre-input concentration levels

Discussion
EA implementation expands on previous strategies
In this work we have presented a generalised multi-
objective network optimisation routine based on the
principles of EAs for the purpose of designing syn-
thetic systems (Fig. 2). By combining a schema descrip-
tion (Fig. 1) of model nodes with GMA kinetics (Eq 6),
the evolving networks and reaction rates can be simply
recombined (Fig. 3) and mutated (Fig. 4). The schema
structure that we have employed allows one to track
each generation of networks and the mutations that take
place. Thus, an evolutionary path of a network from
an initial design to a system with specific properties
can be found. Furthermore, our algorithm can be easily
adapted for further biological test cases through editing
of the dictionaries that encode and simulate the networks
(see Additional file 1). Importantly, our methodology is
one of the first to describe recombination of networks
using crossover/sexual reproduction, whereas many pre-
vious studies have employed asexual network recombina-
tion [21, 22, 30, 32]. This allows for a larger region of the
search space to be explored by increasing the variability
between individuals and across generations, as has been
discussed by evolutionary biologists [45].
With this in mind, we analysed the performance of the

algorithm given different settings and objective functions
(Fig. 6). We found that the choice of selection method
and objective function had the largest influence on the
EA?s ability to find optimal networks even when other
user-defined choices were randomly selected (Fig. 6d, e).
To assess the functionality of our EA, we initially showed
that our EA performs well as an optimisation routine and
is able to find parameter sets that generate desired time-
series dynamics in the test cases (Fig. 6a). Similar obser-
vations are made when we allow the optimisation process
to incorporate new network nodes and connections and

is likely due to the termination criteria used in this study
(Fig. 6b, c). These results show that our EA functions as
expected and that, given a target phenotype to match,
the EA finds a network and parameter set that is quan-
titatively similar to the input data. Thus, as well as being
used as an algorithm to design networks (see below), our
algorithm can be used to reverse engineer underlying net-
works given specific datasets. Researchers will, therefore,
be able to compare different models that yield the same
response and elucidate the key design principles within
these systems.

Designing oscillatory networks with desired properties
Oscillating biological networks have garnered a lot of
attention as researchers attempt to understand the impor-
tant principles behind their emergence and how simi-
lar systems can be constructed [3, 14, 21, 25–29, 32].
The underlying design principles of biological oscilla-
tions include having an appropriate number of system
components with non-linear interactions such that there
is a sufficient time delay in the network [28]. A classic
example of a synthetic tool that satisfies these criteria is
the Repressilator [3]. Initial explorations to optimise this
system focussed on tuning production and degradation
rates whilst, more recently, sources of noise have been
reduced [3, 7, 14, 32].
In our work we have expanded the tuning possibilities of

the Repressilator to include all system parameters (Fig. 7,
Additional file 1: Figure S3 and Table S9). We subse-
quently found that, as well as production and degradation
rates of components, the binding affinities between pro-
teins in the Repressilator system have a key role to play
in the generation of oscillations (Fig. 7d and e). The
importance of protein dynamics on oscillations has been
previously noted by [21, 25, 26]. Furthermore, we found
that the most robust networks are primarily based on

Smith et al. BMC Systems Biology (2017) 11:118 Page 17 of 19

the Repressilator as has been studied previously (Fig. 9)
[7, 27]. Thus, by confirming the observations of previous
studies, we are confident that our algorithm accurately
finds networks with desired properties.
Finally, we introduced, for the first time, a multi-

objective analysis of oscillating gene networks. By opti-
mising oscillating networks to produce rhythms of varying
amplitude, period and shape, we obtained a Pareto front
along which one can find optimal networks for different
combinations of amplitude and frequency (Fig. 10). The
networks that lie along the Pareto front provide a set of
motifs with different responses, thus designers of future
synthetic networks can take advantage of this by choosing
the system that produces the required set of properties.
Notably, we found that some of these optimal networks
share core structural motifs with oscillating mechanisms
that have been previously studied. For example, the core
motif for an oscillator we found to have low frequency
and high amplitude is a Repressilator network (Fig. 10c).
Whilst networks that have an average frequency and mag-
nitude can be based on coupled auto-regulatory positive-
negative feedback loops (Fig. 10d). Consequently, one can
move within ‘design space’ between the two networks by
adding a new component to the system and tuning the
parameters to generate shorter frequency oscillations. To
show the generality of these steps, we also obtained a
general Pareto front containing all feed-forward motifs,
highlighting that FFLs form clusters along the Pareto
front depending on the conditions being analysed
(Additional file 1: Figure S7). This is, thus, a generalised
analysis of that presented in [33], who concentrated on
one of the eight possible FFLmotifs.We envisage that pro-
ducing Pareto fronts of synthetic networks will allow for
an easier overview of potential mechanisms that can be
constructed experimentally to achieve desired needs.

Applications to evolutionary research
As well as for the purposes of network design and
reverse engineering synthetic systems, we believe that this
approach can also be beneficial for those that are inter-
ested in the evolution of biological systems. By analysing
the evolution of networks, one may be able to understand
how complex systems have arisen to relate changing envi-
ronments with observable phenotypes [8, 9, 22, 46]. Such
an idea has been previously studied in relation to cir-
cadian clocks and understanding how a complex mix of
transcriptional feedback loops and post-translational net-
works leads to 24 h rhythms across taxa [29]. We believe
that our EA provides a general and easy way of tracking
the evolution of networks towards a particular objective
using the schema structure we have employed. Conse-
quently, one could build evolutionary trees of network
motifs (see Supplementary Information [46]). This opens
up a number of interesting questions. For example, given

an initial auto-regulatory feedback loop, how could mul-
tiple circadian clock mechanisms have been reached via
evolution? What is the probability of evolution produc-
ing a mechanism primarily made up of post-translational
mechanisms (as in mammals) compared to clocks formed
by transcriptional feedback loops (as in plants) [47, 48]?
How many other network motifs can produce the proper-
ties observed by circadian clocks in nature? Similar such
questions could be posed for other biological examples.
Further to understanding the development of biolog-

ical systems across evolution, our EA can also be used
to simulate laboratory evolution [40, 41]. By optimising
the synthetic Repressilator network, we found that pro-
tein binding rates are key to producing stable oscillations
(Fig. 7e). Consequently, by targeting these parameters for
evolution, we were able to obtain populations of oscillat-
ing systems more quickly than when the whole param-
eter set is evolved. Based on our results using the test
case of the Repressilator, one could use directed evolu-
tion to influence protein dynamics and obtain oscillations.
Recently, Potvin-Trottier et al. have improved the func-
tionality of the Repressilator by reducing sources of noise
in the system [7]. Notably, this involved altering the sys-
tem such that protein dynamics (degradation and binding
to the promoter) were less ‘leaky’. By further incorporat-
ing control over protein interactions, one could potentially
improve the robustness of the Repressilator further.

Conclusion
In this work we have presented a multi-objective EA
for the design of synthetic networks. Our EA brings
together and extends upon previously studied network
design strategies [10, 21, 22, 30, 32]. We have shown the
generality of our approach by using the EA to evolve net-
works towards concentration profiles, oscillating dynam-
ics and signal responses. Furthermore our EA can aid
one in understanding how biological systems have evolved
from simple motifs to more complex networks in the face
of changing environmental conditions. Hence, we believe
that our optimisation strategy is ideal to reverse engineer
novel networks that satisfy particular constraints.

Additional files

Additional file 1: Supplementary Information. Contains: Implementation
of EA algorithm; details regarding the simulations tests performed in the
main text; mathematical descriptions of the scoring functions used in
optimisation; multi-objective analysis of feed-forward loops;
supplementary figures & tables. (PDF 614 kb)

Additional file 2: Simulation Code. A Python script that allows for the
simulation of models presented in Fig. 10c, d & e. (PY 7 kb)

Acknowledgements
The authors would like to thank Ruben van Heck & Emma Keizer for critical
reading of the manuscript, and Philip Winkler & Henry Ehlers (Wageningen UR,
The Netherlands) for helpful discussions and preliminary studies.

http://dx.doi.org/10.1186/s12918-017-0499-9
http://dx.doi.org/10.1186/s12918-017-0499-9

Smith et al. BMC Systems Biology (2017) 11:118 Page 18 of 19

Funding
RWS is funded by FP7 Marie Curie Initial Training Network grant agreement
number 316723 and EU Horizon 2020 grant agreement number 634942. CF is
supported by HFSP Research grant RGP0025/2013.

Availability of data andmaterials
The computational algorithm for this study can be found at https://gitlab.
com/wurssb/Evolutionary_Algorithm_Network_Design.

Authors’ contributions
RS and CF designed the study. RS, BvS, and CF wrote the paper. BvS wrote the
computational algorithm. RS and BvS performed analysis of results. All authors
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Laboratory of Systems & Synthetic Biology, Wageningen UR, PO Box 8033,
6700EJ Wageningen, The Netherlands. 2LifeGlimmer GmbH, Markelstrasse 38,
12163 Berlin, Germany.

Received: 31 August 2017 Accepted: 13 November 2017

References
1. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network

motifs: Simple building blocks of complex networks. Science. 2002;298:
824–7.

2. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, et al.
Network motifs in integrated cellular networks of transcription-regulation
and protein-protein interaction. Proc Natl Acad Sci USA. 2004;101:5934–9.

3. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional
regulators. Nature. 2000;403:335–8.

4. Mangan S, Alon U. Structure and function of the feed-forward loop
network motif. Proc Natl Acad Sci USA. 2003;100:11980–5.

5. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch
in Escherichia coli. Nature. 2000;403:339–42.

6. Tsai TYC, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE. Robust,
tunable biological oscillations from interlinked positive and negative
feedback loops. Science. 2008;321:126–9.

7. Potvin-Trottier L, Lord ND, Vinnicombe G, Paulsson J. Synchronous
long-term oscillations in a synthetic gene circuit. Nature. 2016;538:514–7.

8. Huang S. The molecular and mathematical basis of Waddington’s
epigenetic landscape: A framework for post-Darwinian biology?.
Bioessays. 2011;34:149–57.

9. Jaeger J, Monk N. Bioattractors: Dynamical systems theory and the
evolution of regulatory processes. J Physiol. 2014;592:2267–81.

10. Otero-Muras I, Banga JR. Multicriteria global optimization for biocircuit
design. BMC Syst Biol. 2014;8:113.

11. Dasika MS, Maranas CD. OptCircuit: An optimization based method for
computational design of genetic circuits. BMC Syst Biol. 2008;2:24.

12. Huynh L, Kececioglu J, Koppe M, Tagkopoulos I. Automatic design of
synthetic gene circuits through mixed integer non-linear programming.
PLOS ONE. 2012;7:e35529.

13. Feng XJ, Hooshangi S, Chen D, Li G, Weiss R, Rabitz H. Optimizing
genetic circuits by global sensitivity analysis. Biophysical J. 2004;87:
2195–202.

14. Chen BS, Chen PW. GA-based design algorithms for the robust synthetic
genetic oscillators with prescribed amplitude, period and phase. Gene
Regul Syst Biol. 2010;4:35–52.

15. Nevozhay D, Adams RM, van Itallie E, Bennett MR, Balazsi G. Mapping
the environmental fitness landscape of a synthetic gene circuit. PLOS
Comput Biol. 2012;8:e1002480.

16. Rodrigo G, Carrera J, Elena SF. Network design meets in silico
evolutionary biology. Biochimie. 2010;92:746–52.

17. Francois P. Evolving phenotypic networks in silico. Semin Cell Dev Biol.
2014;35:90–7.

18. Sirbu A, Ruskin HJ, Crane M. Comparison of evolutionary algorithms in
gene regulatory network model inference. BMC Bioinformatics. 2010;
11:59.

19. Simon D. Evolutionary Optimization Algorithms. Hoboken: Wiley; 2013.
20. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6:182–97.
21. Francois P, Hakim V. Design of genetic networks with specified functions

by evolution in silico. Proc Natl Acad Sci USA. 2004;101:580–5.
22. Paladugu SR, Chickarmane V, Deckard A, Frumkin JP, McCormack M,

Sauro, HM. In silico evolution of functional modules in biochemical
networks. IEE Proc Syst Biol. 2006;153:223–35.

23. Guantes R, Estrada J, Poyatos JF. Trade-offs and noise tolerance in signal
detection by genetic circuits. PLoS ONE. 2010;5:e12314.

24. Jin Y, Meng Y. Emergence of robust regulatory motifs from in silico
evolution of sustained oscillation. BioSystems. 2011;103:38–44.

25. van Dorp M, Lannoo B, Carlon E. Generation of oscillating gene
regulatory network motifs. Physical Review E. 2013;88:012722.

26. Noman N, Monjo T, Moscato P, Iba H. Evolving robust gene regulatory
networks. PLoS ONE. 2015;10:e0116258.

27. Woods ML, Leon M, Perez-Carrasco R, Barnes CP. A statistical approach
reveals designs for the most robust stochastic gene oscillators. ACS Synth
Biol. 2016;5:459–70.

28. Novak B, Tyson JJ. Design principles of biochemical oscillators. Nat Rev
Mol Cell Biol. 2008;9:981–91.

29. Rodrigo G, Carrera J, Jaramillo A. Evolutionary mechanisms of circadian
clocks. Central Eur J Biol. 2007;2:233–53.

30. Feng S, Ollivier JF, Swain PS, Soyer OS. BioJazz: in silico evolution of
cellular networks with unbounded complexity using rule-based
modeling. Nucleic Acids Res. 2015;43:e123.

31. Feng S, Ollivier JF, Soyer OS. Enzyme sequestration as a tuning point in
controlling response dynamics of singalling networks. PLoS Comput Biol.
2016;12:e1004918.

32. Chang YC, Lin CL, Jennawasin T. Design of synthetic genetic oscillators
using evolutionary optimization. Evol Bioinforma. 2013;9:137–50.

33. Boada Y, Reynoso-Meza G, Pico J, Vignoni A. Multi-objective optimization
framework to obtain model-based guidelines for tuning biological
synthetic devices: an adaptive network case. BMC Syst Biol. 2016;10:27.

34. Goodrich MT, Tamassia R. Graphs and traversals. In: Algorithm design and
applications. Hoboken: Wiley. 2014.

35. Voit EO. Biochemical systems theory: A review. ISRN Biomathematics.
2013;2013:897658.

36. Chellaboina V, Bhat SP, Haddad WM, Bernstein DS. Modeling and
analysis of mass-action kinetics. IEEE Control Syst. 2009;29:60–78.

37. Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary
algorithms: empirical results. Evol Comput. 2000;8:173–95.

38. Rudolph G. Convergence of evolutionary algorithms in general search
spaces. Proceedings of IEEE International Conference on Evolutionary
Computation; 1996, pp. 50–4.

39. Gillespie DT. Stochastic simulation of chemical kinetics. Annu Rev Phys
Chem. 2007;58:35–55.

40. Brophy JAN, Voigt CA. Principles of genetic circuit design. Nat Methods.
2014;11:508–20.

41. Yokobayashi Y, Weiss R, Arnold FH. Directed evolution of a genetic
circuit. Proc Natl Acad Sci USA. 2002;99:16587–91.

42. Paijmans J, Lubensky DK, ten Wolde PR. Period robustness and
entrainability of the Kai system to changing nucleotide concentrations.
Biophys J. 2017;113:157–73.

43. Hosokawa N, Kishuge H, Iwasaki H. Attenuation of the posttranslational
oscillator via transcription-translation feedback enhances circadian-phase
shifts in Synechococcus. Proc Natl Acad Sci USA. 2013;110:14486–91.

44. Avendano MS, Leidy C, Pedraza JM. Tuning the range and stability of
multiple phenotypic states with coupled positive-negative feedback
loops. Nature Commun. 2013;4:2605.

45. Crow JF. Advantages of sexual reproduction. Dev Genet. 1994;15:205–13.

https://gitlab.com/wurssb/Evolutionary_Algorithm_Network_Design
https://gitlab.com/wurssb/Evolutionary_Algorithm_Network_Design

Smith et al. BMC Systems Biology (2017) 11:118 Page 19 of 19

46. McGrane M, Charleston MA. Biological network edit distance. J Comput
Biol. 2016;23 doi:10.1089/cmb.2016.0062.

47. Pokhilko A, Fernandez AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ.
The clock gene circuit in Arabidopsis includes a repressilator with additional
feedback loops. Mol Syst Biol. 2012;8:574.

48. Kim JK, Kilpatrick ZP, Bennett MR, Josic K. Molecular mechanisms that
regulate the coupled period of the mammalian circadian clock. Biophys J.
2014;106:2071–81.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1089/cmb.2016.0062

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Network structure
	Individual genes
	Network description
	Gene regulation
	Example #1: gene interactions
	Mathematical formulation of reaction networks

	Evolutionary algorithm
	Initialisation
	Determining reaction rates
	Selection
	Recombination
	Example #2: recombination
	Mutation
	Example #2 continued: mutation
	Scoring functions
	Settings to obtain presented results
	Termination

	Programs and solvers

	Results
	Benchmarking algorithm performance
	Parameter optimisation of Repressilators provides targets for directed evolution studies
	Network optimisation improves objective scores for oscillations
	Improving the robustness of oscillating networks
	Multi-objective analysis provides a set of oscillators with different properties
	Feed-forward loops have distinct responses to pulsed inputs

	Discussion
	EA implementation expands on previous strategies
	Designing oscillatory networks with desired properties
	Applications to evolutionary research

	Conclusion
	Additional files
	Additional file 1
	Additional file 2

	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

