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Abstract

Background: Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate
decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to
treat human diseases that are related to abnormal cell development.

Results: In this study, we proposed a polynomial based model to predict cell fate. This model was derived from
Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model.
As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation
based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate
prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition,
we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as
well as assessing the variances of the predicted values at randomly selected points. Results show that, within both
the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show
little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When
comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy
of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within
genes of the apoptosis pathway is much more stable.

Conclusions: Considering both the prediction accuracy and the stability of polynomial models of different degrees,
the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The
presented cell fate prediction model can be extended to other cells, which may be important for basic research as
well as clinical study of cell development related diseases.

Keywords: Cell fate prediction, Cell death, Mathematical modeling, Polynomial, Apoptosis pathway, Correlation
analysis, Single-cell gene expression

Background
Many human diseases are caused by over proliferation
or progressive death of specific cells [1, 2]. One notori-
ous example that involves uncontrolled cell growth is
cancer, which has become a leading killer worldwide [3].
In contrast to abnormal cell growth, excessive cell death

also results in serious damage to human body. Abnormal
cardiomyocyte death is a hallmark of various cardiovas-
cular diseases (e.g. heart failure) [4, 5]. Neurodegenera-
tive disorders, such as Parkinson’s, Alzheimer’s and
Huntington’s diseases underlie the continuous death of
specific neurons [6, 7]. Hepatocellular death is an indica-
tor in detecting liver diseases [8]. Pancreatic β-cell deficit
is a main character of type 2 diabetes (T2D) [9, 10].
Thus, cell fate has a direct bearing on human health,
and the research on cell fate decision facilitates the study
of the mechanisms and may pave the way for preventing
diseases caused by abnormal cell development.
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With the development of biomathematics, mathemat-
ical modeling has been employed in formulating hypoth-
eses and interpreting mechanisms of cell fate decision
[11–14]. The models can be categorized according to
their properties into different groups, e.g. discrete or
continuous, static or dynamic, knowledge-driven or
data-driven, etc. In addition, different kinds of data, such
as gene expression data or protein activity data, are used
in these models. Calzone et al. conceived a compact
model based on logical formalization of signal transduc-
tion for cell fate decision [15]. They also applied a simi-
lar model to the study of cancer cell fate determination
[16]. This logical model describes the biological pro-
cesses in a mechanistic way, but it can only perform in a
discrete mode and cannot incorporate context-specific
information from real data. Tyson et al. constructed a
dynamic model (based on ordinary differential equa-
tions) to study cell fate of breast cancer cells [17].
Bhattacharya et al. mapped Waddington’s epigenetic
landscape to visualize cell fate based on dynamics of
gene regulatory network [18]. Both the dynamic model
and the Waddington’s epigenetic landscape require the
trajectory information of genes (i.e. time-series gene ex-
pression data). The aforementioned three models are
knowledge-driven models. As advances in experimental
techniques to measure biological data and progresses of
methods in computer science, data-driven models be-
come very popular in decoding cell fate decision mecha-
nisms. Janes et al. [19] and Lee et al. [20] employed a
partial least squares (PLS) regression model to correlate
protein activity levels and phenotypic responses of can-
cer cells. Note that, the PLS regression model is based
on linear transformation. Considering the complexity of
biological systems (e.g. cross talk and feedback in signal-
ing pathways), the linear model is not convincing to
some researchers. Thus, with the utilization of the same
dataset in [20], Zhang et al. [21] proposed an exponen-
tial model, which performed better in predicting cell fate
than the original linear model used in [20]. However, a
log transformation to the protein activity data would
convert the exponential model into a linear one. Al-
though these models try to study the cell fate decision,
the mechanisms remain far from clear.
We intend to build a model to predict cell fate based

on single-cell gene expression data, in which a function
is employed to demonstrate their relationship. In this
work, cell fate is quantified as the probability of cell
death. Considering that a function can be represented
with Taylor series under certain conditions (i.e. it can be
infinitely differentiable at a fixed point), we applied this
theory and directly used different degree polynomials to
fit the cell fate prediction function. The gene expression
dataset was obtained from single-cell transcriptome pro-
filing of human pancreas [22]. Overall, there are 2209

pancreatic cells from patients of T2D and healthy indi-
viduals, and a total of 26,179 genes were measured for
each cell. As only a small portion of genes are closely re-
lated to cell fate decision, a feature (gene) selection step
was conducted on the training data. In this study, we
used a correlation based feature selection approach, as
well as an apoptosis pathway based method. The correl-
ation based method employs Spearman’s correlation ana-
lysis approach [23] to conduct gene selection, and the
outcomes only depend on the relationship between gene
expression data and cell fates (i.e. the polynomial model
based on correlation analysis outcomes is a data-driven
model). Differently, the apoptosis pathway based method
directly regards the genes in the apoptosis pathway as
features, and incorporates gene regulation information
into the cell fate prediction model (i.e. the polynomial
model within genes of the apoptosis pathway is a com-
bination of data-driven and knowledge-driven models,
also known as a hybrid model). After the selected genes
were obtained, we performed a regression process to re-
fine the cell fate prediction function, and proceeded to
the prediction phase. 10-fold cross-validation was car-
ried out to evaluate the performance of our model.
Moreover, we analyzed the stability (i.e. discrepancies of
the functions when the training data were changed) of
the cell fate prediction functions by evaluating the
ranges of the parameters as well as computing the vari-
ances of the predicted values at randomly selected
points. Results show that within both the gene selection
methods, linear polynomial performs better than others.
When comparing the linear polynomials based on the
two gene selection methods, the prediction accuracy of
the model based on the correlation analysis outcomes is
a little higher (86.62% vs. 84.17%) than the one using
genes from the apoptosis pathway. However, the model
within genes from the apoptosis pathway is more stable.
The proposed polynomial model in our work demon-
strates the feasibility of using linear model to predict cell
fate. In addition, current data-driven models for cell fate
prediction are often assessed by prediction accuracy.
The stability analysis in our work provides ways for a
comprehensive evaluation of these models.

Methods
Polynomial representation of cell fate
When the gene expression profile of a single cell is avail-
able, we aim to predict the fate of this cell based on the
expression levels of specific genes. To illustrate our
model, suppose we are given three cell fate related genes
A, B, and C, with the corresponding expression levels of
xA, xB, and xC, respectively. Then we build a model to
associate the cell fate P (P ∈ [0, 1]) with the three genes’
expression levels. Suppose that the three genes are inde-
pendent of each other, then P can be represented as:
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P ¼ f xAð Þ þ g xBð Þ þ h xCð Þ; ð1Þ
where f, g, and h are three arbitrary functions. If f(xA) is
infinitely differentiable at a (where a is a real or complex
number), we can expand f(xA) with Taylor series as
follows,

X

n¼0

∞ f nð Þ að Þ
n!

xA−að Þn ¼ f að Þ þ f ′ að Þ
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xA−að Þ2 þ⋯:

ð2Þ
Here, f(n)(a) denotes the n-th derivative of f(xA) at a.

Similarly, g(xB) and h(xC) can be represented with Taylor
series respectively. As such, P can be rewritten as:
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where kAn, kBn and kCn are polynomial coefficients, and
b is a constant. In some cases, the genes are not mutu-
ally independent, e.g., gene A promotes the transcription
of gene C. Then the simultaneous influence of genes A
and C on cell fate P is not additive. We employ f(xA, xC)
to show their synergistic effects. Accordingly, P can be
represented as:

P ¼ f xA; xCð Þ þ g xBð Þ: ð4Þ
Similar to the Taylor series representation of a func-

tion with one variable (Eq. (2)), we can also expand a
function with two variables. If f(xA, xC) is infinitely differ-
entiable at a point (a, c), where a and c are real or
complex values, it can be expressed with Taylor series as
follows,
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The subscripts of f in Eq. (5) stand for partial deriva-
tives. Considering that g(xB) can be represented with
Taylor series (similar to Eq. (2)), we can obtain the poly-
nomial representation of P by summing up the expan-
sions of f(xA, xC)and g(xB). Finally, P is derived as

P ¼
X

n¼1

∞
kAnx

n
A þ kBnx

n
B þ kCnx

n
C

� �þ
X

p;q¼1

∞
k′ACx

p
Ax

q
C þ b; ð6Þ

where kAn, kBn, kCn and k′AC are polynomial coefficients,
and b is a constant.

The above analysis is based on three genes. Now let us
consider l genes (x1, x2, ⋯, xl) to determine the function
of P, and assume all the genes are independent of each
other. Then P can be derived by extending Eq. (3) as
follows,
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In case of related genes (gene transcription regulation),
we can add the cross terms to P, i.e.,
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where xi and xj represent any two related genes. In the
scenario of transcription regulation involving several
genes, Taylor series representation of multiple variables
can be applied. In practice, we approximate Eqs. (7) and
(8) with a finite number of terms. Then, with the
utilization of regression methods, the function of P can
be obtained, when the data of gene expression profiles
and cell fates of a group of cells are available.
In this work, polynomials of different degree were

employed to fit the function of P. The MATLAB func-
tion regress was carried out to conduct the regression
process. This function is based on the method of least
squares. Detailed information can be found in [24].

Correlation between cell fate decisions and gene
expression profiles
Tens of thousands of genes are encoded in the human
genome, and their products play different roles in hu-
man body [25]. Specific to cell fate, there are only a por-
tion of genes related to it. Thus, we need to conduct a
feature (gene) selection process, in order to find out the
cell fate decision related genes. Correlation analysis is a
common method for feature selection in machine learn-
ing. Therefore, in this study, we employed Spearman’s
rank correlation analysis approach [23] to evaluate
the relevance between gene expression levels and cell
fates. Specifically, for a gene, we computed the Spear-
man’s rank correlation coefficient between this gene’s
expression levels in all the cells and the correspond-
ing cell fates. Spearman’s rank correlation measures
the monotonic relationship of two variables. Given
two sets of variables X and Y, the corresponding
ranks of the two sets of variables are XR and YR, re-
spectively. Then the Spearman’s rank correlation
coefficient ρ is derived by
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ρ ¼ cov XR;Y Rð Þ
σXRσY R

; ð9Þ

where cov(XR,YR) denotes the covariance of XR and YR,
σXR and σY R represent the standard deviations of XR and
YR, respectively. After the correlation coefficient of each
gene with cell fates was obtained, we sorted the genes
according the absolute values of the coefficients. The
highly ranked genes were considered as important for
cell fate decision.

Statistical analysis
Statistical comparison of gene expression levels for two
groups of samples (cells from healthy and T2D donors)
was carried out by using Student’s t-test. The difference
between the two groups was considered as significant if
the p-value is less than 0.05.

Results
Single-cell gene expression in pancreas
The single-cell gene expression dataset was obtained
from [22]. This dataset comprises profiles of totally 2209
pancreatic cells, belonging to 10 donors. Among the do-
nors, six were healthy while four experienced T2D. The
numbers of cells obtained from the donors are shown in
Fig. 1a. The human pancreas is composed of exocrine
and endocrine regions, corresponding to exocrine cells
and endocrine islets. Most of the exocrine cells are aci-
nar cells or ductal cells, which play an important role in
digestion by secreting and transporting digestive en-
zymes [26]. Endocrine islets mainly contain hormone-
producing cells, e.g. α-cells, β-cells, γ-cells, δ-cells, and
ε-cells [27]. Figure 1b shows the distribution of the pan-
creatic cells among cell types.
In this study, we intend to predict the fate of a cell ac-

cording to its gene expression data. Specifically, within
its gene expression profiles, we try to predict the prob-
ability of cell death (which is represented by apoptosis in
this paper). It is well known that caspases 3, 6, and 7 are
executioner enzymes in apoptosis. Thus, it is reasonable
to use their expression levels as markers for measuring
the cell death probability. Figure 2a-c present the ex-
pression levels of caspases 3, 6, and 7 in all the 2209
cells in descending order. We employed the combined
expression levels of caspases 3, 6, and 7 to measure the
likelihood of cell death. Then the death probability of a
cell can be derived by dividing its combined expression
level of caspases 3, 6, and 7 by the maximum total ex-
pression value of the 3 caspases in all the cells (Fig. 2d).
In this work, a cell is considered as less likely to die if
the death probability is less than 0.5; otherwise, it is as-
sumed to die with a high probability.
To further verify the feasibility of adopting the total

expression of caspases 3, 6, and 7 as a measure of the

chance of cell death, we compared the expression of
these genes in β-cells between healthy donors and T2D
donors (Figs. 2e~2h). β-cells control the secretion of
insulin, which can maintain the homeostasis of glucose
in blood. Several studies have shown that β-cell def-
icit ranges from about 20% to 65% in patients with
T2D [28, 29]. Student’s t-test was performed to show
the differences in caspase expression levels between
the two groups, with p-value <0.05 taken as statisti-
cally significant. As shown in Figs. 2f~2h, the expres-
sion levels of caspase 6, 7, and the total caspase
expression levels (caspases 3, 6, and 7) in β-cells of
the healthy group and the T2D group are significantly
different. In addition, the individual and total expres-
sion levels of caspases 3, 6, and 7 of the healthy
group are lower than those of the T2D group. Thus,
the β-cells of T2D donors are more vulnerable to cell
death compared with the ones of the healthy donors.
This is consistent with the β-cell deficit facts in T2D.

a

b

Fig. 1 Experiment data of human pancreatic cells. a Numbers of cells
obtained from 10 donors. H1~H6 represent six healthy donors, while
T2D1~T2D4 denote four T2D donors. b Distribution of the cells among
of cell type. There are 12 types of cells, including α-cells, β-cells, γ-cells, δ-
cells, ε-cells, co-expression cells, acinar cells, ductal cells, endothelial cells,
mast cells, major histocompatibility complex (MHC) class II cells, and
pancreatic stellate cells (PSCs). Others are grouped into unclassified cells
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a b

c d

e f

g h

Fig. 2 Gene expression profiles of cell death executioner enzymes. a-c Gene expression profiles of caspases 3, 6, and 7 of all 2209 the cells. The
cells are sorted according to the expression levels in descending order. d Combined gene expression (caspases 3, 6 and 7) and cell death
probabilities of cells. The data are sorted according to the total gene expression levels. e-h Comparison of expression levels of caspases 3, 6, 7, as
well as the total expression levels (caspases 3, 6 and 7) in β-cells. Overall, there are 270 β-cells. Among the cells, 171 of them are from healthy
donors, and the rest from T2D donors. The expression of caspases 6, 7 and the total expression of the healthy group (represented with H in the
figures) are all significantly lower than that of the T2D group. Only the expression levels of caspase 3 of the two groups do not show significant
difference. The bold dark lines indicate the mean values of each group. The extent of differences is provided in the each figure. It is calculated by
1−MTCH/MTCT2D, where MTCH and MTCT2D are the mean values of the total expression levels of caspases 3, 6, and 7 of the healthy and T2D
groups, respectively
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Thus, it is rational to use the total expression level of
caspases 3, 6, and 7 in a cell to measure the likeli-
hood of cell death.

Cell fate prediction based on correlation analysis
Single-cell gene expression data are available for 2209
cells. In this study, we adopted 10-fold cross-validation
to evaluate the prediction of cell fate (in terms of cell
death probability). Thus, the data of cells were randomly
divided into ten equal sized subsets of cells. At each time
of the cross-validation, nine subsets of data were used
for training, and the left one was used for testing. This
process was repeated for 10 times (each subset of data is
exactly used once as testing data) as one 10-fold cross-
validation. Overall, we carried out the 10-fold cross-
validation for 10 times, and as such generated 100
simulation results. In other words, we refined a total of
100 cell fate prediction functions, producing 100 predic-
tion results. Then a single estimation of prediction ac-
curacy was obtained by computing the average value of
the 100 prediction results. Specific to the prediction ac-
curacy of the tested cells, we compared the predicted
cell death probability with the actual one of each cell. If
both the values fell in the same interval ([0, 0.5) or [0.5,
1]), it was considered as a correct prediction; otherwise,
the prediction was incorrect. Then the prediction accur-
acy of a testing dataset was derived by dividing the
number of cells whose fates are correctly predicted by
the total number of tested cells.
For each of the 2209 cells, the expression levels of

26,179 genes were measured. Thus, except for the
marker genes (caspases 3, 6 and 7), a total of 26,176
genes can be used to conduct cell death prediction.
However, not all of these genes are closely related to cell
death. Hence, we first carried out a feature (gene) selec-
tion process to the cells used for training. Spearman’s
rank correlation analysis was employed to extract genes
that were highly related to cell death. Then, these genes
were used as features of the training samples to refine
the cell fate prediction function. We also extracted the
corresponding genes of the testing cells, in order to
make prediction. Figure 3a provides an example of the
top 30 genes correlated with cell death from each train-
ing dataset. As the data used for training are different in
each simulation, the derived top 30 genes may vary
slightly among the training datasets. After conducting
the 10-fold cross-validation for 10 times (100 times of
training), 42 genes were extracted. Among them, 18
genes occur 100 times, i.e. they are repeatedly selected
in the top 30 highly correlated genes from all the 100
training datasets. Several genes correlated to cell death
are evidently related to apoptosis. For example, in
chronic myeloid leukemia progenitor cells, RASEF was
shown to induce apoptosis by activating caspases 3 and

9 [30]. Smith et al. reported that HSPB8 inhibits tumor
growth by activating apoptosis pathways [31]. Zhang et
al. demonstrated that PRSS8 promotes apoptosis and
suppresses tumor growth in hepatocellular carcinoma
[32]. In addition, evidence for the roles of LGALS9,
LITAF and SH3BP4 in apoptosis has also been shown in
the literature [33–35]. Except for these genes that are
directly related to apoptosis, other genes may be in-
volved in cell growth or other cellular processes. In fact,
the functions of many genes and their roles in cellular
processes are still not well known. Thus, not only does
the correlation based method extract cell fate decision
related genes, but it also provides clues for the genes’
functions if they are not completely understood.
We employed different degree polynomial models (lin-

ear, quadratic and cubic polynomials) to predict the cell
fate. The function regress in MATLAB was called to
conduct the regression analysis. We selected 5, 10, 30,
50, and 70 cell death related genes (according to the ab-
solute values of Spearman’s correlation coefficients) from
a training dataset. The prediction results are shown in
Table 1 and Fig. 3b. Among the different combinations
of models and selected genes, the highest prediction ac-
curacy of 86.62% is achieved by the linear polynomial
model on 10 genes. In consideration of gene-gene inter-
actions, we also added cross terms to the quadratic poly-
nomial model. The cross terms were chosen according
to the Spearman’s correlation coefficients between gene
pairs among the selected genes. We applied the top 10,
30, and 50 pairs of correlated genes in the quadratic
polynomial model, respectively. The results are pre-
sented in Table 2 and Fig. 3c. Some prediction results
are missing when there are too few genes to provide a
specified number of gene pairs.
Prediction accuracy is just one performance measure

of the models. We also evaluated the stability of different
degree polynomial models in our work. Here, stability
describes the resistance to changes of the model when
different training data are applied. In our simulation, we
conducted 10 times of 10-fold cross-validation for each
setting of the models and the number of used genes (e.g.
10 genes used in linear polynomial model). Then, for
one setting, a total of 100 regression functions were de-
rived as the model was trained with 100 slightly different
training datasets. On the one hand, we measured the
variation ranges of the regression parameters of the 100
functions. On the other hand, we randomly selected
10,000 points (high dimensional points, with each di-
mension representing the expression level of one gene),
and the regression values of each point can be obtained
according to the regression functions. Then 100 regres-
sion values were generated for each point, as we simu-
lated 100 times for each setting. Afterwards, the variance
of the 100 regression values at each point can be
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derived. Overall, a total of 10,000 variances were ob-
tained. We can draw the probability density function
(PDF) and cumulative density function (CDF) of the var-
iances to examine their distributions. Additionally, the
mean value of all the variances (MVAV) could be used

to measure the instability of the model, with the smaller
value of MVAV denoting high stability. It should be
clearly noted that we used the same set of randomly se-
lected points when conducting stability analysis for dif-
ferent models with the same number of genes (e.g. 10

a

b c

d e

Fig. 3 Cell fate prediction based on genes selected by correlation analysis. a Highly correlated genes with cell death. These genes were extracted
by using Spearman’s rank correlation analysis approach from 100 training datasets (10 times of 10-fold cross-validation), with the top 30 genes
highly correlated with cell death selected in each training dataset. b, c Prediction accuracies of cell death by using different degree polynomial
models (linear, quadratic and cubic polynomials) in (b), as well as quadratic polynomial model with different number of correlated gene pairs in
(c). d, e Stability comparison of different models. For each model, a total of 10,000 randomly selected points were used to measure its stability.
After 10 times of 10-fold cross-validation, 100 regression values were obtained for each point. Then the variance of each point can be derived.
We use the MVAV (mean value of the 10,000 variances) to assess the instability of each model. Thus, smaller value of MVAV indicates that the
model is more stable. The bold markers denote that, within the corresponding model, the 10,000 variances obey gamma distribution

Table 1 Cell fate prediction with different degree polynomials. The genes are selected by using correlation analysis approach

Degree of polynomial Selected genes 5 10 30 50 70

1 Accuracy 0.8620 0.8662 0.8637 0.8612 0.8632

MVAV 7.7577e-4 0.0013 0.0050 0.0125 0.0146

2 Accuracy 0.8619 0.8623 0.8597 0.8554 0.8538

MVAV 0.0024 0.0033 0.0216 0.0421 0.0617

3 Accuracy 0.8624 0.8607 0.8561 0.8490 0.8460

MVAV 0.0055 0.0065 0.0755 0.2020 0.3846
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genes applied in both linear and quadratic polynomial
models). Figures 4 and 5 present an example of the sta-
bility analysis. We adopted 10 genes to refine the linear,
quadratic, and cubic polynomial models, as well as the
quadratic polynomial model with 10 correlated gene
pairs. As shown in Fig. 4, the parameter ranges of the
linear polynomial model are the smallest, while the cubic
polynomial model is the most volatile. In addition, the
PDFs and CDFs show that the distribution of the vari-
ances associated with the linear polynomial model is
very dense, and the values of the variances are much
smaller (Fig. 5). Tables 1 and 2 provide the MVAV for
each kind of setting. The linear polynomial model per-
forms better than other order polynomial models (quad-
ratic, cubic polynomials and quadratic polynomial with
correlated gene pairs), when the number of applied
genes is fixed (Fig. 3d and e).

Cell fate prediction by using genes in the apoptosis
pathway
Besides selecting genes based on correlation analysis, we
alternatively selected genes that are presented in the
apoptosis pathway to predict cell fate. A total of 32 most
common genes were used: APAF1, ATF4, BAK1, BAX,
BCL2, BCL2L1, BID, CAPN1, CAPN2, CASP8, CASP9,
CASP10, CYCS, DAXX, DDIT3, DIABLO, EIF2AK3,
EIF2S1, ERN1, FADD, FAS, ITPR1, MAP3K5, MAPK8,
MAPK9, MAPK10, MDM2, TNFRSF1A, TRADD,
TRAF2, TP53, and XIAP (Fig. 6) [36]. We still applied
the linear, quadratic, cubic polynomial models, and
quadratic polynomial model with cross terms to refine
the cell fate prediction function. 10-fold cross-validation
was carried out for each setting. Compared with the cor-
relation based gene selection, here the cross terms were
derived from our knowledge of gene regulation. For ex-
ample, TP53 regulates the transcription of MDM2, then
the cross term of TP53×MDM2 was added into the cell
fate prediction function. Overall, there are six cross
terms. The prediction results are shown in Table 3 and
Fig. 7a. The highest accuracy of 84.73% was achieved by
the quadratic polynomial model with cross terms. We
also analyzed the stability of the models against variation
in regression parameters as well as the variances at

randomly selected points (Figs. 7b, c and 8). Similarly,
10,000 randomly selected points were used. As the num-
ber of genes was fixed, the same set of stability testing
points was employed for different degree polynomial
models. As shown in Fig. 7b and c, the distribution of
variances of the randomly selected points associated
with the linear model is very dense, and the values of
the variances are much smaller. In Fig. 8, the regression
parameters of linear polynomial model are in the smal-
lest fluctuation ranges.

Discussion
Cell fate decision is very important, as over proliferation
or excessive death of cells may lead to various kinds of
human diseases. We aim to build models to predict the
death probability of a cell based on its gene expression
data. A continuous model for steady state data may be
suitable for this purpose. A linear model (PLS regression
method) was implied in [19, 20] to relate cancer cell
phenotypes with the protein activity levels. Although the
data were measured at several time points, the linear
model can be used to predict phenotypic response at
each time point as well. However, a linear model tends
to be considered too simple to handle the scenarios of
cross talk or feedback in signaling pathways. For the
same data set as [20], the authors of [21] proposed an
exponential model, which showed better performance in
predicting cell death than a linear model. The protein
activity levels in [20] were expressed as the fold changes
compared with the control samples. Essentially, after a
log transformation of the data (protein activity levels),
the exponential model becomes a linear one. In practice,
a log transformation for the protein activity data was
sometimes conducted when performing statistical ana-
lysis [37–39]. In our study, we used single-cell gene ex-
pression data obtained from [22], in which the RNA-seq
method was used to measure the gene expression levels,
and the results were reported in reads per kilobase per
million mapped reads (RPKM). Typically, a log transform-
ation is necessary for the RPKM data. In one aspect, the
gene expression dataset tends to be substantially skewed,
but often being log-transformed it can approximate the
normal distribution. Moreover, log transformation makes

Table 2 Cell fate prediction by using quadratic polynomial model with correlated gene pairs

Correlated pairs Selected genes 5 10 30 50 70

10 Accuracy 0.8608 0.8587 0.8593 0.8535 0.8548

MVAV 0.0079 0.0080 0.0247 0.0386 0.0602

30 Accuracy – 0.8566 0.8551 0.8553 0.8537

MVAV – 0.0190 0.0315 0.0500 0.0707

50 Accuracy – – 0.8545 0.8524 0.8512

MVAV – – 0.0439 0.0592 0.0877
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the data more symmetrical, providing much convenience
for both direct observation and statistical tests. Thus, the
model in [21] is actually linear for our log-transformed
gene expression data.
In this work, we intend to find the relationship between

single-cell gene expression data and cell fate decision. It is
well known that a function can be expressed as a Taylor
series under the condition of being infinitely differentiable
at a fixed point. We employed this idea and directly used
polynomials to represent the cell fate prediction function.
The variables of the function are expression levels of spe-
cific genes. The genes were selected in two ways, using a
correlation based approach and an apoptosis pathway
based method. The selected genes could refine the cell
fate prediction function in different degree polynomial
models (linear, quadratic, cubic polynomial models, and

a

b

c

d

Fig. 4 Comparison of regression parameter ranges. The regression
parameter ranges of linear (a), quadratic (b), and cubic polynomial
models (c), as well as the quadratic polynomial models with 10
correlated gene pairs (d). For the linear model, the first parameter
represents the constant term of each regression function, and other
parameters are arranged according to the importance of the
corresponding variables. Each variable stands for the expression level
of a gene, and its importance is evaluated by the absolute value of
the correlation coefficient with cell death. For the quadratic model,
the parameters are arranged in the order of constant term, the
parameters of the linear variables, and the parameters of quadratic
variables. The ranks of the parameters of both linear and quadratic
variables can refer to that of the linear model. The parameters of the
cubic model are shown similarly

a

b

Fig. 5 Comparison of PDF and CDF of the models. The PDFs (a) and
CDFs (b) of the variances. For each model (linear, quadratic, cubic
polynomials, as well as the quadratic polynomial with ten correlated
pairs), we draw the PDF and CDF of the 10,000 variances (as there
are 10,000 testing points)
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quadratic polynomial model with cross terms of correlated
gene pairs). 10-fold cross-validation was carried out for
model validation. In addition, we analyzed the stability
of each model by evaluating the ranges of the parame-
ters, as well as assessing the variances of the predicted
values at some randomly selected points. In the sce-
nario of gene selection based on correlation analysis,
the prediction accuracies (about 84%~86%) of different
degree polynomial models do not show much differ-
ence. However, linear regression model performed the
best in the stability analysis when the same number of
genes was used to refine the prediction functions
(Tables 1 and 2). Take the number of 10 applied genes
as an example (Figs. 4 and 5). The parameters of the
linear regression model vary in a smaller scale com-
pared with those of other degree polynomial regression
models. In addition, the PDFs of different models show

that the 10,000 variances (corresponding to a total of
10,000 tested points) of the linear model are much
smaller and the distribution is very dense. The same
situation occurs when genes are selected from the
apoptosis pathway. Then we compared the performance
of the models based on the results of the two gene se-
lection methods. Although the prediction accuracy of
the model based on correlation analysis outcomes can
achieve 86.62%, higher than the best accuracy of the
pathway based method, the models composed of
genes from the apoptosis pathway are more stable
(comparison of the same degree polynomial models,
Tables 1~3). The difference in the stability may be
caused by the genes used in regression. In each train-
ing process (to learn the cell fate prediction function),
the involved genes may be slightly different if the cor-
relation based method is used, but the same set of
genes is employed when using the apoptosis pathway
based approach.
As discussed above, the prediction accuracies of the

polynomial model of different degrees show little dif-
ference, but the linear polynomial model performed
the best in terms of stability. To further analyze the
behavior of a biochemical system, it is desirable to
explore the theoretical description of the chemical re-
actions [40–43].

Fig. 6 The apoptosis signaling pathway. It mainly involves four parts: the death receptor-induced pathway, endoplasmic reticulum (ER)-mediated
pathway, TP53-dependent pathway, as well as the mitochondrial pathway. Stimulated by death ligands (e.g. TNFα), the death receptors recruit
adaptor proteins and then activate the mitochondrial pathway or directly induce apoptosis by caspase 8. ER stress promotes apoptosis by ER
sensors of IRE1α and EIF2AK3, or release of Ca2+ through IP3R1 channel. TP53 plays an important role in apoptosis by activating the transcription
of pro-apoptotic proteins (e.g. BAX) while inhibiting the transcription of anti-apoptotic proteins (e.g. BCL2). In mitochondria, activated BAX
stimulates the release of cytochrome c, and eventually triggers the caspase cascades

Table 3 Cell fate prediction based on different degree
polynomials. The genes are selected from the apoptosis
pathway

Degree of polynomial 1 2 2 (cross terms) 3

Accuracy 0.8417 0.8463 0.8473 0.8439

MVAV 3.1529e-4 0.0013 0.0022 0.0039
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a

b

c

Fig. 7 Cell fate prediction by using genes in the apoptosis pathway.
a The prediction accuracy and the MVAV (mean value of the 10,000
variances) of each model. Smaller MVAV indicates that the model is
more stable. 2-c represents quadratic polynomial with correlated
gene pairs. b, c The PDFs and CDFs of the variances. Similar to the
results of correlation based approach, there are 10,000 variances for
each model

a

b

c

d

Fig. 8 The stability of the models against variation in regression
parameters. The regression parameter ranges of linear (a), quadratic
(b), and cubic polynomial models (c), as well as the quadratic
polynomial model with correlated gene pairs (d). Overall, 32 genes
are adopted from the apoptosis pathway, and 6 pairs of them have
relationships of transcription regulation. Thus, there are 33, 65, 97
and 71 parameters in the regression functions of linear, quadratic,
cubic polynomial models, and the quadratic polynomial model with
correlated gene pairs, respectively
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Conclusions
In this study, we proposed a polynomial based model to
predict cell fate. To refine the prediction function, genes
were selected by using a correlation analysis approach as
well as an apoptosis pathway based method. We employed
different degree polynomials to refine the cell fate predic-
tion function from single-cell gene expression data of
human pancreatic cells. Using the two gene selection
methods, the prediction accuracies of different degree
polynomial models are very close, but the linear regression
model performs much more stable than others. When
comparing the performance of linear regression model
based on the results from the two gene selection methods,
the prediction accuracy of the model with correlation ana-
lysis outcomes is a little higher (86.62% vs. 84.17%) than
that of the model based on genes from the apoptosis path-
way. However, the model with genes from the apoptosis
pathway is more stable (3.1529e-4 vs. 7.7577e-4, MVAV).
Thus, it is promising to use linear model to associate cell
fate decision with gene expression data for the pancreatic
cells. In addition, the genes in a specific pathway are pre-
ferred to conduct the regression process. This linear
model could be extended to the cell fate prediction of
other cells, and thereby facilitate research on human dis-
eases caused by cell fate dysregulation.
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