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Abstract

Background: Effectively predicting protein complexes not only helps to understand the structures and functions of
proteins and their complexes, but also is useful for diagnosing disease and developing new drugs. Up to now, many
methods have been developed to detect complexes by mining dense subgraphs from static protein-protein
interaction (PPI) networks, while ignoring the value of other biological information and the dynamic properties of
cellular systems.

Results: In this paper, based on our previous works CPredictor and CPredictor2.0, we present a new method for
predicting complexes from PPI networks with both gene expression data and protein functional annotations, which is
called CPredictor3.0. This new method follows the viewpoint that proteins in the same complex should roughly have
similar functions and are active at the same time and place in cellular systems. We first detect active proteins by using
gene express data of different time points and cluster proteins by using gene ontology (GO) functional annotations,
respectively. Then, for each time point, we do set intersections with one set corresponding to active proteins
generated from expression data and the other set corresponding to a protein cluster generated from functional
annotations. Each resulting unique set indicates a cluster of proteins that have similar function(s) and are active at that
time point. Following that, we map each cluster of active proteins of similar function onto a static PPI network, and
get a series of induced connected subgraphs. We treat these subgraphs as candidate complexes. Finally, by
expanding and merging these candidate complexes, the predicted complexes are obtained.
We evaluate CPredictor3.0 and compare it with a number of existing methods on several PPI networks and
benchmarking complex datasets. The experimental results show that CPredictor3.0 achieves the highest F1-measure,
which indicates that CPredictor3.0 outperforms these existing method in overall.

Conclusion: CPredictor3.0 can serve as a promising tool of protein complex prediction.
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Background
Proteins, as the material basis of life, are the ultimate
controller and direct performer of life activities, partici-
pate almost all of biological functions. Most proteins do
not perform biological functions alone, but form protein
complexes with others [1]. So to have a more comprehen-
sive and deep understanding of cell compositions and life
processes, the identification of protein complexes is very
important.

Although biological techniques such as Tandem Affin-
ity Purification with Mass Spectrometry (TAP-MS) [2]
can detect protein complex directly, the accuracy is not
high. In addition, biological techniques are usually time-
consuming and costly. These make biological techniques
cannot meet the requirement of post-genome research for
handling big biological data.

With the development of high-throughput experimen-
tal technologies, PPI data rapidly increase, which provides
chance for using computational methods to detect pro-
tein complexes. Moreover, computational methods can
overcome drawbacks of experimental technologies. PPI
networks can be constructed by using PPI data, where
nodes and edges represent proteins and interactions
between proteins respectively. Empirical studies on PPI
networks indicate that there are modular components in
these networks [3]. From the view of network topogra-
phy, these modules are made up of closely related pro-
teins; From the view of biology, these modules aggregate
proteins that perform functions together. Thus, protein
complexes can be detected by mining the modular struc-
tures (i.e., dense subgraphs or subnetworks) from PPI
networks.

So far, there have been many researches that put forward
different graph clustering methods to detect local dense
subgraphs to detect protein complexes from PPI networks
[4–9]. These methods are intuitive and straightforward.
To overcome the high false-positive and false-negative
problems in PPI networks, many studies have attempted
to improve the reliability of PPI data by exploiting gene
expression data [10, 11] and protein functional annota-
tions [12, 13] to improve the accuracy of protein complex
prediction. In addition to dense subgraph mining based
approaches, in the past decade some other method have
also developed, including the core-attachment structure
based methods [14, 15], methods for non-dense junction
complexes and small complexes [16, 17], and methods
using dynamic PPI networks [18]. In next section, we
will present a relatively comprehensive survey on complex
prediction.

In this paper, based on our previous works CPredictor
[19] and CPredictor2.0 [16, 17], we propose a new method
called CPredictor3.0, which considers both dynamic PPI
and functional information. First, we use expression data
of different time points to detect active proteins at

the same time point, meanwhile we cluster proteins by
functional annotations such that each cluster contains
proteins of similar function(s). Then, we compute protein
clusters of similar function(s) and being active at the same
time point by set intersection operation with one set cor-
responding to an active protein set generated by expres-
sion data and the other set corresponding to a protein
cluster generated from functional annotations. Following
that, we map the resulting clusters onto a static PPI net-
work and obtain a series of induced connected subgraphs,
which are treated as candidate complexes. Finally, we
identify protein complexes by expanding and merging the
candidate complexes. Our experimental results validate
the effectiveness of CPredictor3.0, which outperforms the
existing methods in overall.

Related work
So far, a variety of computational methods for complex
prediction have been proposed. Here, we present a brief
survey on the related works by roughly classifying the
existing methods into the following types: methods based
on local dense subgraphs, methods based on the Core-
Attachment Model, methods based on dynamic PPI net-
works, methods based on supervised learning. Among
them, methods based on local dense subgraphs constitute
the most part of existing works. Note that this method
hierarchy only reflects our view of existing works. There
may be other hierarchies of existing works in the liter-
ature. And a brief survey, we cannot cover all existing
works, but we try our best to present the major existing
works.

Methods based on local dense subgraphs
As one of earliest computational methods of complex pre-
diction, MCODE [4] first weights each protein based on
its core-clustering density in the PPI network, then the
protein (say p) with the largest weight is selected to be a
seed node of a primary complex, which is expanded by
including other proteins whose weights exceed a pre-set
threshold recursively, till there are no more nodes to be
added. If there are unprocessed nodes, new complexes
will be generated in the way above. Finally, the neigh-
bors of each complexes generated above are included into
the complexes if their weights is higher than a pre-set
“fluff” parameter. MCL [5] predicts complexes based on
random walk in a PPI network, it is a fast and highly scal-
able clustering method. To simulate random walk, two
operators, expansion and inflation are used to manipu-
late the adjacency matrix iteratively. The aim of those
two operators is to separate dense subgraphs out from
the network. Protein complexes predicted by this method
are non-overlapped. ClusterONE [6] uses a new measure
to compute the cohesiveness of one subgraph, and works
by seeding and expanding with neighboring nodes. This
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method performs better than the other methods when it
was developed.

As there exists high false-positives and false-negatives
in PPI networks. Some methods weight edges of PPI net-
work using PPI network topology, gene expression data
and protein function to improve the reliability of PPI net-
works. DPClus [20] weights each edge according to the
number of shared neighbors of the node pair, then the
weight of each node is computed by summing the weights
of all its edges. Cao et al. [21] treated complex predic-
tion as an optimization problem and built the objective
function by considering a variety of topology characteris-
tics, then the genetic algorithm was employed to detect
complexes from PPI networks.

In general, proteins that form functional groups have
similar gene expression, so some methods weight edges
of PPI networks using expression data. MATISEE [10]
measures the intensity of interaction of a pair of pro-
teins using the correlation of expression data. Ou-Yang
et al. [11] detected protein complexes from signed PPI
networks, the sign of each edge is computed using the
pearson correlation coefficient of gene expression of the
two proteins.

Except for expression data, protein function provides
important clue for protein complex detection. SWE-
MODE [12] proposed by Lubovac weights each edge
based on the semantic similarity of the function(s) of two
proteins, the weight of each node is given by the weighted
clustering coefficients of the nearest neighbors. Cho et al.
[13] weighted each edge according to the functional sim-
ilarity of two nodes, and the weight of each node is the
sum of weights of its edges. The flow simulation algo-
rithm is then used to split the flow from the nodes with
larger weights. As each flow goes along edges and its influ-
ence decay according to the similarity of each node pair
it passes, it stops when its influence is less than a certain
threshold. Thus, the PPI network is divided into a plural-
ity of subgraphs consisting of proteins connected by flow
from the same source protein.

In our previous works CPredictor [19] and
CPredictor2.0 [16, 17], we also used protein functional
information. But different from the existing methods,
we first used protein functional information to cluster
proteins, then mapped the clusters onto PPI networks.
The difference between CPredictor and CPredictor2.0
lies in the usage of functional information. In this paper,
we follow the same idea of CPredictor and CPredictor2.0,
but we also use expression data. That is, we consider the
dynamic property of PPI networks.

Methods based on Core-Attachment model
Gavin et al. [1] studied the structures of yeast protein com-
plexes and found that each protein complex consists of
two parts: the core is made of proteins connected tightly,

and attachments that have relatively sparse interactions
with the core .

Following the core-attachment structure, two meth-
ods CORE [14] and COACH [15] were proposed. CORE
assesses the probability that two proteins belong to the
same core using their common neighbors. Then, larger
cores are produced by merging cores of sizes two, three
and so on repeatedly. Finally, a protein can be added
into one core as attachment if it has interactions with
more than half proteins in the core. COACH first iden-
tifies small dense subgraphs around proteins of high
weight, and then generates cores by merging those dense
subgraphs. It uses the same way to add attachments
as CORE does. Later, Peng et al. [22] porposed the
WPNCA method, which divides a weighted PPI net-
work into multiple closely connected subgraphs by using
the PageRank-Nibble algorithm, and then, protein com-
plexes are generated in each subgraph based on the Core-
Attachment structure.

Methods based on dynamic PPI networks
Earlier methods detect complexes from static PPI net-
works. Actually, the interactions among proteins are
dynamic and change over time at different biologi-
cal stages. In recent year, there are some works on
detecting protein complexes from dynamic PPI networks.
Tang et al. [18] applied a fixed threshold to cluster pro-
teins using expression data such that each cluster consists
of proteins active at the same time point. Since the expres-
sion levels of different proteins are quite different, it is
unreasonable to use a fixed threshold for all proteins.
Later, Wang et al. [23] proposed the three-sigma model to
calculate active threshold for proteins, and achieved bet-
ter performance of complex prediction. Zhang et al. [24]
first identified transient and stable protein interactions
to construct dynamic PPI networks based on the three-
sigma model, then predicted protein complexes from the
dynamic PPI networks. Lei et al. [25] constructed dynamic
PPI networks using the same method as in [24], and then
optimized the parameters of Markov clustering by the
firefly algorithm to detect protein complexes.

Methods based on supervised learning
Some works use supervised learning to detect protein
complexes. Qi et al. [26] classified the topological prop-
erties of protein complexes into four categories, and used
these properties as features to train probability bayesian
network, which was used to predict complexes from
the subgraphs generated from PPI networks randomly.
Yong et al. [27] used true complexes as training data,
and a variety of information such as interactions, func-
tions, text and topology as features, to train Bayesian
model to predict the probabilities of protein interac-
tions included in small complexes, large complexes and
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non-complexes, and then small complexes of size 2,3 were
extracted.

Methods
Here, we first give an overview of CPredictor3.0, then
describe the major components of CPredictor3.0 in detail.

Overview
Figure 1 shows the flowchart of CPredictor3.0, which
consists of six major steps: 1) Detecting active proteins;
2) Clustering proteins by function; 3) Computing active
proteins of similar function; 4) Extracting candidate com-
plexes from PPI networks; 5) Expanding candidate com-
plexes; 6) Merging candidate complexes.

The rationale behind our method is that proteins of a
complex performs some function(s) by interacting with
each other at the same time and the same place in cellular
systems [28]. CPredictor3.0 works like this: First, it detect
active proteins from gene expression data for different
time points, then it cluster proteins according to func-
tions by using functional annotations. With the results of
the above two steps, it computes active protein clusters of
similar function. Following that, these clusters are mapped
onto a PPI network to extract induced connected sub-
graphs, which are taken as candidate complexes. Finally,
we expand the resulting candidate complexes and merge
overlapping ones to get the final predicted complexes. In
what follows, we describes these steps in detail.

Detecting active proteins
Gene expression data reveal the dynamic properties of
proteins in their lifetime. As a protein is not always active,
its expression level changes with its activity degree. Con-
cretely, higher gene expression level means higher activity.
To get the active time points of each protein, Tang et al.
[18] set a global fixed threshold for all proteins. There
are two drawbacks with a global threshold. On the one
hand, there is noise in biological data. On the other hand,
the gene expression curve for each protein is different. To
solve these problems, Wang et al. [23] proposed the three-
sigma model to compute active threshold for each protein.
In this paper, we use the three-sigma model to calculate
the active threshold for each protein.

Suppose the expression data are measured at n time
points. For a protein p, Vk(p) represents protein p’s
expression value at time point k, μ(p) and σ(p) are the
mean and the standard deviation of expression values over
the period from 1 to n. The active threshold of protein p is
evaluated as follows:

Active(p) = μ(p) + β ∗ σ(p) ∗
(

1 − 1
1 + σ(p)2

)
, (1)

Above, β is an adjustable parameter that helps us to get
the most optimal threshold. Usually, we set β =0, 1, 2, 3.

After obtaining the active thresholds for all proteins, we
can collect all active proteins at each time point. That is,

Fig. 1 The flowchart of CPredictor3.0. 1) Detecting active proteins; 2) Clustering proteins by function; 3) Computing active proteins of similar
function; 4) Extracting candidate complexes from PPI networks; 5) Expanding candidate complexes; 6) Merging candidate complexes
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for each protein p at time point i (i = 1, . . . , n), if its
expression value is no less than Active(p), then it is an
active protein at time point i. In such a way, we can get the
set of active proteins APi for each time point i. Thus, we
have a series of active protein sets {APi (i=1, . . ., n)}.

Clustering proteins by function
Here, we cluster proteins by functional annotations. First,
we compute the functional similarity of any two proteins
using the method proposed by Wang et al. [29], then we
employ the spectral clustering algorithm to cluster the
proteins with the computed similarity matrix.

The similarity between any two proteins is computed by
the GO terms annotated on the two proteins. GO includes
a series of biological terms to describe gene and gene
products such as protein, and covers three aspects: biolog-
ical process (BP), cellular component (CC), and molecular
function (MF). Here, we use only BP data. GO can be
represented as a directed acyclic graph (DAG), in which
nodes and edges represent terms and their relationships
(e.g. ‘is-a’ and ‘part-of ’) between two terms. A GO term A
can be described as DAGA=(A, TA, EA) where TA consists
of term A and all its ancestors in DAG, EA is composed of
all edges (relationships) connecting A to all terms in TA.
As defined in Wang’s method, the semantic content of a
term is the sum of semantic contributions of all its ances-
tors in DAGA to A. The semantic contribution of term t to
A is as follows:

SA(t) =
{

1 t = A
max{we ∗ SA(t′)|t′ ∈ childrenof (t)} t �= A

(2)

where function childrenof (t) returns the children of t in
DAGA, and we as the weight on the edge between t and t′,
which depends on the relationship type between the two
terms. For example, the weight is 0.8 for ‘is-a’ and 0.6 for
‘part-of ’.

So the semantic value SV (A) of term A is evaluated as
follows:

SV (A) =
∑
t∈TA

SA(t). (3)

The semantic similarity SGO(A, B) between term A and
B is evaluated as follows:

SGO(A, B) =
∑

t∈TA∩TB SV (t)
SV (A) + SV (B)

. (4)

Generally, one protein may participate one or more
biological functions, so one protein may be anno-
tated by multiple terms. For two proteins P1 and P2,
which are annotated by {go11, go12, · · · , go1m} and

{go21, go22, · · · , go2n} respectively, their similarity can be
evaluated as follows:

Sim(P1, P2) =
∑m

i=1 Sim
(
go1i, P2

) + ∑n
j=1 Sim

(
go2j, P1

)
m + n

(5)

Sim(go, P) = max1≤i≤k
(
SGO

(
go, goi

))
(6)

After getting the similarity matrix for all proteins, where
each element represents the semantic similarity of two
proteins. Then, we apply the spectral clustering algorithm
[30] to the matrix to cluster all proteins into K disjointed
clusters PC={PC1, PC2, · · · , PCK } where K is an adjustable
parameter to control the number of protein clusters.

Complex generation
Computing active protein clusters of similar function
With the sets of active proteins {APi|i = 1, . . . , n} and
the set of protein clusters of similar function {PCj|j =
1, . . . , K}, here we go to compute the active protein clus-
ters of similar function. For time point i, the set of active
protein clusters of similar function is APCi = APi ∩
{PCj|j = 1, . . . , K} = {APi ∩ PCj|j = 1, . . . , K}. Thus,
we can get all active protein clusters of similar function as
follows:

APC = {APCi|i = 1, · · · , n}
= {APi ∩ PCj|i = 1, · · · , n; j = 1, . . . , K}
= {APCij|i = 1, · · · , n; j = 1, . . . , K}.

(7)

Computing candidate complexes
We have already gotten the set of active protein clusters
of similar function, considering that complexes consist of
interacting proteins, we map all active protein clusters of
similar function onto a PPI network G = (V , E) where
V and E represent proteins and interactions respectively,
to get connected subgraphs induced by each cluster on
G. Concretely, given the active protein cluster of similar
function APCij, we map APCij onto G and get the induced
graph Gij = (Vij, Eij) by APCij. That is, Vij = APCij
and Eij are the set of edges in G that connect proteins
in APCij. Gij may be not a connected graph, i.e., it may
consist of several connected subgraphs. We treat each
resulting subgraph of size > 1 as a candidate complex.
Thus, from Gij we get a set of candidate complexes CCij.
Similarly, by mapping other active protein clusters of simi-
lar function onto G, we obtain other candidate complexes.
We denote the set of all candidate complexes as CC=
{CCij|i = 1, · · · , n; j = 1, . . . , K}.
Candidate complex expanding
Here, we try to expand each candidate complex on G.
Consider a candidate complex c ∈ CC, its corresponding
graph is Gc = (Vc, Ec). First, we search the set of neigh-
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bor nodes of candidate complex c in G, which is denoted
as NG(c). We have

NG(c) = {
p|E(p, Gc) ∈ E and p ∈ (V − Vc)

}
(8)

where p is any protein not in Vc and E(p, Gc) is the set of
interactions between protein p and any protein in Gc. For
any protein p ∈ NG(c), if the following condition holds,
we add p and its interactions with proteins in c to c:

|E(p, Gc)| ≥ α ∗ |Vc|. (9)

Above, α is a pre-specified threshold. In this paper, it is
set to 0.6 by experience. α is in the range 0 to 1. When α

is set to 0, all neighbors of Vc will be added into Vc. Oth-
erwise, if α is set to 1, no nodes will be added into Vc.
Usually, if one node interacts with more than half nodes
of Vc, the node will be added [15, 19]. Our experimen-
tal results validate the rationality of the value setting. The
expansion process continues till no any more neighbor can
be added to c. We do expansion to all candidate complexes
in CC, and denote the set of candidate complexes after
expansion as CCexp.

Candidate complexes merging
There may be overlapping between candidate complexes
in CCexp. For two overlapping candidate complexes, if
their overlapping score is larger than a predefined thresh-
old, we merge them to one complex. Concretely, given two
candidate complexes cA and cB, their overlapping score is
evaluate as follows:

OS(cA, cB) =
∣∣VcA ∩ VcB

∣∣∣∣VcA ∪ VcB

∣∣ . (10)

If OS(cA, cB) ≥ γ , we merge cA and cB. Here, γ is a
pre-specified parameter. By experiments, we set γ = 0.8.
When there are no more candidate complexes that can be
merged, the resulting and remaining candidate complexes
constitute the final set of predicted complexes.

The Algorithm
The algorithm of CPredictor3.0 is presented in
Algorithm 1. Here, Lines 5-10 are for computing active
protein clusters of similar function, Lines 11-24 are
for candidate complexes extraction, Lines 25-35 are for
candidate complexes expansion, and Lines 36-40 are for
candidate complexes merging.

Results and discussion
Data sources and Metrics
We downloaded gene expression data GSE3413 [31] from
Gene Expression Omnibus (GEO) to compute active pro-
teins. As gene products can cover more than 96% proteins
in PPI networks, it is reasonable to detect active proteins
from expression data for different time points. GSE3413

Algorithm 1 The algorithm of complex generation
Input: The active protein sets AP; The protein clusters of

similar function PC; PPI network G=(V, E);
Output: Predicted protein complex set PPC;

1: APC ={} ; /* the set of clusters with active proteins of
similar function */

2: CC = {}; /* the set of candidate complexes by mapping
APC to PPIN */

3: CCexp = {}; /* the set of candidate complexes by
expanding CC */

4: PPC ={} ; /* the set of predicted protein complexes by
merging CCexp */

5: for i=1 to |AP| do
6: for j=1 to |PC| do
7: APCij = APi ∩ PCj;
8: APC = APC ∪ APCij;
9: end for

10: end for
11: for i=1 to |AP| do
12: for j=1 to |PC| do
13: /* Gij is the subgragh of G, Vij = APCij , and

Eij is the set of edges connecting proteins in Vij. */
14: Gij = (Vij, Eij);
15: for q =1 to the number of connected sub-

graphs in Gij do
16: /* Gq

ij is one of connected subgraph of
Gij, V q

ij is the set of proteins in Gq
ij, and Eq

ij is the set of
edges connecting proteins in V q

ij . */;
17: Gq

ij = (V q
ij , Eq

ij);
18: if |V q

ij | ≥ 2 then
19: CCij = CCij ∪ V q

ij ;
20: end if
21: end for
22: CC = CC ∪ CCij ;
23: end for
24: end for
25: for each candidate complex c in CC do
26: Gc = (Vc, Ec) /* corresponding graph of c on G */
27: NG(c) = the neighbors of candidate complex c

in G;
28: for each protein p in NG(c) do
29: |E(p, Gc)| = the number of interactions

between p and Gc;
30: if |E(p, Gc)| > 0.6 ∗ |Vc| then
31: c = c ∪ p;
32: end if
33: end for
34: CCexp = CCexp ∪ c;
35: end for
36: for each two candidate complexes cA and cB in CCexp

do
37: if OS(cA, cB) > 0.8 then
38: PPC = PPC ∪ (cA merge cB);
39: end if
40: end for
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is the expression profiling of yeast in the form of matrix,
which contains three successive metabolic cycles, and
each cycle has 12 time intervals. So each protein has 12
expression values in every cycle. To reduce the impaction
of noise, we took the averaged expression values of 12 time
points over three cycles, and used these averaged values in
our experiments.

In addition to gene expression data, we used three PPI
datasets of yeast, which are referred to as Krogan [32],
Collins [33] and WI-PHI [34]. The numbers of proteins
and interactions in these three datasets are presented
in the 2nd and 3rd columns of Table 1. MIPS [35] and
CYC2008 [36] were used as reference complex sets, the
numbers of complexes and proteins contained in these
two sets are presented in the 2nd and 3rd columns of
Table 2. In this paper, the GOSemsin package [37] was
employed to compute the protein functional similarity
matrix.

To measure the quality of predicted protein complexes,
predicted complexes are checked against with reference
complexes. Let P= (Vp, Ep) and R=(Vr , Er) are a predicted
complex and a known complex, respectively. The affinity
score (AS) of the two complexes is defined as follows:

AS(P, R) = |Vp ∩ Vr|2
|Vp| ∗ |Vr| . (11)

Usually, P and R are considered matched when
AS(P, R) ≥ 0.2. This criterion was widely used in the lit-
erature [19, 21, 38–43]. However, as stated in PPSampler2
[43], for complexes of size 2, that is, the size of Vp and Vr
is 2, then we have 1

2∗2 = 0.25 > 0.2. This means that size-
2 candidates can be easily considered as real complexes,
which may bring randomness to the final result and affect
the correctness of performance evaluation. Actually, most
existing methods cannot effectively detect size-2 com-
plexes, because they treat complexes as dense subgraphs
while size-2 complexes are just single edges. So a common
strategy is simply neglecting the size-2 complexes. In our
method, we follow this strategy to discard those predicted
complexes with only two proteins.

In our method, recall, precision and F1-measure are
used to measure the prediction performance. Let PS =
{ps1, · · · , psm} and RS={rs1, · · · , rsn} are the predicted

Table 1 The statistics of PPI datasets

PPI network # proteins # interactions

Krogan 2674 7075

Collins 1622 9074

WI-PHI 6400 50000

Table 2 The statistics of benchmark datasets

benchmark database # complexes # proteins

MIPS 313 1237

CYC2008 349 1627

complex set and the benchmark complex set respectively,
the three performance metrics are evaluated as follows:

recall = Nr
|RS| , (12)

precision = Np
|PS| , (13)

F1 − measure = 2 ∗ recall ∗ precision
recall + precision

. (14)

Above, Nr is the number of reference complexes that
match at least one predicted complex, Np is the number
of predicted complexes that match at least one reference
complex. |RS| and |PS| are the size of benchmark complex
set and the size predicted complex set respectively.

Experimental results
We present the experimental results from three aspects.
Firstly, we count the size distribution of predicted protein
complexes of different algorithms. Secondly, we check the
impact of two parameters K and β on prediction perfor-
mance of our method. Finally, we compare our method
with major existing methods in terms of recall, precision
and F1-measure.

The size distribution of predicted protein complexes
As our method employs function and expression con-
straints to filter complexes, which may tend to produce
small complex candidates. However, our method also use
cluster expansion and merging strategies to generate the
final predictions. To check the effectiveness of the expan-
sion and merging strategies, here we present the size
distribution of predicted protein complexes for different
methods on different PPI datasets against different com-
plex benchmark sets in Fig. 2. It is clear that complexes
with 5 or more proteins count the largest part of our
method’s prediction results. This means that the expan-
sion and merging strategies employed in our method are
effective.

The effect of parameters on the performance of CPredictor3.0
In our method, there are two adjustable parameters K and
β which can impact prediction performance. Here, we
present the results of how F1-measure changes with the
values of the two parameters, which are shown in Fig. 3.

By checking the complexes in the reference sets, we can
see that the size of most protein complexes is less than 30.
In experiments, we set the value of K to from 1 to 100.
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Fig. 2 The distribution of protein complex size. a Krogan PPI data set. b Collins PPI data set. c WI-PHI PPI data set

The parameter β is used to set the threshold for filtering
active proteins. According to three sigma(SD) model, we
set the largest value of β to 3, and change it from 0 to

3. As shown in Fig. 3, the performance tends to be sta-
ble when K is greater than 20. For different K values, the
best F1-measure is achieved when β is set to 0. So in the
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Fig. 3 The effect of K and β on prediction performance. a Krogan PPI data and MIPS reference complexes set. b Krogan PPI data and CYC2008
reference complexes set. c Collins PPI data and MIPS reference complexes set. d Collins PPI data and CYC2008 reference complexes set. e WI-PHI PPI
data and MIPS reference complexes set. f WI-PHI PPI data and CYC2008 reference complexes set

comparison experiments, we set K=30, β=0 for Collins
PPI data, K=35, β=0 for Krogan PPI data, and K=17, β=1
for WI-PHI PPI data.

By checking the predicted complexes further, we can see
that there are some large complexes of size > 100 when K
is set small. This is reasonable. As parameter K indicates
the number of clusters that the proteins are to be divided.
So, small K will lead to large clusters, i,e, large complexes,
and vice versa.

As for parameter β , which is the threshold for filtering
active proteins from gene expression data. A larger β will
results in more proteins being filtered as inactive proteins.
In Fig. 3, we can see that when β is set to 0, i.e., we set
β to the mean of expression values over all time points,
we get the best performance on Collins and Krogan PPI
networks, while the best performance is achieved on WI-
PHI network with β = 1.0.

Comparison with major existing methods
Here, we compare our method CPreditor3.0 with eight
existing protein complex prediction methods, includ-
ing MCODE [4], DPClus [20], RNSC [44], CORE [14],
ClusterONE [6], Zhang et al. [24], CPredictor [19], and

CPredictor2.0 [16, 17]. Some of them are the state of the
art techniques, such as ClusterONE [6] and CPredictor2.0
[16, 17]. All parameters in these compared methods were
set as suggested by their authors.

The experimental results are shown in Fig. 4. We can
see in five of the six experimental settings, CPredictor3.0
achieves the highest F1-measure. And in the remaining
setting, CPredictor3.0 still has comparable F1-measure to
the best one. In three of the six settings, CPredictor3.0 has
the highest precision, and has the 2nd highest precision in
the other three settings. As for recall, CPredictor3.0 stays
at the second or third position in five settings and at the
fifth position in one setting. Thus, in overall our method
performs best among the nine methods.

From Fig. 4, we can see that all methods have differ-
ent performance on different PPI datasets and complexes
reference sets. To give a detailed picture, we compute
the average F1 values of all compared methods in the six
settings. The results are presented in Table 3. Checking
these results, we can see that: on the one hand, giving
the PPI dataset (Krogan, Collins or WI-PHI), the perfor-
mance with CYC2008 as reference set is better than that
with MIPS as reference set. On the other hand, giving
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Fig. 4 Performance comparison with eight existing protein complex prediction algorithms in terms of recall, precision, and F1-measure. Our
method CPreditor3.0 achieves the highest F1-measure in five of the six experimental settings. (a) Results with Krogan as PPI dataset and MIPS as
complex reference set, (b) Results with Krogan as PPI dataset and CYC2008 as complex reference set, (c) Results with Collins as PPI dataset and MIPS
as complex reference set, (d) Results with Collins as PPI dataset and CYC2008 as complex reference set, (e) Results with WI-PHI as PPI dataset and
MIPS as complex reference set, (f) Results with WI-PHI as PPI dataset and CYC2008 as complex reference set

the complex reference set (MIPS or CYC2008), using the
Collins PPI dataset gets the best performance and using
the WI-PHI PPI dataset has the worst performance. This
observation can be explained by the number of overlap-
ping proteins between the PPI dataset and the reference
set used in the prediction. Comparing with Krogan and
Collins, WI-PHI has the largest number of proteins. Most
predicted complexes from WI-PHI cannot find matching
complexes in the two reference sets, which results in low
performance.

To give a detailed explanation, we compute the ratio
of the number of overlapping proteins between each PPI
dataset and each complexs reference set over the num-
ber of proteins contained in the PPI dataset. We call it
“overlapping ratio” in short. The results are presented in
Table 4. From this table, we can see that 30.6% and 49.2%
proteins in the Krogan PPI dataset and the Collins PPI

Table 3 The average F1-measure values of the nine algorithms
on various PPI datasets and complexes reference sets

Collins Krogan WI-PHI

CYC2008 MIPS CYC2008 MIPS CYC2008 MIPS

F1 0.5518 0.4837 0.4376 0.3534 0.2672 0.1861

dataset are overlapping with that of the MIPS complex set,
while there are only 19.1% proteins in the WI-PHI PPI
dataset are overlapping with that of the MIPS complex
set. The overlapping ratio of Krogan, Collins and WI-PHI
with CYC2008 are 43.1, 68.8 and 25.3% respectively. In
summary, for any PPI dataset, the overlapping ratio with
CYC2008 is higher than that with MIPS; For any refer-
ence set, the highest overlapping ratio is with Collins, then
with Krogan, and the lowest overlapping ratio is with WI-
PHI. This trend is completely consistent with the results
in Table 3. This explains the performance difference of the
six settings.

Conclusions
This paper introduced a new method CPredictor3.0 to
boost complex prediction performance from PPI net-
works by using both expression data and functional

Table 4 Overlapping protein ratios of between PPI datasets and
complexes reference sets

Benchmark database Krogan Collins WI-PHI

MIPS 30.6% 49.2% 19.1%

CYC2008 43.1% 68.8% 25.3%
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annotations. Experiments on three commonly used PPI
datasets and two benchmark complexes sets show that
CPreditor3.0 performs best in overall. It is well recog-
nized that complexes consist of proteins that have similar
function and are active at the same time and place in
cellular systems. Our method considers all these aspects,
including function and dynamic interaction by using PPI
data, functional annotations and expression data. This
may explain the best performance of our method.

As for future work, on the one hand, we are consid-
ering more advanced models to extract complexes from
PPI networks, such as graph sparsity models [45] and
temporal graph mining models [46]. On the other hand,
small complex detection is a more challenging task [17],
which is another focus of our future study. Thirdly, for
better complex prediction performance, we will also con-
sider building reliable and robust PPI networks by fusing
multiple networks [47].
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