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Abstract

Background: Carbonylation, which takes place through oxidation of reactive oxygen species (ROS) on specific
residues, is an irreversibly oxidative modification of proteins. It has been reported that the carbonylation is related to a
number of metabolic or aging diseases including diabetes, chronic lung disease, Parkinson’s disease, and Alzheimer’s
disease. Due to the lack of computational methods dedicated to exploring motif signatures of protein carbonylation
sites, we were motivated to exploit an iterative statistical method to characterize and identify carbonylated sites with
motif signatures.

Results: By manually curating experimental data from research articles, we obtained 332, 144, 135, and 140
verified substrate sites for K (lysine), R (arginine), T (threonine), and P (proline) residues, respectively, from 241
carbonylated proteins. In order to examine the informative attributes for classifying between carbonylated and
non-carbonylated sites, multifarious features including composition of twenty amino acids (AAC), composition
of amino acid pairs (AAPC), position-specific scoring matrix (PSSM), and positional weighted matrix (PWM)
were investigated in this study. Additionally, in an attempt to explore the motif signatures of carbonylation
sites, an iterative statistical method was adopted to detect statistically significant dependencies of amino acid
compositions between specific positions around substrate sites. Profile hidden Markov model (HMM) was then
utilized to train a predictive model from each motif signature. Moreover, based on the method of support
vector machine (SVM), we adopted it to construct an integrative model by combining the values of bit scores
obtained from profile HMMs. The combinatorial model could provide an enhanced performance with evenly
predictive sensitivity and specificity in the evaluation of cross-validation and independent testing.

Conclusion: This study provides a new scheme for exploring potential motif signatures at substrate sites of protein
carbonylation. The usefulness of the revealed motifs in the identification of carbonylated sites is demonstrated by their
effective performance in cross-validation and independent testing. Finally, these substrate motifs were adopted to
build an available online resource (MDD-Carb, http://csb.cse.yzu.edu.tw/MDDCarb/) and are also anticipated to facilitate
the study of large-scale carbonylated proteomes.
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Background
Post-translational modifications (PTMs) are chemical
modifications that take a significant part in various bio-
logical processes including transcriptional regulation,
cell differentiation, apoptosis, signaling and metabolic
pathways, protein activity, and protein-protein interac-
tions [1, 2]. In most types of PTMs, enzymes are
typically responsible for the attachment and removal of
chemical groups on specific residue. Well-known exam-
ples are protein kinases that carry out phosphorylation
of proteins in signaling pathways and phosphatases that
carry out dephosphorylation [3]. However, several types
of PTMs were reported that occur in a non-catalyzed
manner, and are often influenced out by amino acid
composition, structural environment, and physicochemi-
cal properties of proteins. These kinds of PTMs are
known as non-enzymatic protein modifications, such as
oxidation, S-nitrosylation, glutathionylation, carbonyla-
tion, isomerization, sulfenylation, deamidation, and gly-
cation [4, 5]. Reactive Oxygen Species (ROS) play crucial
roles in signaling networks as well as in the resistance of
violating pathogens [6]. Oxidative stress occurs due to
the abundance of ROS and the carbonylation of proteins
is an irreversible PTM that has been regarded as a bio-
marker for oxidative stress based on its relative stability
and ease of quantification [7, 8].
There are at least three mechanisms by which protein

carbonylation occurs. The first one is direct oxidation by
ROS on K (lysine), R (arginine), T (threonine), or P
(proline) residues involving carbonyl derivatives of 2-
pyrrolidone from proline, α-aminoadipic semialdehyde
from lysine, glutamic semialdehyde from arginine and
proline, as well as 2-amino-3-ketobutyric acid from
threonine [6, 8, 9]. Previous studies has reported that
the carbonylation is related to a number of metabolic or
aging diseases including diabetes, chronic lung disease,
Parkinson’s disease, and Alzheimer’s disease [5–7].
Because of the biological importance of protein carbon-
ylation, mass spectrometry (MS)-based proteomics are
widely employed to detect large-scale carbonylated pep-
tides [10, 11]. However, the MS-based method for the
identification of site-specific carbonylated peptides is
labor-intensive and time-consuming. Therefore, several
in silico approaches have been proposed for the predic-
tion of carbonylated residues based on protein se-
quences. Additional file 1: Table S1 shows that, in 2014,
Lv et al. developed a web tool, namely CarsPred, for
identifying the carbonylation sites in human proteins
using WSVM [12]. In 2016, Jia et al. developed a
predictor called iCar-PseCp by incorporating sequence-
coupled information into the general pseudo-amino acid
composition, and balancing out skewed training datasets
by Monte Carlo sampling to expand positive subsets
[13]. This year, Weng et al. created an automatic scheme

for providing a full study of substrate site preference in
protein carbonylation [14]. Recently, a new approach
named predCar-Site was designed to predict protein car-
bonylation sites by (1) incorporating sequence-coupled
information into the general pseudo-amino acid
composition, (2) balancing the effect of skewed training
datasets by the Different Error Costs method, and (3)
constructing a predictor using a support vector machine
as a classifier [15]. The predCar-Site predictor could
yield an average AUC (area under curve) score of
0.9959, 0.9999, 1, and 0.9997 for predictions in carbony-
lated K, P, R, and T, respectively.
The aim of this study is to characterize potential sub-

strate motifs with an attempt to identify carbonylation
sites. Herein, a variety of sequential attributes such as
composition of amino acid (AAC), composition of
amino acid pairs (AAPC), amino acid sequence (AA),
positional weighted matrix (PWM), BLOSUM62 (B62),
and position-specific scoring matrix (PSSM) were exam-
ined the ability to discriminate between carbonylation
and non-carbonylation sites. Moreover, maximal depen-
dence decomposition (MDD) [16], an iteratively statis-
tical method, was employed to recognize motif patterns
of carbonylation sites. MDD provides the possibility for
a large group of aligned sequences to be partitioned into
subgroups that contain consensus motifs based on the
most remarkable dependencies of amino acid compos-
ition between positions around carbonylated sites. Each
subgroup is then built as a predictive model with a cor-
responding MDD-identified motif using a profile hidden
Markov model (HMM). Then, the support vector ma-
chine (SVM) is applied to build a combinatorial model
by integrating the values of bit scores obtained from
profile HMMs.

Methods
Collection and preprocessing of training dataset
The experimentally verified carbonylation peptides used
in this study were obtained from dbPTM [1, 17, 18],
which is a public PTM database created by manually
curating experimental data from literature and systema-
tically collecting PTM information from public domains.
The collected dataset, which implicates full-length
carbonylated protein sequences as well as K, R, T, and P
carbonylated positions in mammalian proteins, is
regarded as a training dataset. In total, there are 241
non-redundant carbonylated proteins containing 332,
144, 135, and 140 carbonylated sites in K, R, T, and P
residues, respectively. As described in previous studies
[19–24], the carbonylation sites were used as the positive
training dataset, while the non-carbonylated K, R, T and
P residues were used as the negative training dataset. As
a typical study in computation prediction of PTM sites,
an effective window size should be determined by using
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a sequence fragment having a window size of 2n + 1
amino acids and centering on carbonylated residues.
The window length usually varies from 3 (n = 1) to 31
(n = 15) [25]. Based on the overall evaluation of various
window lengths in a previous investigation [14], in this
study, a 21-mer window length (n = 10) was chosen to
extract the sequence fragments for the positive and
negative training datasets.
In order to prevent overestimation of the performance

of our predictive model, homologous sequences were
eliminated from the training datasets. Employing the
software package of CD-HIT [26] with a threshold of
50% sequence similarity, excessively similar sequences
were removed from both the positive and negative data-
sets; this was done to remove any negative sequences
that were similar to positive sequences. The final
positive training dataset consisted of 256 carbonylated
sequences for the K residue, 115 for R, 109 for T, and
109 sequences for P. However, the amount of negative
samples was excessively large compared to the amount
of positive samples. Thus, to avoid an unreasonably
imbalanced classification between positive and negative
instances, the numbers of sequences in the negative
dataset were set to twice the size of the numbers in the
positive dataset (2:1 ratio); random selection of negative
samples resulted in 512 K, 230 R, 218 T, and 218 P non-
carbonylated peptides in the negative training dataset
(Table 1). To avoid skewing the results, the process of
random sampling of the negative dataset was repeated
30 times to obtain an average performance for cross-
validation.

Feature extraction and encoding
This work focused on the analysis of sequence-based
characteristics around experimentally confirmed carbo-
nylation sites. A 21-mer window length centering on
carbonylated sites was adopted to extract fragmented
sequences for the training datasets. There are 21 types

of amino acids used in feature encoding, consisting of 20
native amino acids and 1 dummy amino acid (repre-
sented by a hyphen (−)). Amino acid composition (AAC)
is the most usual sequence feature calculating the occur-
ring frequency of twenty amino acids within a given se-
quence fragment. In this study, the sum of the k vectors
{xi, i = 1, ..., k} was representing k fragmented sequences
in the training dataset, in which positive and negative
datasets are labeled with +1 and −1, respectively. Given
a sequence fragment k, fk(n) represents the number of
occurrences of the 20 native amino acids, where n stands
for 20 types of amino acid. Hence, the composition of
twenty amino acids Pk(n) is computed as follows [27]:

Pk nð Þ ¼ f k nð Þ
P20

n¼1 f k nð Þ n ¼ 1; 2;…; 20 ð1Þ

The AAC vector of a sequence fragment xk is then
defined as

xk ¼ Pk 1ð Þ; Pk 2ð Þ;…; Pk 20ð Þ½ � ð2Þ
To encode the composition of the twenty amino acids

around the carbonylation sites, the 20-dimensional vec-
tor xk included 20 elements specifying the frequencies of
twenty amino acids normalized by the total number of
amino acids in a fragmented sequence. The composition
of amino acid pairs (AAPC) [28], which is similar to the
AAC feature, transforms a sequence fragment into a
400-dimensional vector, which includes 400 elements
specifying the numbers of occurrences of 400 amino acid
pairs divided by the total number of amino acid pairs in
a fragmented sequence. Additionally, an orthogonal bin-
ary coding method was used to transform each amino
acid into a numeric vector. For example, Alanine (A)
can be encoded as “10,000,000,000,000,000,000,” Cyst-
eine (C) can be encoded as “01000000000000000000,”
Aspartic acid (D) can be encoded as “00100000000
00000000,” and so on. Given a fragmented sequence
with a window size of 2n + 1, the number of dimensions
in an orthogonal binary vector that represents the up-
stream and downstream amino acids around the central
position (carbonylated site) was (2n + 1) × 20.
According to the theory of structural conservation, a

number of amino acids might be mutated without chan-
ging the structural conformation of a protein [29].
Hence, two proteins may have similar structures but dif-
ferent compositions of amino acids. A position Specific
Scoring Matrix (PSSM) was used to generate a profile of
distantly-related residues from a cluster of sequences
that was formerly aligned in structural resemblance [30].
PSSM profiles have been extensively utilized in the pre-
diction of protein secondary structure, subcellular
localization, and PTM substrate sites [20, 22, 29, 31–37].
By running a PSI-BLAST [38] against the database of

Table 1 Number of positive and negative training sequences
on K, R, T, and P residues

Residue Number of
carbonylated
proteins

Dataset Number of
sequences

TOTAL

K 162 Positive 256 768

Negative 512

R 96 Positive 115 345

Negative 230

T 85 Positive 109 327

Negative 218

P 82 Positive 109 327

Negative 218
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non-homologous carbonylated sequences, a PSSM pro-
file was generated with a matrix of (2n + 1) × 20 ele-
ments with the carbonylated site located in a central
position. Rows with the same types of amino acids in the
PSSM matrix were summed to obtain a matrix of 20 ×
20 elements. Lastly, each element of the 20 × 20 matrix
was divided by the window length 2n + 1 (n = 10) and
normalized using the formula: 1

1þe−x.
As described in the coding method of SulfoSite [39],

the positional weighted matrix (PWM) of amino acids
surrounding the carbonylated site was determined by
calculating the relative frequency of 20 amino acids at a
specific position. After the construction of the PWM
from the positive training dataset, each sequence
fragment was transformed into a numeric vector with
(2n + 1) ×w elements, where 2n + 1 denoted the window
size while w represented the frequencies of the 20 amino
acids. Additionally, the BLOSUM62 (amino acid substi-
tution matrix) was generated based on the alignments of
peptide sequences having less than 62% sequence
identity. Each sequence fragment was transformed into a
numeric vector according to the substitution scores of
twenty amino acids from BLOSUM62.

Detection of substrate motifs by maximal dependence
decomposition
Based on the amino acid sequences, the motif signatures
of the substrate sites were explored around the carbony-
lated residues. The positive training dataset (carbonylated
sequence fragments) was used to investigate the substrate
motifs based on maximal dependence decomposition
(MDD) [16]. Due to the difficulty of observing the con-
served motifs from a large-scale sequence dataset, MDD
has been utilized to cluster a group of aligned phosphory-
lated peptides into subgroups that show statistically
significant motifs [20]. Previous studies [31, 35, 40–42]
have demonstrated the effectiveness of the clustering of
modified sequences into subgroups prior to the construc-
tion of predictive models. For this investigation, MDD was
applied using public software, MDDLogo [31], to cluster
all the sequence fragments of the positive training dataset.
The kernel of MDDLogo applied the chi-squared test to
iteratively evaluate the correlation between the occurrence
of amino acids between two positions, Ai and Aj, neigh-
boring the carbonylated site. To avoid a higher degree of
freedom in the chi-squared test, the 20 types of amino
acids were categorized into five groups according to
biochemical properties, including polarity, acidity,
basicity, hydrophobicity, and aromaticity, as shown in
Fig. 1. To evaluate the dependence of amino acid oc-
currence between two positions (Ai and Aj) surround-
ing the carbonylated sites, a chi-squared test x2(Ai,
Aj) was performed as follows:

χ2 Ai; ;Aj
� � ¼

X5

m¼1

X5

n¼1

Xmn−Emnð Þ2
Emn

ð3Þ

The number of sequences at the position Ai of the
group m and position Aj of group n are represented by
Xmn for each pair (Ai and Aj) and i ≠ j. X represents the
total number of sequences and Emn was projected as
XmR⋅XCn

X , where XmR = Xm1+ … + Xm5, XCn = X1n +… + X5n.
To determine the value of the chi-squared test, a contin-
gency table describing the co-occurrence of amino acids
between Ai and Aj was provided. Given Ai and Aj, if the
value of the chi-squared test was larger than 34.3, based
on degrees of freedom =(5 − 1) × (5 − 1) and p-value
≤0.005, the null hypothesis was rejected because the two
positions were dependent. The process was then re-
peated as described by Burge and Karlin [43]. MDDLogo
provided a tree-like visualization for the hierarchical
clustering of the positive training dataset. Since
MDDLogo was applied on the positive training dataset,
the parameter of maximum-cluster-size was set in order
to terminate the MDD clustering process. If the size of a
subgroup was less than the value of maximum-cluster-
size, the subgroup was not divided any further and the
process of hierarchical clustering was terminated until
the sizes of all subgroups were smaller than the value of
maximum-cluster-size.

Construction of predictive models
A support vector machine (SVM) [44] is an advanced
machine learning method for pattern recognition and
data classification. Based on the binary classification
between the positive and negative samples in this study,
an SVM can transform all samples into a vector space of
higher dimension by using different kernel functions. A
hyperplane is then determined for discriminating be-
tween the positive and negative samples with maximal
margin and minimal error. Various sequence-based fea-
tures are encoded as numeric vectors for input in the
SVM. Herein, a popular SVM library, LIBSVM [45], was
installed in our computing server in order to efficiently
build a predictive model for each feature. LIBSVM pro-
vides four kernel functions, namely a linear function,
polynomial function, radial basis function (RBF), and sig-
moid function, for the transformation of sample space.
As described in a number of previous works [3, 22, 24,
46, 47], the RBF is a reasonably best choice for a kernel
function when training an SVM classifier. The RBF func-
tion is defined as K(Si, Sj) = exp(−γ‖Si − Sj‖

2). Two sup-
porting parameters, gamma (r) and cost (c), are used to
enhance the predictive power of the SVM. The RBF
kernel is typically optimized by the gamma parameter,
and the softness of hyperplane is modulated by the cost
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parameter. A Python program (grid.py) provided by
LIBSVM was used to optimize gamma and cost and ob-
tain better predictive accuracy.
In addition to the RBF-based SVM, a profile hidden

Markov model (HMM) was also used to generate the
predictive model, especially for the MDD-identified
motif signatures. A profile HMM can determine the
probability distribution of 20 amino acids against large-
scale sequence data and can detect distant relationships
between two positions surrounding the carbonylation
sites [48]. In this study, the software package HMMER
version 2.3.2 [48] was adopted to train and calibrate
profile HMMs based on the positive training dataset.
Furthermore, the profile HMM can be used to search
the putative carbonylated sites on a protein sequence. In
an attempt to capture the characteristics of each MDD-
identified motif, each of the MDDLogo-clustered

subgroups was regarded as a training dataset for training
a profile HMM. When searching the hits of a profile
HMM, HMMER returns a bit score and an expectation
value (E-value). Given an input sequence, a positive
prediction is defined as the HMMER bit score greater
than the threshold parameter. If the bit score threshold
is defined as a lower value, the predicted result will in-
duce a higher sensitivity (true positive prediction rate);
oppositely, increasing the bit score threshold favors a
higher specificity (true negative prediction rate). Hence,
the threshold value should be optimized for achieving a
better performance with balanced sensitivity and specifi-
city. After the construction of a profile HMM for each
MDDLogo-clustered subgroup (first layer) and for each
carbonylated residue type, all profile HMMs were inte-
grated into a combinatorial model using the SVM. As
presented in Additional file 2: Figure S1, the values of

Fig. 1 Analytical flowchart of maximal dependence decomposition
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bit scores obtained from the profile HMMs were used to
form a numeric vector of bit scores for constructing an
SVM classifier in the second layer.

Performance evaluation
Five-fold cross-validation
In this work, the performances of the predictive models
trained with various features were evaluated based on
five-fold cross-validation. Firstly, all sequences of train-
ing dataset were randomly split into five approximately
equal-sized subgroups. Among the five subgroups, one
was used as the validation data and the remaining four
subgroups were used as the training data. Then, the
process was executed five times where each subgroup
should be regarded as the validation set in turn. The
predicted results of five validation sets were then com-
bined into a single performance. Finally, the perform-
ance of the predictive models was determined based on
the following metrics:

Sn ¼ TP
TP þ FN

ð4Þ

Sp ¼ TN
TN þ FP

ð5Þ

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

ð6Þ

MCC ¼ TP � TNð Þ− FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN � FNð Þp

ð7Þ
where TP, TN, FP, and FN represent the numbers of
true positives, true negatives, false positives, and false
negatives, respectively. The Sn (sensitivity) and Sp
(specificity) indicate the accurate prediction ratios of
positive (carbonylation) and negative (non-carbonyla-
tion) results, respectively. The Acc (accuracy) denotes
the ratio of correct prediction of true positives and
true negatives. In unbalanced positive and negative
datasets, the Matthews correlations coefficient (MCC)
is a convenient benchmark for the correlation be-
tween the observed and predicted classifications of
the positive and negative samples. The MCC value
ranges from −1 to +1, where the value of +1 repre-
sents a perfectly correct classification, while the
values 0 and −1 represent a random prediction and
perfectly wrong classification, respectively. Further-
more, the ROC (Receiver Operating Characteristic)
curve of various models is used for the comparison
of AUC (area under the curve of ROC) values.

Independent testing
In order to compare the proposed method with other
prediction tools, an independent testing dataset, which

is truly blind to the training dataset, was constructed by
manually curating eight research articles [49–56], which
extracted 132 K, 102 R, 82 T, and 104 P carbonylation
sites on 80, 71, 62, and 71 carbonylated proteins, re-
spectively, from multiple species. After the removal of
homologous sequences by using the CD-HIT program,
the final testing dataset comprised 85, 72, 63, and 82
carbonylation sites on K, R, T, and P, respectively
(Table 2). Additionally, the negative dataset for inde-
pendent testing was composed of 170 K, 144 R, 126 T,
and 164 P non-carbonylation sites. An effective classifi-
cation between positive and negative testing datasets
would indicate a reliable and stable performance in the
prediction of protein carbonylation sites.

Results and discussion
Investigation of amino acid composition at carbonylated
sites
To study the composition of amino acids around carbony-
lated sites, a graphical representation was prepared by cal-
culating the occurrence of each amino acid surrounding
the carbonylation sites (the central amino acid, which is
the carbonylation site, is excluded from the calculation)
and divided by the length of the fragment excluded at the
carbonylation site. This process was conducted for each
carbonylation site (positive) and non-carbonylation site
(negative). Figure 2 shows the comparisons of amino acid
compositions in the positive and negative training data-
sets. We observed that the occurrence rates of K, R, T,
and P residues in the carbonylation sites were higher than
those in the non-carbonylation sites; K was significantly
abundant in carbonylation sites. This investigation showed
that a carbonylation site generally occurs within KRTP-
abundant regions, which is consistent with findings re-
ported by Nystrom et al. [57]. Additionally, we observed
a dominant proportion of leucine (L); however, the
reason for this is unknown and warrants further
study. Additionally, in order to explore the position-

Table 2 Number of positive and negative testing sequences on
K, R, T, and P residues

Residue Number of
carbonylated
proteins

Dataset Number of
sequences

TOTAL

K 80 Positive 85 255

Negative 170

R 71 Positive 72 216

Negative 144

T 62 Positive 63 189

Negative 126

P 71 Positive 82 246

Negative 164
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specific composition of amino acids around carbonyl-
ation sites, frequency plots of the vicinities around
carbonylated sites were graphically represented using
WebLogo [58] and are provided in Additional file 3:
Fig.ure S2. The frequency plots revealed that K and R
residues are slightly enriched within the neighboring
regions of carbonylation sites.

Cross-validation evaluation of various features in
carbonylation site prediction
In order to identify the most useful features in the classifi-
cation of carbonylated and non-carbonylated sites, the
SVM models trained with various features were evaluated
based on five metrics including sensitivity (Sn), specificity
(Sp), accuracy (Acc), Matthew’s correlation coefficient
(MCC), and area under ROC curve (AUC). Based on the
evaluation using five-fold cross-validation, the predictive
performance of each sequence-based feature is presented
in Table 3. In the prediction of K carbonylation sites, the
SVM models trained with AAC and with PWM yield the
best performance with an accuracy of 0.69, MCC value of
0.37, and AUC of 0.78. For the prediction of R carbonyla-
tion sites, the SVM model trained with PWM provided
the best performance with a sensitivity of 0.71, specificity
of 0.70, accuracy of 0.70, MCC value of 0.39, and AUC of
0.80 in discriminating between 115 carbonylated and 230
non-carbonylated R sites. In the classification between
109 carbonylated and 218 non-carbonylated T sites, the
AAC model performed best with a sensitivity of 0.74, spe-
cificity of 0.70, accuracy of 0.72, MCC value of 0.41, and
AUC of 0.82. For carbonylated P sites, the SVM model
trained from PWM provided the best prediction with a
sensitivity of 0.72, specificity of 0.73, accuracy of 0.73,
MCC value of 0.42, and AUC of 0.82. Additionally, the
SVM model trained with AAC is comparable to that

trained with PWM in discriminating between 109 car-
bonylated and 218 non-carbonylated P sites. In short,
the SVM models trained with AAC or with PWM
provided the best performance in identifying carbon-
ylation sites. Moreover, the comparison of ROC
curves among the SVM models trained with various
features for the identification of carbonylated K, R, T,
and P sites are given in Additional file 4: Figure S3,
Additional file 5: Figure S4, Additional file 6: Figure
S5, and Additional file 7: Figure S6. In an attempt to
detect distant relationships between positions around
the carbonylation sites, a profile HMM was also used
to generate a predictive model for identifying carbo-
nylated sites. The comparison of ROC curves
indicated that the profile HMMs could provide a
comparable performance to the SVM models trained
with AAC or with PWM.

MDDLogo-identified substrate motifs and their predictive
performances
To identify the potential conserved motifs, we applied
MDDLogo to cluster the positive training dataset into
several subgroups which contain statistically signifi-
cant dependencies of amino acid composition between
specific positions of carbonylation sites. To specify
whether the MDD-clustered subgroup contained po-
tential conserved motifs, each subgroup was generated
by WebLogo [58]. As shown in Fig. 3, of all the sub-
strate motifs represented by each subgroup, we found
that the substrate motifs were dominated by the posi-
tively charged amino acids (K, R, and H) and only
two of the subgroups were detected based on the
negatively charged amino acids (D, E). This finding
shows that carbonylation is prone to occur in a basic
environment. Additionally, these results demonstrated

Fig. 2 Amino acid composition of carbonylation and non-carbonylation sites on K, R, T and P residues
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that the maximal dependent values of the basic group
of amino acids were kept at position −3 for K car-
bonylation sites (Fig. 3a), position +10 for R carbonyl-
ation sites (Fig. 3b), position +2 for T carbonylation
sites (Fig. 3c), and position +6 for P carbonylation
sites (Fig. 3d). This MDD clustering process was re-
peatedly executed to hierarchically divide the positive
datasets into tree-like subgroups whose data sizes
were smaller than the value of maximum-cluster-size.
Among the MDDLogo-clustered subgroups of K

carbonylation sites, subgroup CarbK_1, which had a
conserved motif of K and R residues at position −3,
yielded the best performance with a sensitivity of
0.81, specificity of 0.81, accuracy of 0.81, MCC value
of 0.61, and AUC of 0.91 in discriminating between
54 carbonylated and 108 non-carbonylated K sites
(Additional file 8: Table S2). In the prediction of K
carbonylation sites, overall, the profile HMMs trained
from the MDD-identified motif signatures provided
better performances than those trained from all 256
carbonylated K sites without MDD clustering. For

prediction of carbonylation sites on R residues, two
subgroups containing statistically significant motifs
with p-values less than 0.005 were detected by
MDDLogo. Subgroup CarbR_1, which had a con-
served motif of positively charged residues (R, K, and
H) at position +10, provided the best performance
with a sensitivity of 0.76, specificity of 0.74, accuracy
of 0.75, MCC value of 0.47, and AUC of 0.85. For
prediction of T carbonylation sites, the subgroup
CarbT_2, possessing the motif of K/P/R at position
−9, provided higher values for sensitivity (0.75), speci-
ficity (0.75), accuracy (0.75), MCC (0.48), and AUC
(0.85) than the other subgroups. For carbonylated P
sites, three substrate motifs were identified by
MDDLogo. Of them, the subgroup CarbP_1, which
contained a conserved R/K/P at position +6, achieved
the best predictive performance. However, the sub-
group CarbP_3 showed a slightly lower predictive per-
formance than the model trained from all
carbonylated P sites, which may have been caused by
the small size of the positive training dataset. Overall,

Table 3 Five-fold cross-validation results of the SVM models trained with various features for discriminating between positive and
negative training datasets

Residue Training features Sn Sp Acc MCC AUC

K Amino acid composition (AAC) 0.70 0.69 0.69 0.37 0.78

Amino acid pairs composition (AAPC) 0.66 0.65 0.65 0.29 0.71

Amino acid sequence (AA) 0.68 0.64 0.65 0.23 0.67

Positional weighted matrix (PWM) 0.74 0.67 0.69 0.37 0.78

Position specific scoring matrix (PSSM) 0.63 0.61 0.62 0.16 0.61

BLOSUM62 (B62) 0.63 0.60 0.61 0.15 0.59

R Amino acid composition (AAC) 0.66 0.63 0.64 0.28 0.70

Amino acid pairs composition (AAPC) 0.62 0.61 0.61 0.22 0.65

Amino acid sequence (AA) 0.62 0.62 0.62 0.17 0.62

Positional weighted matrix (PWM) 0.71 0.70 0.70 0.39 0.80

Position specific scoring matrix (PSSM) 0.61 0.56 0.58 0.14 0.59

BLOSUM62 (B62) 0.62 0.62 0.62 0.17 0.62

T Amino acid composition (AAC) 0.74 0.70 0.72 0.41 0.82

Amino acid pairs composition (AAPC) 0.69 0.68 0.69 0.35 0.75

Amino acid sequence (AA) 0.63 0.62 0.62 0.18 0.63

Positional weighted matrix (PWM) 0.69 0.67 0.68 0.32 0.73

Position specific scoring matrix (PSSM) 0.65 0.65 0.65 0.29 0.70

BLOSUM62 (B62) 0.58 0.50 0.53 0.08 0.53

P Amino acid composition (AAC) 0.72 0.70 0.70 0.39 0.80

Amino acid pairs composition (AAPC) 0.68 0.64 0.65 0.30 0.71

Amino acid sequence (AA) 0.64 0.66 0.65 0.23 0.67

Positional weighted matrix (PWM) 0.72 0.73 0.73 0.42 0.82

Position specific scoring matrix (PSSM) 0.66 0.68 0.67 0.32 0.73

BLOSUM62 (B62) 0.61 0.58 0.59 0.15 0.60
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the profile HMMs trained from MDDLogo-clustered
subgroups, which contain statistically significant motif
signatures, presented enhanced performance com-
pared to that of the models without MDD clustering.

Performance evaluation by independent testing datasets
In the prediction of PTM substrate sites, it is possible to
overestimate constructed models by overfitting to the

training dataset. Thus, an independent testing dataset
was employed to evaluate the real performance of the
selected models with better MCC values. The testing re-
sults showed that, in K, R, T, and P carbonylation sites,
the profile HMM trained from all positive training data-
set yielded similar performance to the SVM models
trained with AAC or with PWM. When using multiple
profile HMMs trained from the MDDLogo-identified

Fig. 3 MDDLogo-identified substrate motifs of carbonylated (a) K, (b) R, (c) T, and (d) P sites
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motifs, a higher sensitivity was obtained, accompanied
by a lower specificity in the classification between posi-
tive and negative testing datasets on carbonylated K, R,
T, and P sites. This investigation indicated that, after ap-
plying MDD clustering on positive training datasets,
the multiple models typically induced higher true-
positive predictions as well as higher false-positive
predictions than did a single predictive model. To
provide a reasonable integration of multiple profile
HMMs, a combinatorial machine learning method
was adopted, as described in a previous study [21].
This combinatorial model incorporated multiple pro-
file HMMs into a single predictive model. Since each
profile HMM was built from each of the MDDLogo-
identified motifs, the LIBSVM was utilized to generate
an integrative model (MDD-Carb) by combining the
values of bit scores obtained from multiple profile
HMMs. As presented in Table 4, the combinatorial
model yielded the sensitivities of 0.80, 0.79, 0.79, and
0.77; specificities of 0.76, 0.73, 0.76, and 0.74; accur-
acies of 0.77, 0.75, 0.77, and 0.75; as well as MCC
values of 0.53, 0.49, 0.53, and 0.49; for K, R, T, and P
carbonylation sites, respectively. Although the com-
binatorial model performs at lower sensitivity than
multiple profile HMMs, the overall best performance
was obtained by incorporating multiple profile HMMs
into a single SVM model.

Comparison with existing prediction tools
Considering the accessibility of previously published
prediction tools, two online tools, CarSPred and
predCar-Site, are available for the comparison of pre-
dictive performance based on independent testing
datasets. Figure 4 showed that the predCar-Site (green
bars) can yield the highest specificity values of 0.88,
0.93, 0.91, and 0.91 in the prediction of K, R, T, and
P carbonylation sites, respectively. However, the high
true-negative prediction of predCar-Site induces a
very low sensitivity in the identification of positive
testing datasets. Although the present method (MDD-
Carb) could not provide better specificity comparing
to predCar-Site, the results of independent testing
demonstrated that the combinatorial model (blue
bars) could provide the overall best performance, with
balanced sensitivity and specificity, in the prediction
of carbonylation sites.

Construction of web-based prediction tool
Because the experimental identification of site-specific
carbonylated peptides is labor-intensive, many tools have
been developed for the computational prediction of car-
bonylation sites. However, there exists no method dedi-
cated to the characterization of potential substrate
motifs of carbonylated sites. Thus, we were inspired to
develop a user-friendly web tool, named MDD-Carb, for

Table 4 Comparison of independent testing results among various models in this work

Residue Model Sn Sp Acc MCC AUC

K Single SVM trained with AAC 0.65 0.68 0.67 0.31 0.72

Single SVM trained with PWM 0.67 0.68 0.68 0.33 0.73

Single profile HMM trained from all data 0.69 0.68 0.69 0.35 0.74

Multiple profile HMMs trained from MDDLogo-clustered subgroups 0.85 0.47 0.60 0.31 0.68

Single SVM trained from multiple profile HMMs (MDD-Carb) 0.80 0.76 0.77 0.53 0.84

R Single SVM trained with AAC 0.62 0.62 0.62 0.23 0.66

Single SVM trained with PWM 0.65 0.65 0.65 0.29 0.70

Single profile HMM trained from all data 0.68 0.66 0.67 0.33 0.72

Multiple profile HMMs trained from MDDLogo-clustered subgroups 0.90 0.55 0.67 0.44 0.81

Single SVM trained from multiple profile HMMs (MDD-Carb) 0.79 0.73 0.75 0.49 0.83

T Single SVM trained with AAC 0.63 0.71 0.69 0.34 0.73

Single SVM trained with PWM 0.67 0.71 0.70 0.36 0.74

Single profile HMM trained from all data 0.67 0.71 0.70 0.36 0.74

Multiple profile HMMs trained from MDDLogo-clustered subgroups 0.93 0.56 0.69 0.48 0.80

Single SVM trained from multiple profile HMMs (MDD-Carb) 0.79 0.76 0.77 0.53 0.84

P Single SVM trained with AAC 0.63 0.61 0.62 0.23 0.66

Single SVM trained with PWM 0.69 0.67 0.68 0.34 0.74

Single profile HMM trained from all data 0.69 0.67 0.68 0.34 0.74

Multiple profile HMMs trained from MDDLogo-clustered subgroups 0.88 0.49 0.62 0.35 0.76

Single SVM trained from multiple profile HMMs (MDD-Carb) 0.77 0.74 0.75 0.49 0.82
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Fig. 4 Comparison of independent testing results between MDD-Carb and two existing prediction tools. (a) Independent testing results on K
carbonylation sites, (b) Independent testing results on T carbonylation sites, (c) Independent testing results on R carbonylation sites, and
(d) Independent testing results on P carbonylation sites

Fig. 5 A case study of carbonylation sites prediction on Protein FRG2-like-1 (FRG2B)
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identifying the carbonylation sites with corresponding
substrate motifs. The combinatorial model, integrating
the MDDLogo-identified motif signatures, was adopted
to implement the prediction function on the website.
Users are allowed to submit their protein sequences in
FASTA format, and the prediction function returns the
results, including carbonylated positions as well as the
flanking amino acids. Additionally, the substrate motifs
corresponding to the predicted carbonylation sites are
also available. As a case study shown in Fig. 5, Protein
FRG2-like-1 (FRG2B) has two confirmed carbonylation
sites, P39 and P169 [59]. After the submission of a whole
protein sequence, the MDD-Carb could effectively iden-
tify the two carbonylated sites with their corresponding
motifs. The MDD-Carb is anticipated to facilitate the
study of large-scale carbonylated proteomes, and it is
now freely available to all interested users at http://
csb.cse.yzu.edu.tw/MDDCarb/.

Conclusion
In this work, we investigated the amino acid compos-
ition near verified carbonylation sites systematically.
This investigation showed that the occurrence rates of
K, R, T, and P were higher in the carbonylation sites
than those in non-carbonylation sites, in which K is sig-
nificantly abundant. Based on the five-fold cross-
validation, the SVM models trained with AAC or with
PWM provided the best performance out of the SVM
models in identifying carbonylation sites. After the appli-
cation of MDDLogo on positive training datasets, the
profile HMMs trained from MDDLogo-clustered sub-
groups, which contained statistically significant motif
signatures, presented an enhanced performance com-
pared to that of the models without MDD clustering. To
conduct a reasonable integration of multiple profile
HMMs, a combinatorial model was developed by in-
corporating multiple profile HMMs into a single predict-
ive model. The independent testing results demonstrated
that the combinatorial model provided the overall best
predictive performance with balanced sensitivity and
specificity.
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