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Abstract

Background: Inflammatory bowel diseases (IBD), which include ulcerative colitis and Crohn’s disease, cause chronic
inflammation of the digestive tract in approximately 1.6 million Americans. A signature of IBD is dysbiosis of the gut
microbiota marked by a significant reduction of obligate anaerobes and a sharp increase in facultative anaerobes.
Numerous experimental studies have shown that IBD is strongly correlated with a decrease of Faecalibacterium
prausnitzii and an increase of Escherichia coli. One hypothesis is that chronic inflammation induces increased oxygen
levels in the gut, which in turn causes an imbalance between obligate and facultative anaerobes.

Results: To computationally investigate the oxygen hypothesis, we developed a multispecies biofilm model based
on genome-scale metabolic reconstructions of F. prausnitzii, E. coli and the common gut anaerobe Bacteroides
thetaiotaomicron. Application of low bulk oxygen concentrations at the biofilm boundary reproduced experimentally
observed behavior characterized by a sharp decrease of F. prausnitzii and a large increase of E. coli, demonstrating that
dysbiosis consistent with IBD disease progression could be qualitatively predicted solely based on metabolic
differences between the species. A diet with balanced carbohydrate and protein content was predicted to represent a
metabolic “sweet spot” that increased the oxygen range over which F. prausnitzii could remain competitive and IBD
could be sublimated. Host-microbiota feedback incorporated via a simple linear feedback between the average F.
prausnitzii concentration and the bulk oxygen concentration did not substantially change the range of oxygen
concentrations where dysbiosis was predicted, but the transition from normal species abundances to severe dysbiosis
was much more dramatic and occurred over a much longer timescale. Similar predictions were obtained with
sustained antibiotic treatment replacing a sustained oxygen perturbation, demonstrating how IBD might progress
over several years with few noticeable effects and then suddenly produce severe disease symptoms.

Conclusions: The multispecies biofilm metabolic model predicted that oxygen concentrations of ∼1 micromolar
within the gut could cause microbiota dysbiosis consistent with those observed experimentally for inflammatory
bowel diseases. Our model predictions could be tested directly through the development of an appropriate in vitro
system of the three species community and testing of microbiota-host interactions in gnotobiotic mice.
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Background
Inflammatory bowel diseases (IBDs) include ulcerative
colitis [1], which is restricted to the large intestine
and rectum, and Crohn’s disease [2], which can affect
the entire digestive tract from the mouth to the anus.
While both diseases are characterized by inflamma-
tion of the epithelial lining, Crohn’s disease can affect
all layers of the intestinal wall. Current estimates are
that 1.6 million Americans suffer from IBD and 70,000
new cases are diagnosed each year [3]. Common treat-
ments including anti-inflammatory drugs, immune sys-
tem suppressors and antibiotics often have unpredictable
impacts on disease progression, especially in the more
difficult-to-treat Crohn’s disease [4]. Therefore surgery is
a common treatment option, with 70–90% of patients suf-
fering from Crohn’s disease ultimately requiring surgery
[5]. The direct and indirect costs of IBD treatment
in the U.S. were estimated as $14.6–$31.6 billion in
2014 [6].
The underlying cause of IBD pathogenesis is not well

understood, with genetics, diet and environmental fac-
tors all believed to play important roles [7]. The human
gut harbors a highly complex microbial community that
allows the digestion of dietary fibers [8] and has a pro-
found influence on immune system health [9]. The gut
microbiome consists of approximately 1014 bacterial cells
representing 1000 species with 30 times the genomic
content of the human host [10, 11]. The two dominant
phyla in healthy humans are Bacteroidetes and Firmicutes,
which contain obligate anaerobes that comprise about
90% of the bacterial community [12]. These two phyla are
largely responsible for converting dietary fiber into short-
chain fatty acids (SCFAs) including acetate, propionate
and butyrate, that can be absorbed by the host intes-
tine [13]. In addition to being the preferred energy source
of colonic enterocytes [14], butyrate is thought to have
anti-inflammatory properties [15]. Other phyla are less
prevalent but also play critical roles in microbiome func-
tion, including facultative anaerobes from the Proteobac-
teria phylum which are thought to provide colonization
resistance against pathogenic bacteria [16].
The gut microbiome is usually robust to dietary pat-

terns and environmental perturbations that would oth-
erwise alter species compositions and SCFA levels. IBD
is characterized by long-term changes in the gut micro-
biota that are correlated with intestinal inflammation
[17, 18] through a poorly understood process known as
dysbiosis [11]. A common signature of IBD is a severe
reduction in butyrate producing obligate anaerobes from
the Firmicutes phylum, the most abundant of which is
Faecalibacterium prausnitzii [10, 15]. Another common
feature is a large increase in facultative anaerobes from
the Proteobacteria phylum, most notably Escherichia coli.
By contrast, no clear trend has been established for some

other important obligate anaerobes such as Bacteroides
thetaiotaomicron from the Bacteroidetes phylum.
Because IBD dysbiosis is characterized by an imbalance

between obligate and facultative anaerobes, oxygen and
reactive oxygen species have been hypothesized to play
a key role in the pathogenesis [19]. The “oxygen hypoth-
esis” posits that chronic inflammation of intestinal walls
results in increased release of hemoglobin carrying oxy-
gen and reactive oxygen species into the intestinal lumen
[20], which in turn creates amicroenvironment that favors
facultative anaerobes [21, 22]. The resulting decrease in
obligate anaerobes such as F. prausnitzii that release anti-
inflammatory compounds causes increased inflammation
[23], establishing a positive feedback loop that acceler-
ates the disease process [24]. Because obligate anaerobes
typically are not viable at dissolved oxygen concentra-
tions greater than 5 μM [25], the oxygen levels at which
dysbiosis occurs likely needs to be at sub-micromolar
levels to ensure a functional population of obligate anaer-
obes. A recent study with wild-type mice demonstrated a
mechanistic link between butyrate levels and oxygen con-
sumption by colonocytes via the beta-oxidation pathway
[26]. As buytrate was depleted through antibiotic-induced
death of butyrate producing bacteria, oxygen consump-
tion by colonocytes decreased and oxygen levels increased
accordingly. However, direct experimental testing of the
oxygen hypothesis remains difficult due to challenges in
establishing suitable animal models [10], limited technol-
ogy for accurate measurement of in vivo oxygen concen-
trations [19] and the inability of measure species level
changes with deep sequencing methods [10].
As a complement to ongoing in vitro and in vivo investi-

gations, in this study we developed an in silico model of a
minimal bacterial community for studying IBD consisting
of F. prausnitzii, E. coli and B thetaiotaomicron. The com-
munity was modeled as a multispecies biofilm attached to
the intestinal mucosa [27–29] with nutrient competition,
byproduct cross feeding and diffusion limited growth.
The model was tuned to qualitatively reproduce phyla
abundances and SCFA levelsmeasured inhealthy gutmicro-
biomes. Then oxygen was applied at the biofilm bound-
ary to determine if the community would dynamically
evolve to the IBD phenotype characterized by decreased
F. prausnitzii and increased E. coli abundances.We further
explored the effect of diet on oxygen sensitivity and incor-
porated a simple linear feedback to investigate how host-
microbiome interactions might amplify oxygen-mediated
dysbiosis. Our “bottoms-up” modeling approach based on
curated genome-scale metabolic reconstructions of the
participating species complements previous “top-down”
approaches in whichmetagenomic data and genome-scale
metabolic modeling were integrated to delineate both
gene-level and network-level topological differences
between healthy and IBD patients [30, 31].
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Methods
Biofilmmodel formulation
The bacterial community model was developed for a
multispecies biofilm growing in a simulated gut environ-
ment under the common assumption that intracellular
metabolism responded instantaneously to changes in the
extracellular environment [32]. The biofilm model was
built upon curated genome-scale metabolic reconstruc-
tions of B. thetaiotaomicron [33], F. prausnitzii [34] and
E. coli [35]. The simulated media was developed by
combining all nutrients required for growth of the
three species with amino acids and simple carbohydrates
expected in the gut. To maintain reasonable computa-
tional complexity, the media was limited to four monosac-
charides (arabinose, fructose, galactose, glucose) and ten
amino acids (cysteine, isoleucine, leucine, lysine, methio-
nine, proline, serine, threonine, tryptophan, valine). These
four sugars were included because they are major bacte-
rial degradation products of more complex carbohydrates
[36, 37] and they can be consumed by all three species.
The amino acids were chosen because they were essen-
tial for F. prausnitzii growth (methionine, serine, tryp-
tophan), commonly catabolized by gut bacteria (lysine,
theoronine, valine) [38], and/or essential for growth of the
gut pathogen Clostridium difficile (cysteine, isoleucine,
leucine, proline) [39], which will be included in our future
modeling studies. Cellular growth was assumed to be
potentially limited only by the carbohydates, amino acids
and oxygen. More detailed description of the simulated
media and the uptake bounds imposed in the genome-
scale reconstructions are presented in the next section and
in Additional file 1.
The model was formulated assuming nutrients includ-

ing oxygen diffused into the biofilm at the biofilm-stool
boundary and unconsumed nutrients diffused out of the
biofilm at the intestine-biofilm boundary (Fig. 1a). Nutri-
ents could only diffuse unidirectionally from the biofilm
because the bulk concentrations in the intestine were
assumed to be zero. Short-chain fatty acids (SCFAs) and
organic acids (OAs) synthesized by the three bacteria
diffused through the biofilm and were removed at both
boundaries. Flux balance analysis (FBA) showed that the
three species could secrete the SCFAs acetate, propi-
onate and butyrate along with CO2 and the OAs ethanol,
formate, lactate and succinate. Biomass was assumed to
slowly diffuse through biofilm and was removed at the
biofilm-stool boundary according to a continuous ero-
sion mechanism [40]. The incorporation of slow biomass
diffusion and removal provided a reasonable mechanism
to ensure that biomass generation would be balanced by
biomass loss such that steady-state solutions could be
obtained.
The local extracellular concentration of each nutrient,

metabolic byproduct and species biomass was calculated

assuming diffusion in the axial direction z of the biofilm
was the dominant transport mechanism (Fig. 1a). There-
fore, each variable changed as a function of time t and
space z over a fixed biofilm thickness L. Local nutri-
ent concentrations were used to calculate local nutrient
uptake rates using Michaelis-Menten kinetics. These cal-
culated uptake rates were imposed as lower bounds in
FBA linear programs (LPs) for each species to ensure that
nutrient transport limitations were honored. LP solution
generated the local growth, nutrient uptake and byprod-
uct secretion rates of each species, which served as inputs
to partial differential equations (PDEs) describing the
local extracellular environment.We incorporated byprod-
uct cross feeding that was shown to enhance community
stability in our previous modeling study [41]: acetate and
succinate uptake by F. prausnitzii and ethanol uptake by
B. thetaiotaomicron (Fig. 1b).
The biomass equations for the “strict anaerobes”

B. thetaiotaomicron and F. prausnitzii were formulated
assuming oxygen levels were sufficiently low such that
growth inhibition was negligible. While F. prausnitzii has
been shown to remain viable under atmospheric air in the
presence of antioxidants [42], Bacteroides fragilis has been
reported to exhibit inhibited growth at 1 μmol O2 [25].
We explored bulk oxygen concentrations up to 5x10−3

mM, which could generate steady-state oxygen profiles
in which 1 μmol was exceeded in the first 3–4 microns
of a 40 micron biofilm. Because this region is small and
the average oxygen concentration across the biofilm rarely
exceeded 100 nM, we concluded the omission of oxygen-
mediated growth inhibition was a reasonable simplifica-
tion. More details on the biofilm model formulation are
presented in Additional file 1.

Model parameterization and solution
Nominal parameter values utilized in the multispecies
biofilm model are shown in Table 1. With the excep-
tion of the parameters discussed below, the values listed
were obtained from our previous study [41]. The nom-
inal bulk oxygen concentration was specified to reflect
anaerobic conditions, but Ob values between 0 and
5x10−3 mM were simulated to predict the effect of oxy-
gen on the three-species community. The oxygen dif-
fusion coefficient was chosen to be within published
ranges [43, 44]. The oxygen mass transfer coefficient
was specified to achieve a small amount of mass trans-
fer resistance at the stool-biofilm boundary as would
be expected for a gas. The carbohydrates arabinose,
fructose and galactose were assumed to have the same
uptake kinetic parameters as reported for glucose uptake
in E. coli [45]. For simplicity, all ten amino acids
were assumed to have the same uptake kinetic param-
eters obtained as the average of amino acid dependent
values reported for E. coli [45]. Oxygen uptake kinetic
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Fig. 1 Schematic representation of the in silico gut community. a The model captured biofilm attachment to the intestinal wall, and diffusion of
carbohydrates, amino acids, oxygen, short-chain fatty acids, organic acids and species biomass into and/or out of the biofilm. bModeled cross
feeding of byproducts between the three species

parameters were obtained from published values reported
for E. coli [45, 46].
With the remaining parameter values fixed, the biofilm

model was tuned to achieve biomass and SCFA fractions
within experimental ranges. First the non-growth associ-
ated ATP maintenance values within the three genome-
scale reconstructions were adjusted to tune the biomass
fractions. When all three ATP maintenance values were
equal to their published values of 8.43 mmol/gDW/h, the
community was unstable and only B. thetaiotaomicron
was present at steady state due to it superior nutritional
efficiency. We did not necessarily expect the published
ATP maintenance values to result in coexistence of the

three species because our model neglected other phyla
(e.g. Actinobacteria), other nutrients (e.g. oligosaccha-
rides) and other species interactions (e.g. Actinobacteria
cross feeding of SCFAs and organic acids) as well as
host metabolism present in the actual gut environment.
Because our goal was to investigate the putative role
of oxygen in destabilizing the gut microbiota despite
these simplifications, the ATP maintenance values of
F. prausnitzii and E. coli were reduced until an approxi-
mate B. thetaiotaomicron:F. prausnitzii:E. coli fraction of
60:30:10 [47] was achieved. Although not discussed here,
we found that coexistence with different species fractions
was achieved over a range of ATP maintenance values.
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Table 1 Nominal parameter values for the multispecies biofilm model

Symbol Parameter Value Units Source

L Biofilm thickness 40 μm [44]

DX Biomass diffusion coefficients 1x10−10 cm2/s [41]

kX Biomass mass transfer coefficients 1x10−7 cm/s [41]

Xb Biomass bulk concentrations 0 g/L [41]

DN Carbohydrate diffusion coefficients 2x10−6 cm2/s [43]

Amino acid diffusion coefficients 2x10−6 cm2/s [43]

Oxygen diffusion coefficient 8x10−6 cm2/s [43]

kN Nutrient mass transfer coefficients 2x10−4 cm/s [41]

Amino acid mass transfer coefficients 2x10−4 cm/s [41]

Oxygen mass transfer coefficient 2x10−2 cm/s Specified

Ob Oxygen bulk concentration 0 mM Specified

DP Byproduct diffusion coefficients 2x10−6 cm2/s [43]

kP Byproduct mass transfer coefficients 5x10−6 cm/s [41]

Butyrate mass transfer coefficient 5x10−5 cm/s Tuned

Propionate mass transfer coefficient 1x10−5 cm/s Tuned

Pb Byproduct bulk concentrations 0 mM [41]

vmax Carbohydrate maximum uptake rates 10 mmol/gDW/h [45]

Amino acid maximum uptake rates 1 mmol/gDW/h [45]

Oxygen maximum uptake rate 20 mmol/gDW/h [45]

Byproduct maximum uptake rates 10 mmol/gDW/h [41]

Km Carbohydrate Michaelis-Menten constants 0.5 mM [45]

Amino acids Michaelis-Menten constants 0.1 mM [45]

Oxygen Michaelis-Menten constant 0.003 mM [45]

Byproduct Michaelis-Menten constants 0.5 mM [41]

ATPM B. thetaiotaomicron ATP maintenance 8.43 mmol/gDW/h [35]

F. prausnitzii ATP maintenance 4.75 mmol/gDW/h Tuned

E. coli ATP maintenance 5.5 mmol/gDW/h Tuned

With the ATPmaintenance values fixed, the three SCFA
mass transfer coefficients were adjusted to tune the SCFA
fractions. When these mass transfer coefficients were set
equal to 5x10−6 cm/s used in our previous study [41],
the acetate:propionate:butyrate fraction was an unrealis-
tic 15:10:75. Therefore, the butyrate and propionate mass
transfer coefficients were increased until an approximate
fraction of 60:20:20 [13] was obtained. We justified these
SCFA dependent values by noting that our model lacks
host-microbiota interactions that would strongly affect
SCFA levels.
Simulations were performed for three combinations of

bulk carbohydrate (CHO) and amino acid concentrations
that were chosen to mimic to high CHO, high protein
and equal CHO:protein diets. The simulated diets did
not include fat because the bacteria are incapable of
metabolizing fats. The high CHO diet that served as our
nominal case is shown in Table 2, while all three diets

are compared in Additional file 1. On a six carbon (C6)
basis, the high CHO diet contained 5.0 mM of CHO and
1.5 mM of protein for a total of 6.5 mM of available car-
bon. The CHO fraction was assumed to consist of 40%
glucose and 20% each arabinose, fructose and galactose.
The protein fraction was split equally between the 10
amino acids included in themedia. The C6 concentrations
were corrected for the number of carbons [33] to obtain
the actual concentrations used as bulk concentrations in
the biofilm model. The bulk concentrations were calcu-
lated assuming 1.5 mM of CHO and 5.0 mM of protein for
the high protein diet and 3.25 mM of CHO and 3.25 mM
of protein for the equal CHO:protein diet.
The biofilm model consisting of a coupled set of nonlin-

ear partial differential equations (PDEs) with embedded
linear programs (LPs) was solved by spatially discretiz-
ing each PDE into a large set of coupled ordinary dif-
ferential equations (ODEs) [41, 48]. The resulting ODE
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Table 2 Bulk carbohydrate and amino acid concentrations
representing a high carbohydrate diet

Nutrient C6 Concentration Carbons Actual concentration

Arabinose 1.000 5 1.200

Fructose 1.000 6 1.000

Galactose 1.000 6 1.000

Glucose 2.000 6 2.000

Total CHO 5.000 – 5.200

Cysteine 0.150 3 0.300

Isoleucine 0.150 6 0.150

Leucine 0.150 6 0.150

Lysine 0.150 6 0.150

Methionine 0.150 5 0.180

Proline 0.150 5 0.180

Serine 0.150 3 0.300

Threonine 0.150 4 0.225

Tryptophan 0.150 11 0.082

Valine 0.150 5 0.180

Total AA 1.500 – 1.897

system with embedded LPs was solved using the MAT-
LAB code DFBAlab [49]. DFBAlab uses lexicographic
optimization to avoid the problem of alternative optima
in the LP problems. Following our previous method-
ology [41], we specified the lexicographic optimization
objectives as shown in Additional file 1 with growth
maximization being the primary objective. Based on sim-
ulations with different numbers of spatial discretization
points N, we determined that N = 20 provided a suitable
compromise between numerical accuracy and efficiency
(Additional file 2). The discretized model consisted of
520 nonlinear ODEs describing the time evolution of
the biomass, nutrient and byproduct concentrations at
the spatial node points and 1440 LPs for lexicographic
optimization. We used Gurobi 6.0 for LP solution, the
stiff MATLAB solver ode15s for ODE integration and
DFBAlab running in MATLAB 8.5 (R2015a).
Two types of dynamic simulations were performed. The

first set of simulations were designed to generate anaer-
obic initial conditions for the second set of simulations
in which the effects of applied oxygen were investigated.
An anaerobic simulation for each diet was performed with
spatially homogeneous biomass concentrations of 10 g/L
for each species as well as spatially homogeneous nutri-
ent and byproduct concentrations.We found that the final
steady-state solution was independent of the initial con-
dition. Each applied oxygen simulation was performed by
specifying the bulk oxygen concentration and comput-
ing the dynamic response from the appropriate anaerobic
initial condition.

Results
Oxygen induces microbiota dysbiosis
The biofilm metabolic model was tuned for a high CHO
diet (Table 2) and anaerobic conditions to generate species
abundances (58% B. thetaiotaomicron, 30% F. prausnitzii,
12% E. coli) and SCFA levels (55% acetate, 19% propi-
onate, 26% butyrate) consistent with in vivo studies on the
proportions of the modeled phyla (Bacteroidetes, Firmi-
cutes, Proteobacteria) [47] and on SCFA fractions [13].
This anaerobic state was used as the initial condition
for biofilm simulations with the bulk oxygen concen-
tration varied from 0 mM (anaerobic) to 5x10−3 mM
(microaerobic).
Figure 2 shows the time evolution of species abun-

dances, SCFA levels and byproduct concentrations for
a single simulation with bulk oxygen concentration of
3x10−3 mM. F. prausnitzii abundances were predicted to
decrease across the biofilm by approximately 50% rela-
tive to their initial anaerobic values (Fig. 2b). The low-
est abundance was predicted at the top of the biofilm
where oxygen was introduced, a particularly unfavorable
metabolic niche for F. prausnitzii. Predicted E. coli abun-
dances increased across the biofilm by 68% relative to
their initial anaerobic values (Fig. 2c). B. thetaiotaomicron
changes were less severe, with abundances increased by
9–12% depending on the location in the biofilm (Fig. 2a).
The combination of decreased F. prausnitzii and increased
E. coli is consistent with microbiota dysbiosis observed in
IBD patients [10, 15] and provides support for the hypoth-
esis that oxygen could be important in IBD pathogenesis.
Due to changes in species abundances, the average

acetate level across the biofilm increased by 89% while
the propionate and butyrate levels decreased to 6% and
5%, respectively (Fig. 2d). The byproducts formate and
CO2 secreted by F. prausnitzii were predicted to decrease,
while succinate used by F. prausnitzii as a growth substrate
increased sharply (Fig. 2e). The oxygen spatial profile
plotted at the final steady state shows that oxygen was
present at concentrations greater than 100 nM only in the
top 4 microns and never exceeds 900 nM due to limited
availability and diffusional restrictions (Fig. 2f). This result
provided some justification for the modeling assumption
that oxygen would not substantially inhibit the growth of
B. thetaiotaomicron.
To gain further insights into the metabolic factors that

could contribute to microbiota dysbiosis, we performed
simulations for bulk oxygen concentrations from 0 to
5x10−3 mM. Our model predicted that species abun-
dances were largely insensitive to bulk concentrations less
than 1x10−3 mM (Fig. 3a), which at steady state pro-
duced average biofilm oxygen concentrations less than
20 nM and peak concentrations less than 230 nM. By
contrast, the abundances were highly sensitive to bulk
concentrations in the range 1x10−3 to 5x10−3 mM, which
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Fig. 2 Effect of oxygen on the time evolution of the biofilm community. The bulk oxygen concentration was set at 3x10−3 mM. a–c Abundances of
B. thetaiotaomicron, F. prausnitzii and E. coli at the top, middle and bottom of the biofilm. d SCFA levels averaged across the biofilmwhere the symbols
represent the initial values. e Byproduct concentrations averaged across the biofilm. f Spatial profile of the steady-state oxygen concentration

induced average and peak biofilm oxygen concentra-
tions of 30–100 nM and 380–1,370 nM, respectively.
Regardless of the bulk concentration, appreciable oxy-
gen uptake occurred only in the top 5 microns of the
biofilm (Fig. 3b).
We examined steady-state growth and uptake fluxes

over the top 10 microns of the biofilm for three bulk
oxygen concentrations (Fig. 3c–e). All fluxes were scaled
by their anaerobic values at the same spatial location
such that the anaerobic profiles were flat lines at unity.
This scaling allowed flux increases/decreases relative to
the anaerobic case to be directly quantified. At a bulk
oxygen concentration of 4x10−3 mM, F. prausnitzii was
predicted to achieve modest growth rate enhancements
of 20% maximum over the first 5 microns and negli-
gible enhancements over the next 5 microns. By con-
trast, much larger growth rate enhancements of 200%
maximum were predicted for E. coli over the first 5
microns with relatively small decreases over the next 5
microns. Similar but less pronounced growth rate profiles
were predicted for B. thetaiotaomicron, with a maximum
enhancement of approximately 70%. These results show
that oxygen-mediated growth inhibition is not needed to
predict microbiota dysbiosis. Rather oxygen could induce
dysbiosis simply by increasing the growth rates of facul-
tative anaerobes and selected “obligate” anaerobes at the

expense of less metabolically capable anaerobes such as F.
prausnitzii.
Given the predicted importance of byproduct cross

feeding on community stability [41], we analyzed the abil-
ity of the three bacteria to cross feed in the presence
of oxygen (Fig. 3f-h). Predicted F. prausnitzii uptake of
acetate was largely unaffected by the presence of oxy-
gen, with the exception of reduced uptake in the first two
microns at the highest bulk oxygen concentration. While
F. prausnitzii was predicted to increase succinate uptake
with increasing oxygen, B. thetaiotaomicron exhibited a
larger ethanol uptake increase at the highest oxygen con-
centration. These results suggest that the inability of F.
prausnitzii to increase byproduct consumption as effi-
ciently as B. thetaiotaomicron might contribute to the
dysbiosis.
The ability of F. prausnitzii to grow in the presence

of oxygen depends on an extracellular electron shuttling
mechanism in which flavins and thiols are used for trans-
fering electrons to oxygen [50]. This shuttle is functional
only if riboflavin and either cysteine or glutathione are
available, which is the case for the healthy gut. Diets
rich in riboflavin have been proposed as a means to
increase F. prausnitzii abundances [51], while Crohn’s dis-
ease patients have been shown to have low riboflavin
levels [52]. This electron shuttle was included in the
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Fig. 3 Effect of different oxygen concentrations on the steady-state behavior of the biofilm community. The bulk oxygen concentration was set to a
fixed value between 0 and 5x10−3 mM for each simulation. a Species abundances (%) averaged across the biofilm for the range of bulk oxygen
concentrations. b Species O2 uptake rates (mmol/gDW/h) for three bulk oxygen concentrations. c-e Growth rates (h−1) of B. thetaiotaomicron, F.
prausnitzii and E. coli relative to their anaerobic values for three bulk oxygen concentrations. f–h Uptake rates (mmol/gDW/h) of cross-fed
byproducts relative to their anaerobic values for three bulk oxygen concentrations

F. prausnitzii genome-scale reconstruction [34], and our
simulated gut environment that included both riboflavin
and cysteine allowed the shuttle to be active. To exam-
ine the effect of removing this shuttle, we constrained the
upper bound of the FLVXre reaction in the reconstruction
[34] to zero. While removal of the shuttle accelerated the
effect of oxygen on dysbiosis, the effect was not dramatic
(Additional file 2). This result suggests that unmodeled
oxygen toxicity could play a role in F. prausnitzii decline
and IBD pathogenesis.

Oxygen sensitivity depends on diet
While diet has been hypothesized to be a key factor in IBD
pathogenesis, the impact of different dietary components
on disease progression and recurrence are not well under-
stood [7, 10]. Many alternative diets have been proposed
based on clinical heuristics, but there remains no stan-
dard clinical dietary recommendations for IBD patients
[53]. Some studies have shown that diets rich in read-
ily fermentable monosaccharides and oligosaccharides are
risk factors for IBD development [53]. These studies have
motivated the development of the excluded fermentable
oligo-, di-, monosaccharides and polyols (FOMAP) diet

for IBD patients. On the other hand, the western diet
rich in animal protein also has been correlated with IBD
progression [53, 54].
To investigate the possible impact of dietary carbohy-

drates and proteins on microbiota dysbiosis in the pres-
ence of oxygen, we performed biofilm simulations with
three in silico diets: high carbohydrate (CHO), high pro-
tein (PRO) and equal CHO:PRO. The three diets are listed
in Additional file 1 with respect to the bulk concentra-
tions of the different nutrients. To allow a fair comparison,
the three diets had equal carbon content on a C6 basis:
high CHO (5.0 mM CHO, 1.5 mM PRO), high PRO (1.5
mM CHO, 5.0 mM PRO), and equal CHO:PRO (3.25 mM
CHO, 3.25 mM PRO).
Different diets were predicted to have a large impact on

species abundances under anaerobic conditions (Fig. 4a)
with high CHO favoring B. thetaiotaomicron and high
PRO favoring F. prausnitzii and E. coli, presumably due to
the efficient CHOmetabolism of B. thetaiotaomicron [33].
When compared at a single bulk oxygen concentration
of 3x10−3 mM, spatial profiles of the steady-state oxy-
gen concentration (Fig. 4b) showed that the high PRO diet
allowed the deepest penetration into the biofilm due to
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Fig. 4 Combined effects of different diets and oxygen concentrations on the steady-state abundances of the three species. Bulk carbohydrate and
amino acid concentrations were varied according to the diet and the bulk oxygen concentration was set to a fixed value between 0 and 5x10−3

mM. a Anaerobic species abundances averaged across the biofilm. b Spatial profiles of the steady-state oxygen concentration. c Total biomass
produced by the three species averaged across the biofilm. d–f Species abundances relative to anaerobic values averaged across the biofilm

decreased oxygen utilization. As expected, the high CHO
diet was predicted to accumulate the highest total biomass
from the three species owing to carbohydrates being a
better energy source than amino acids.
Because the diets produced different anaerobic species

abundances, we scaled the abundances at each bulk oxy-
gen concentration by the anaerobic values for that diet
such that all anaerobic abundances were unity (Fig. 4c–e).
This scaling allowed the impact of oxygen for the three
diets to be directly compared. The diets were predicted to
have little differential effect on B. thetaiotaomicron abun-
dances, with increases of 11–21% observed over the entire
oxygen range. Interestingly, the equal CHO-PRO diet was
predicted to most effectively delay the onset of dysbiosis
with increasing oxygen. At the highest bulk oxygen con-
centration of 5x10−3 mM, the F. prausnitzii abundance
remained at 27% of its anaerobic value compared to less
than 0.2% for the other two diets. The equal CHO-PRO
diet slightly slowed E. coli expansion compared to the
other diets, allowing F. prausnitzii to co-exist at higher
oxygen levels. These simulations support the provoca-
tive hypothesis that a balanced diet of carbohydrates and
protein would most effectively delay IBD pathogenesis.
We also examined the combined effects of diet and oxy-

gen on SCFA and succinate levels. For all three diets, the

total SCFA concentration was predicted to increase with
increasing bulk oxygen concentration (Fig. 5a). The high
CHO diet produced the highest SCFA concentrations, as
would be expected due to higher carbohydrate availability
[14]. Both diet and oxygen were predicted to have dra-
matic effects on the split between the three SCFAs. Under
anaerobic conditions, the acetate level decreased with
increasing amino acid content while the propionate level
was substantially lower for the high protein diet and the
butyrate level was substantially lower for the high CHO
diet (Fig. 5b–d). These trends were consistent with those
observed for the species abundances under anaerobic con-
ditions (Fig. 4). The acetate level dramatically increased
while the propionate and butyrate levels sharply decreased
with increasing oxygen for all diets.
Higher butyrate levels were predicted for the equal

CHO-PRO diet due to higher F. prausnitzii abundances
(see Fig. 4d). Steady-state spatial profiles of the F. praus-
nitzii butyrate synthesis rate at a bulk oxygen concentra-
tion of 3x10−3 mM showed that enhanced buytrate levels
predicted for the equal CHO-PRO diet were attributable
to higher F. prausnitzii abundances not higher butyrate
synthesis (Fig. 5f). The succinate concentration increased
rapidly with increasing oxygen (Fig. 5e) due to the
decreasing F. prausnitzii abundance and was particularly



Henson and Phalak BMC Systems Biology  (2017) 11:145 Page 10 of 15

a

c

e

b

d

f

Fig. 5 Combined effects of different diets and oxygen concentrations on the steady-state levels of SCFAs and succinate. Bulk carbohydrate and
amino acid concentrations were varied according to the diet and the bulk oxygen concentration was set to a fixed value between 0 and 5x10−3

mM. a Total SCFA concentration averaged across the biofilm. b–d Acetate, propionate and butyrate levels averaged across the biofilm. e Succinate
concentration averaged across the biofilm. f Spatial profile of the F. prausnitzii butyrate synthesis rate at a bulk oxygen concentration of 3x10−3 mM

high for the CHO diet due to enhanced succinate synthe-
sis by B. thetaiotaomicron. Collectively these predictions
suggest that buytrate levels are mainly determined by
biofilm oxygen concentrations rather than dietary compo-
nents.

Feedback betweenmicrobiota and host can amplify the
oxygen effect
A central tenet of the oxygen hypothesis is that microbiota
dysbiosis induces inflammation in the host, which causes
increased release of oxygen and reactive oxygen species
into the intestinal lumen thereby amplifying the dysbio-
sis process. This positive feedback mechanism would be
expected to increase IBD pathogenesis compared to a one
way interaction where oxygen release causes dysbiosis but
dysbiosis does not affect oxygen levels. The simulations
presented thus far modeled this one way interaction by
fixing the bulk oxygen concentration and predicting the
species abundances.
To mimic positive feedback between the microbiota and

host, we developed a simple phenomenological relation
between butyrate producing F. prausnitzii and the bulk
oxygen concentration (see Additional file 1). The linear

relationship was based on the assumption that a sus-
tained oxygen perturbation occurred at time zero when
the F. prausnitzii biomass concentration was at its anaer-
obic value (Fig. 6a). From this point the bulk oxygen
concentration increased linearly until the F. prausnitzii
biomass concentration was zero, at which point the bulk
oxygen concentration was assumed to be 5x10−3 mM.
This phenomenological relation was consistent with a
recent experimental study demonstrating a mechanis-
tic link between reduced butyrate levels and increased
oxygen levels [26]. While the incorporation of positive
feedback can produce bistability and hysteresis [55], we
observed no evidence of these behaviors. This result
appears to be consistent with the available experimental
literature, which has not yet demonstrated the existence
of switching behavior.
As observed for a fixed bulk oxygen concentration (see

Fig. 3), small perturbations of 0.5x10−3 mM and 1x10−3

mM were predicted to induce only small changes in the
species abundances (Fig. 6c–e) and the butyrate concen-
tration (Fig. 6f). For these two cases, the biofilm oxygen
concentration was maintained below 35 nM (Fig. 6b)
and dysbiosis was not substantially amplified. However,
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Fig. 6 Effect of oxygen perturbations with host-microbiota feedback. The oxygen perturbation was set to one value in the legend at time zero and
sustained throughout the simulation. a Linear relationship mimicking the putative host-microbiota feedback mechanism. b Biofilm oxygen
concentration averaged across the biofilm. c–e Species abundances averaged across the biofilm. f Butyrate concentration averaged across the
biofilm

a slightly larger oxygen perturbation of 1.5x10−3 mM
was predicted to eliminate F. prausnitzii and butyrate
entirely with the B. thetaiotaomicron and E. coli abun-
dances increased by 22% and 138%, respectively. This
perturbation resulted in a much higher oxygen level of
∼100 nM in the biofilm. When compared with the same
perturbation for the fixed bulk oxygen case (see Fig. 3),
the positive feedback mechanism produced much more
severe dysbiosis. Interestingly, the timescale of the dys-
biosis dynamics with host feedback was on the order of
20,000 hours (2.3 years) while that for the fixed bulk oxy-
gen case was about 3,000 hours (4.1 months). Hence, our
model predicted that bidirectional host-microbiota feed-
back will substantially amplify microbiota dysbiosis but
greatly lengthen the dysbiosis timescale.
Antibiotics such as ciprofloxacin and metronidazole

often are used a a first-line therapy for IBD patients [7].
While early studies with small patient numbers seemed
to provide some support for this practice, more recent
studies with much larger patient populations and omics
analyses have cast doubt on the efficacy of antibiotic treat-
ment [29], especially for Crohn’s disease [56, 57]. In fact,
these studies suggest that antibiotics actually could be
detrimental by reducing microbial diversity, decreasing

the abundances of beneficial species and reducing colo-
nization resistance to pathogenic bacteria. To investigate
the possible effect of antibiotic treatment in silico, we
introduced a simple modification to our biofilm model to
account for antibiotic mediated cell death (see Additional
file 1). The antibiotic level was held constant through-
out the biofilm at a specified concentration assuming the
release rate of antibiotic from a cell was much faster
than antibiotic diffusional dynamics. The host-microbiota
feedback relationship was included without an oxygen
perturbation such that increased oxygen levels only could
result from decreases in F. prausnitzii concentration.
Simulation results were qualitatively similar to those
obtained for oxygen perturbations, with a sufficiently
large antibiotic level inducing high biofilm oxygen con-
centrations and essentially eliminating F. prausnitzii (see
Additional file 2). These predictions provide some sup-
port for the hypothesis that antibiotic treatment could
exasperate IBD pathogenesis.

Discussion
Ulcerative colitis and Crohn’s disease are highly com-
plex inflammatory bowel diseases (IBDs) that involve
myriad interactions between the gut microbiota, host
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immune system and diverse environmental factors such as
diet and antibiotics. Our current understanding of these
diseases is incomplete, which limits the development
of effective and generally applicable therapies. Future
advancements will depend on careful dissection of host-
microbiota-environmental interactions in suitable animal
models and actual IBD patients. Because the gut micro-
biota are known to play a critical role in IBD pathogene-
sis, improved understanding of the complex interactions
between microbial species in healthy and diseased gut
environments is a prerequisite to gaining a holistic picture
of IBD.
The premise of the current study was that insights into

microbiota dysbiosis could be gained through the devel-
opment and analysis of a multispecies metabolic model.
With regard to species diversity, we formulated a mini-
mal model [41] with a representative species from the two
dominant phyla in the healthy gut (the obligate anaerobes
Faecalibacterium prausnitzii from the phylum Firmicutes
and Bacteroides thetaiotaomicron from the phylum Bac-
teroidetes) and one species known to be overrepresented
in the IBD gut (the facultative anaerobe Escherichia coli
from the phylum Proteobacteria). However, the model
incorporated detailed descriptions of species metabolism
through genome-scale metabolic reconstructions and of
species interactions through nutrient competition and
byproduct cross feeding. We believe that our bottoms-up
modeling philosophy meshes well with top-down mod-
eling approaches based on more complex gut commu-
nities but simpler descriptions of intra- and intercellular
metabolism [58–60].
Our biofilm metabolic model was designed to test the

hypothesis that oxygen plays a key role in IBD micro-
biota dysbiosis by increasing the abundance of facultative
anaerobes at the expense of obligate anaerobes [10, 15].
The model was well suited for this purpose since dys-
biosis has been strongly correlated with decreasing F.
prausnitzii and increasing E. coli densities, while no clear
trend has been established for B. thetaiotaomicron [15].
We found that dysbiosis consistent with IBD disease pro-
gression could be qualitatively predicted solely based on
metabolic differences between the three species. At lumen
oxygen concentrations between 1x10−3 mM and 5x10−3

mM, our biofilm model predicted that the F. prausnitzii
population would be rapidly eliminated due to its inabil-
ity to efficiently utilize oxygen for growth enhancement.
Over the same oxygen range, the E. coli abundance was
predicted to increase almost 140% compared to its anaer-
obic value. B. thetaiotaomicron was predicted to exhibit a
much smaller increase of about 20%, which was consistent
with some experimental investigations [15]. B. thetaio-
taomicron decline observed in some other studies [15]
may be attributable to oxygen inhibition of growth, which
have been reported to occur around 1,000 nM for the

closely related gut bacterium B. fragilis [25]. Our model
did not include this effect because the average oxygen
concentration across the biofilm rarely exceeded 100 nM,
although the peak oxygen concentration in the first 3–
4 microns could exceed 1,000 nM. Oxygen toxicity is an
interesting topic for future experimental and modeling
studies.
We simulated three nutrient environments that dif-

fered with respect to carbohydrate and amino acid (pro-
tein) content to explore the effect of diet on micro-
biota dysbiosis: high carbohydrate (CHO), high protein
(PRO) and equal CHO-PRO. We expected the high pro-
tein diet to provide the most benefit to F. prausnitzii
due to the lack of carbohydrates to support B. thetaio-
taomicron and E. coli growth. Interestingly, the equal
CHO-PRO diet allowed F. prausnitzii to most effectively
compete metabolically with the other two bacteria over
a range of oxygen concentrations. Based on anaerobic
abundances, the equal CHO-PRO diet seemed to repre-
sent a “sweet spot” for F. prausnitzii. Higher carbohydrate
content favored B. thetaiotaomicron, while higher pro-
tein content favored E. coli. These predictions appeared to
be consistent with clinical studies showing that diets rich
in fermentable monosaccharides/oligosaccharides [53] or
rich in animal protein [54] are risk factors for IBD devel-
opment. To limit model complexity, the simulated gut
nutrients were restricted to four monosaccharides and
ten amino acids expected to be available for consump-
tion by gut bacteria. Future inclusion of the other ten
amino acids and more complex carbohydrates such as
oligo- and polysaccharides would expand usefulness of the
model but substantially increase computational demand
since carbohydrate breakdown by B. thetaiotaomicron
is modeled as an extracellular process [33] and would
require the inclusion of additional partial differential
equations.
The previous simulations were performed by setting the

lumen oxygen concentration to a constant value and then
predicting the effect on the microbiota. While informa-
tive, this approach neglected positive feedback between
microbiota dysbiosis and host inflammation, which is
believed to be the cause for putative oxygen increases
[19]. As a non-mechanistic means to investigate this feed-
back mechanism, we incorporated a simple linear rela-
tion between the F. prausnitzii concentration and the
lumen oxygen concentration such that an oxygen pertur-
bation would induce F. prausnitzii decline, which would
trigger increasing oxygen levels. Host-microbiota feed-
back did not substantially change the range of lumen
oxygen concentrations where dysbiosis was predicted,
but the transition from normal species abundances to
severe dysbiosis was much more dramatic and occurred
over a much longer timescale. These results demon-
strate how IBD might progress over several years with
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few noticeable effects and then suddenly start produc-
ing severe disease symptoms. Similar predictions were
obtained with sustained antibiotic treatment replacing
a sustained oxygen perturbation, consistent with recent
clinical studies questioning the use of antibiotics as a first-
line therapy for IBD patients [29, 57]. Clearly modeling
of host-microbiota feedback would be improved by incor-
porating a mechanistic model of host metabolism, which
would be possible for the mouse by using a genome-
scale metabolic reconstruction of Mus musculus [33] to
add a fourth species to the community. This extension
is an exciting target for future modeling research and
could allow more direct testing of model predictions in
gnotobiotic mice.
While we believe that the gut community model devel-

oped in this study yielded valuable insights into the
possible role of oxygen in IBD pathogenesis, numer-
ous improvements can be envisioned to improve model
fidelity and usefulness. In addition to previous comments
about expanding the modeled nutrients and incorporat-
ing host metabolism, the model could be expanded to
include additional gut species for which curated genome-
scale metabolic reconstructions are available [61–64].
This extension would allow the incorporation of more
complex cross feeding relationships and investigation of
their effects on community robustness in healthy and
diseased states. We modeled the three species commu-
nity as a biofilm due to experimental studies that provide
substantial support for the hypothesis that gut microbes
organize into spatially structured multispecies biofilms
[65–67]. The addition of planktonic populations in the
get lumen that compete for nutrients and cross feed
byproducts with biofilm communities associated with the
host mucosa would provide a more accurate picture of
species interactions. A drawback of our bottoms-up mod-
eling approach is the need for parameters such as species
specific nutrient uptake kinetics and metabolite depen-
dent mass transfer coefficients. While currently unknown
for most gut species, many of these parameters could
be determined from carefully designed planktonic and
biofilm experiments with the individual species.

Conclusions
Inflammatory bowel diseases (IBD) involve dysbiosis of
the commensal gut microbiota characterized by a signifi-
cant reduction of obligate anaerobes and a sharp increase
in facultative anaerobes. We developed a multispecies
biofilm metabolic model to test the hypothesis that IBD
dysbiosis is mediated by increased oxygen levels in the
gut. The biofilm model was built upon genome-scale
metabolic reconstructions of representative species from
the three dominant phyla in the human gut: Bacteroides
thetaiotaomicron, an obligate anaerobe from the phy-
lum Bacteroidetes that secretes the short-chain fatty acids

(SCFAs) acetate and propionate; Faecalibacterium praus-
nitzii, an obligate anaerobe from the phylum Firmicutes
that secretes the health-promoting SCFA butyrate; and
Escherichia coli, a facultative anaerobe from the phylum
Proteobacteria present at low levels in healthy individu-
als. The metabolic reconstructions were combined with
reaction-diffusion transport equations and uptake kinet-
ics for key nutrients and putative cross-fed byproducts. By
specifying bulk concentrations of nutrients including oxy-
gen at the boundary of the simulated biofilm, the model
was able to predict the impact of metabolite concentra-
tion gradients on multispecies metabolism as a function
of time and location.
The key predictions of our biofilm metabolic modeling

study were:

1. Bulk oxygen concentrations as low as 1 micromolar
were sufficient to qualitatively reproduce
experimental data showing a sharp decrease of F.
prausnitzii and a large increase of E. coli,
demonstrating that dysbiosis consistent with IBD
disease progression could be predicted solely based
on metabolic differences between key species.

2. Similar predictions were obtained with sustained
antibiotic treatment replacing a sustained oxygen
perturbation, consistent with clinical studies linking
broad spectrum antibiotics and IBD.

3. Oxygen sensitivity was dependent on diet with
balanced carbohydrate and protein content predicted
to increase the oxygen range over which F.
prausnitzii could remain competitive and the
butyrate-depleting effect of IBD could be sublimated.

4. Host-microbiota feedback included through a simple
linear mechanism caused dysbiosis to occur over a
long timescale of months, indicating how IBD might
progress slowly with few noticeable effects and then
suddenly start producing severe disease symptoms.

We believe that our model predictions could be tested
through the development of an appropriate in vitro system
of the three species community and testing of microbiota-
host interactions in gnotobiotic mice.
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