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Abstract

Background: Time course measurement of single molecules on a cell surface provides detailed information about
the dynamics of the molecules that would otherwise be inaccessible. To extract the quantitative information, single
particle tracking (SPT) is typically performed. However, trajectories extracted by SPT inevitably have linking errors
when the diffusion speed of single molecules is high compared to the scale of the particle density.

Methods: To circumvent this problem, we develop an algorithm to estimate diffusion constants without relying on
SPT. The proposed algorithm is based on a probabilistic model of the distance to the nearest point in subsequent
frames. This probabilistic model generalizes the model of single particle Brownian motion under an isolated
environment into the one surrounded by indistinguishable multiple particles, with a mean field approximation.

Results: We demonstrate that the proposed algorithm provides reasonable estimation of diffusion constants,
even when other methods suffer due to high particle density or inhomogeneous particle distribution. In addition,
our algorithm can be used for visualization of time course data from single molecular measurements.

Conclusions: The proposed algorithm based on the probabilistic model of indistinguishable Brownian particles
provide accurate estimation of diffusion constants even in the regime where the traditional SPT methods

underestimate them due to linking errors.

Keywords: Brownian motion, Diffusion constants, Expectation maximization algorithm, Probabilistic model, Single

molecular measurement

Background

Sensing the extracellular environment is crucial for cells
to properly respond and function. The information from
the environment is typically encoded in microscopic mo-
lecular signals that are recognized by cell surface recep-
tors. The signaling of cell surface receptors involves
several physical processes, including ligation to their li-
gands, oligomerization, and subsequent binding to the
downstream signaling components in cytosol. Although

* Correspondence: teraguchi@megabank.tohoku.ac,jp;
ykumagai@biken.osaka-u.acjp

'"Tohoku Medical Megabank Organization, Tohoku University, 2-1
Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan

2Quantitative Immunology Research Unit, Immunology Frontier Research
Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan

( BioMed Central

many details of these processes have been inferred from
biochemical, genetic, and molecular or cell biological
studies, their physical and dynamical aspects at the
microscopic level are still largely unknown [1].

Recent development of techniques for single molecular
measurement such as total internal reflection fluores-
cence (TIRF) microscopy [2] provides a chance to dir-
ectly observe the dynamics of these processes from time
course images of fluorescently-labeled single molecules
on cell surfaces [3, 4]. A typical workflow for such data
is single particle tracking (SPT) [5]. In SPT, the positions
of particles in each time frame are first detected. With
the help of the sophisticated detection algorithms, the
spatial resolution of the detected position could be of
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sub-pixel order [6]. The next step is linking, where the
trajectory of each molecule is inferred by connecting
seemingly identical particles in subsequent frames. Usu-
ally, the nearest particle in the subsequent frame with glo-
bal consistency is identified as the same particle [7, 8].

The identified trajectories of particles must be further
analyzed quantitatively to find biologically relevant phys-
ical parameters. The diffusion constant, which character-
izes the diffusion speed of the particles, is one such
parameter, and has been the target for subsequent ana-
lyses [9-11]. It has been shown that the diffusion con-
stants of membrane proteins such as cell surface receptors
can change along with biophysical events such as binding
to their ligand or cytosolic adaptor molecules. For ex-
ample, the diffusion constants of the epidermal growth
factor receptor (EGFR), which belongs to a family of
receptor tyrosine kinase, have been found to decrease after
binding to EGE, and to transduce signals via subsequent
binding with its adaptor Grb2 protein [12, 13]. It has also
been shown that intracellular signaling proteins functio-
ning on the membrane have multiple states, each of which
have different diffusion constants [14, 15].

Although SPT methods are widely used, they encoun-
ter difficulties when the density of particles is higher.
When the particle density becomes comparable to the
scale of diffusion in the time resolution of the measure-
ment, the expected area of diffusion of a particle tends
to contain several irrelevant particles purely by chance.
Since, in typical experiments, visualized molecules are
indistinguishable from fluorescent signals, linking errors
of SPT are inevitable. Then, trajectories from such erro-
neous SPT lead to underestimation of diffusion con-
stants, and incorrect biological interpretations. Note that
this problem of linking error may occur even in the re-
gime where the detection error coming from the diffrac-
tion limit of a microscope is negligible.

In this paper, we address this problem of linking error
in diffusion constant estimation. As we have seen, the
problem arises from the impossibility of perfect hard
linking of identical particles in SPT. Here instead of link-
ing the nearest particles in subsequent frames, we only
assign a probability of such possible identification with
respect to the particle density around the position, and
directly estimate the diffusion constant without specifying
concrete trajectories. For this purpose, we derive a prob-
abilistic model of the distance to the nearest neighbor by
generalizing the canonical theory of single Brownian mo-
tion into multiple indistinguishable particles. The resultant
algorithm successfully estimates diffusion constants even
under high particle density conditions where SPT based
methods underestimate them. The proposed algorithm
shows some resemblance to another SPT free diffusion
constant estimation method, namely particle image correl-
ation spectroscopy (PICS) [16], which was inspired by
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image correlation microscopy [17-20]. The advantages of
our algorithm over PICS include lower variances of esti-
mated diffusion constants, lower numbers of hyperpara-
meters to be determined before the analysis, and the
applicability to cases with inhomogeneous particle distribu-
tions, whereas PICS assumes a homogeneous distribution.

In this paper, we first introduce the probabilistic model
of the positions of the nearest neighbors of a diffusing
particle surrounded by indistinguishable particles and
then formulate the inference of diffusion constants in
terms of maximum likelihood estimation based on this
model. In a simple setting with a homogeneous particle
distribution, our algorithm can be considered to be a
natural generalization of the canonical diffusion constant
estimation from the mean square displacement (MSD)
to the case of finite density of surrounding particles. Our
algorithm is further generalized to allow multiple states
with different diffusion constants with the help of the
expectation maximization (EM) algorithm [21]. Com-
parison of the performance of our proposed method
based on simulated artificial diffusion data with other
diffusion constant-estimation methods indicates the ad-
vantage of the proposed algorithm. Finally, we demon-
strate that the algorithm can be used to infer the state of
each molecule and visualize the single molecular data
with such information.

Theory

A probabilistic model of a diffusing particle surrounded
by indistinguishable particles

To develop the probabilistic model for estimating the
2D lateral diffusion constants under high particle dens-
ity, we focus on a single Brownian particle in a time
frame (Fig. 1). Without loss of generality, we take the
position of the particle as the origin of our polar coordi-
nates. As is well known, the probability of finding the
same Brownian particle at a position with a radial dis-
tance greater than Ar after a time-lag At is given by [22].

Pa(r > Ar|D) = e 5w, (1)

where the parameter p is the diffusion constant of the
particle.

In typical time-lapse single molecular imaging of cells,
particles are indistinguishable from one another. By
assuming the independence of the dynamics of each par-
ticle, we can model the distribution of such indistin-
guishable surrounding particles by a local uniform
density,p, which is a sort of mean field approximation of
the surrounding particles. In this approximation, we can
derive the probability of having the nearest surrounding
particle at a distance greater than Ar as follows. We
begin with a finite case where there are, on average, N
surrounding particles in the disk with a radius R around
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Fig. 1 Schematic of the probabilistic model. a a typical distribution of particles at ¢+ At (thick circles) with an indication of the position of a
representative particle at t (dashed circle). b the case where the nearest particle is the original particle. ¢ the case where the nearest particle is a
surrounding particle. Gray color indicates the identification of the original particle. The large dotted circles indicate the distance to the nearest
particle. The distance to the nearest neighbor of the origin at the subsequent time frame is modeled by the probabilistic model with respect to
the diffusion constant of the original particle and the particle density at the origin

a point. We assume that the surrounding particles are
uniformly distributed within the disk. If we consider a
smaller disk with a radius Ar inside the disk, the prob-
ability of a single surrounding particle being found out-
side of the smaller disk is 1 — @/A, where a = 7Ar* and A
= 7R* correspond to the areas of the smaller and bigger
disks, respectively. Then, the probability that all the N
surrounding particles are also found outside of the
smaller disk is (1-a/A)N. Assuming that @ is much
smaller than A, this probability can be approximated as
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where p=N/A is the local particle density. Thus, the
probability of having the nearest surrounding particle at
a distance greater than Ar is given by
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By combining the above results together, the probabil-
ity of detecting the nearest particle at a distance greater
than Ar would be given by

Py (r > Ar|p, D) = Pgig(r > Ar|D)Ppg(r > Ar|p)

= e—pnArz—ﬁ,th. (3)

This is the fundamental probabilistic model upon
which we develop the estimation algorithm of the

diffusion constant in this paper (Fig. 1). This probabilis-
tic model generalizes the theory of Brownian motion of
a single isolated particle into that of a single particle sur-
rounded by indistinguishable particles.

The indication of the model becomes more manifest if
we calculate the expected mean square displacement to
the nearest particle (MSDN) as

oo

MSDN = E(Ar?) = /Ar2 (—ﬁPnn(r > Ar\p,D))d(Ar)
0

_ 4DAt

1+ 4pnDAt’

(4)

This is a natural generalization of the well-known rela-
tionship between the MSD of a single diffusing particle
and the diffusion constant [22],

MSD = 4DAt. (5)

As expected, MSDN goes back to the original MSD in
the limit of p being zero, (i.e., where there are no sur-
rounding particles). Due to the additional term in the
denominator, the MSDN is, in general, smaller than
MSD. This is because the nearest particle can be the ori-
ginal particle diffused from the origin as in MSD, or
even a nearer surrounding particle.

This relationship can be easily solved with respect to
D, allowing it to be estimated as
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_ MSDN
~ 4At(1-prMSDN)’

Compared to the standard estimation from MSD,

~ MSD

= 2A7 (7)

the estimated diffusion constant acquires a fold increase
of 1/(1 — prMSDN), which compensates for the apparent
reduction of the displacement compared to MSD. In
Fig. 2, we show the MSDN for simulated data. As At in-
creases, the points deviate from the line 4DAt and obey
the above theoretical prediction as expected. Note that
the time course of MSDN is conceptually different from
that of MSD in a trajectory after SPT. In the case of
SPT, the identification of the same particle is consecu-
tively performed using all measured time points during
At. On the other hand, in MSDN, the nearest point after
time duration Az was chosen without referring to the
measured time points before At.

Maximum likelihood estimation of diffusion constants for
local particle density

Though the above relationship between the diffusion con-
stant and MSDN allows us to estimate diffusion constants
for the case of a uniform particle distribution, it is difficult
to generalize it into an inhomogeneous particle distribu-
tion, which is a less ideal but much more relevant situ-
ation. In such a case, a constant particle density p alone
cannot capture the underlying particle distribution.
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Fig. 2 Mean square displacement to the nearest particle. A comparison
of MSDN and MSD. The black straight line corresponds to the expected
MSD, while the black curve is the expected MSDN, with D=1 umz/s and
p=1 particles/um?. The points are the mean MSDN directly calculated
from corresponding simulated data. The error bars indicate the standard
deviation from one thousand independent simulations. The red line
indicates the asymptotic value of the expected MSDN at At — oo
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Here, we formulate a more general estimation algo-
rithm of diffusion constants using a maximum likelihood
estimation based on the above probabilistic model. The
log-likelihood of an observed dataset is given by

N
log HP"“ (r = Arilp;, D)

i=1

l

*N log( 2p,r + ! + log(Ar;) Ar? Arf
T L OB\ T opar) T OB T |

(8)

Here, the index i represents each particle in the pre-
ceding time frame, Ar; is the distance to the nearest par-
ticle in the subsequent time frame, and p; is the local
particle density around particle i. If we assume a uni-
form distribution (i.e., that all p; are the same), this max-
imum likelihood estimation of D is analytically tractable
and reduces to the same relation between the diffusion
constant and MSDN described above.

In the case of general p;, it is convenient to utilize the
EM algorithm [21, 23]. For this purpose, we introduce a
latent variable ¢; € {0, 1}, which takes the value of zero if
the nearest point comes from the surrounding particles,
but becomes one if it is the original particle diffused
from the origin. Then the complete-data log-likelihood
with the information of the latent variable is given by

N
I' = log[ [ p(Ari q.lp; D). 9)

i=1

Here, the joint probability distribution is defined as
, &2

2p,tAr;e PN for q; = 0

Ar i
2DAt

Ari.q:lp.. D) = 7
p( l?ql|pl7 ) —P[”Ar?_fTAt

forg, =1
(10)

In the EM algorithm, instead of maximizing the log-
likelihood directly, a quantity Q(D, Dl) is maximized with
respect to D by iteration:

N

QD, D) =" > log(p(Ariqlp,, D))p(q|dri,p;, D).

i=1 ¢e{0,1}

(11)

Here, D' is the estimation of the diffusion constant D
at the [-th iteration. The conditional probability based
on D' is calculated from the above joint probability as

4p.71D' At
p(q=0|Ar,p;, D) = Z it

— 12
p. D' At + 1 (12)
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Taking the derivative of Q with respect to D and
equating it to zero,

Z [4D2At

= 0|Ari,pi,D1)

Ar; 1
= 1 A 1y b = 07
+(gort -3 Jpla = larp, D)
(14)
we obtain the update rule
2
Dl+l _ <Ar > (15)

CAAt(P(g = 1))y
where we have defined the expected fraction of data
points with g =1 as

N

(Plg=1))p = %Zp(q = 1|Ar;, p;, D).

i=1

(16)

Now, the correction from the original MSD relation is
neatly summarized by this expected fraction of the data
whose nearest points come from the original particle dif-
fused from the origin.

Generalization to models with multiple diffusive states

In this subsection, we further generalize the maximum
likelihood estimation of diffusion constants into the
case where particles take multiple states with different
diffusion constants. It has been revealed that some
membrane proteins change their physical properties
upon binding to other molecules or spontaneous
change of their conformation, and that these changes
can be inferred from the change of the diffusion con-
stant in some cases [14, 15]. Here we consider this type
of change of diffusion constants, which we shall refer as
to the change of their states. In this paper, we only pro-
vide the solution for relatively simpler situations of the
dynamics with multiple diffusive states where the inter-
conversion of different states can be ignored in the time
resolution [10].

This simple generalization is practically quite useful,
even when there is no biological reason to expect the ex-
istence of such multiple states of the target molecule. In
a real experiment, many fluorescently-dyed surface mol-
ecules disappear for several reasons, such as internaliza-
tion of the particle, breaching of the fluorescent dye, and
so on. Such disappearance of particles can be modeled
in the above framework by adding an additional state
whose diffusion constant is infinitely large. In addition,
some accidental peaks of fluorescent intensity may be
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wrongly detected as particles due to the low signal-to-
noise ratio of the original images (false detections). Those
spurious particles also tend to disappear in the subsequent
time frame. Thus, we can reduce the effects of such false
detections by introducing such a state in advance. We will
address this issue again in Result section.

The derivation of the corresponding EM algorithm is
largely parallel to the one in the previous subsection. In
addition to the latent variable g;, which specifies whether
or not the nearest particles are the original particle itself,
we introduce an additional latent variable specifying
states of the particle i, s;€{1, ---, M}, where M is the
number of possible states.

The joint probability distribution of this model is
given by

2

2p,mag, Arie Nt forg; =0

P07 slpe D) = ag Ay puide
2D, AL° ord: =

(17)

where Dy, is the diffusion constant of the state s;, and a,
is the probability of being the state s;.

The quantity Q for deriving the update rule of the EM
algorithm is similarly defined by

N

DDI :ZZ Z log(p

i=1 s= lqe{o 1}
p(qu|Ariapiael)'

Ariaqas|pi76))

(18)

Here, 6 collectively denotes all of the parameters to be
estimated, namely, 6 ={Dy, ---, Day, a3, ---apg). The condi-
tional probability is calculated from the joint probability
as follows:
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Compared to the single state case, here, the joint prob-
ability also depends upon the displacement, Ar;.
By maximizing Q under the restriction of conservation

of probability, Z as; = 1, we obtain
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N
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This is our final update rule for maximum likelihood
estimation for the multi state model.

Methods

Monte Carlo simulation

To compare the performance of the proposed and exist-
ing methods, we generate artificial data of single mo-
lecular particle diffusion with Monte Carlo simulation.
Depending on the purpose of simulation, we generate
simulated data in two different ways.

Pairwise simulation

In [16], to evaluate the performance of PICS algorithm,
the authors utilized simulated data generated as pairs of
time frames, rather than a single time course of diffusing
particles. Since it allows precise controls of the distribu-
tion of the simulated data, it makes subsequent compari-
son among algorithms and interpretation of observed
performance easier. Thus, we follow the same strategy
to simulate diffusion dynamics in some of our simula-
tions in Result section.

First we draw a fixed number of positions of particles
from the corresponding probability distribution of parti-
cles for the preceding time frame. In the case of uniform
particle distribution, we sample the particles over a
much larger area than the area of interest, in order to
keep the same distribution after the diffusion steps.
Next, we generate the subsequent frame by adding a dis-
placement drawn from the two-dimensional normal dis-
tribution with a variance of 2DAt¢ to each position.
When needed, another fixed number of particles are
drawn from the same particle distribution, and added in-
dependently to both the preceding and subsequent
frames to represent the existence of false detections,
which typically occur in detection from low signal-to-
noise ratio image data. In the simulation with false de-
tections, we set the fraction of false detections to 20%.
Each estimation of diffusion constants is performed
against 10 pairs of time frames. The simulation is re-
peated 100 times for each condition. All simulations are
performed using R (http://www.r-project.org/).

Page 30 of 122

Image based time course simulation

In the above simulation method, positions of detected
points were directly generated by Monte Carlo simula-
tion. Thus, no particular bias coming from detecting
particle positions from image data is taken into account.
In order to take account of such uncontrollable effects,
we further examine diffusion constant estimation algo-
rithms by artificially generated time course image data
of single molecular measurements. For this purpose, we
utilize the image data generator provided as a plugin
“ISBI Challenge Track Generator” [24] of an open plat-
form software “ICY” [25] for bioimage analysis.

We set the parameters of the plugin software as fol-
lows; SNR =4, sequence length = 10, particle density =
100, 500 and 1000, sigma=1, 2, 3, 5, 7 and 10 in the
particle motion with creator type “BROWNIAN_UNI-
FORM”. The image size is 512 pixels x 512 pixels. The
other parameters (except for seeds) are set to default,
which means the extinction rate of each particle is
0.05. The particles in generated image data are de-
tected by another plugin “Spot Detector” of the ICY
software. The detection of bright spots by Spot De-
tector plugin is performed with default parameters.
The simulation is repeated 3 times for each condition
with different seed values.

Other algorithms to estimate diffusion constants

To evaluate the performance of our proposed method,
we compare it with existing algorithms. To make the
comparison make sense, we examine algorithms that are
applicable to the same type of the data, namely, the time
series of the location of detected points. For example,
some of algorithms utilized to estimate the diffusion
constants under higher density or higher diffusion speed
cannot be compared because they require specially de-
signed data set for the algorithms [26, 27]. As a result,
our comparison is made mainly with PICS algorithm
which is particularly designed for estimating diffusion
constants under higher particle density, in addition to
SPT based methods.

PICS

We implement the PICS algorithm in R to enable auto-
matic parameter estimation from the Monte Carlo si-
mulation data. A minor difference from the original
implementation described in [16] is that we fit the whole
cumulative correlation function at once to simplify the
automation instead of separately fitting the linear and
non-linear parts of the cumulative correlation function
to the data. In our experience, this implementation of
PICS provides comparative or even better performance
compared to the original one (data not shown).
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Local SPT

As an example of the most naive approach, we make tra-
jectories by simply associating each particle to the near-
est particle in the subsequent frame without considering
global consistency. Unlike the case of global SPT de-
scribed below, in this approach, a particle in a subse-
quent time frame might be associated with several
particles in the preceding time frame.

Global SPT
As a representative of SPT method, we implement the
global linking algorithm based on a greedy hill-climbing
optimization with topological constraints following the
literature [24, 28]. This algorithm was used in one of the
best performance groups in the international competi-
tion of particle tracking methods [24]. In this algorithm,
there is no conflict between the associations of each par-
ticle. We set the maximum distance parameter for limit-
ing the association of subsequent particles to a large
enough value to link all particles. For the pairwise simu-
lation, this procedure provided sensible estimation of
diffusion constants independent of the details of the
exact value of the maximum distance parameter, as far
as the particle density is not very high (data not shown).
After obtaining the distribution of diffusion step sizes
with local or global SPT, we estimate the diffusion con-
stant with a maximal likelihood estimation based on the
assumption that each single particle exhibits Brownian
motion.

Particle density estimation for the simulated data

To apply our algorithm, we have to estimate the (local)
particle density. In the case of a uniform distribution, we
estimate the density by simply dividing the total particle
number in the frame by the area of interest. In an in-
homogeneous case, it is difficult to accurately estimate
the local particle density based on just a single time
frame. Therefore, we estimate the local probabilistic
density by a k nearest-neighbor algorithm after merging
all subsequent frames in the dataset except for the one
in the frame of interest. Then, the particle density at the
point is obtained by weighting the probabilistic density
with the number of particles in the frame of interest.
The value of k from the k nearest neighbor density esti-
mation in the merged data is chosen to be the number
of time frames utilized, which corresponds to the length
scale of k=1 in a time frame.

Estimation of diffusion constants for the real data

HeLa cells grown on glass coverslips (Matsunami) in a
6-well plate were transfected with Lyn;;-Halotag using
Lipofectamine 2000 (Invitrogen). Afters 4 h, the culture
medium was replaced with DMEM and the cells were
incubated at 37 °C for 24 h. The culture medium was
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exchanged with Opti-MEM (Gibco), and the cells were
incubated at 37 °C. After 2 h, the cells were washed once
with OPTI-MEM and incubated with 0.03 nM of Halo-
tag TMR ligand (Promega) in Opti-MEM for 30 min in
a CO2 incubator. The cells were then washed three
times with Opti-MEM and single-molecule imaging was
performed using a TIRF microscope. Single particle de-
tection and estimation of diffusion constants were done
using ICY and PNN algorithm, respectively.

Results and Discussion

Dependence of estimated diffusion constants on particle
density

Both PICS and our estimation algorithm, hereafter called
the probabilistic nearest neighbor (PNN) estimation,
have been designed to accurately estimate diffusion con-
stants under the condition of high particle density. We
first compare these methods to SPT-based methods with
and without global optimization of linking (referred to
as global SPT and local SPT, respectively) with pairwise
simulated data (see Method section for details).

First, we examine the effect of particle density under
the ideal condition of a homogeneous distribution
(Additional file 1: Figure S1 and Fig. 3). We vary the
particle density from 0.1 to 10 particles/um?, fixing the
diffusion constant to be 1um?/s. The time resolution,
At, of the data acquisition is assumed to be 20 ms [16].
Note that, in this ideal situation of Brownian motion,
only the ratio of the scales of the diffusion constant and
the particle density is the relevant parameter. Thus, the ef-
fects of changing the particle density with a fixed diffusion
constant are effectively equivalent to the ones of changing
the diffusion constant with a fixing particle density.

As expected, the change in particle density signifi-
cantly affects the diffusion constants estimated by the
simplest method, local SPT (Fig. 3). In this method, each
pair of nearest neighbor points in the subsequent time
frame is simply identified as the same physical particle
without consideration of the behaviors of other particles.
With this simple method, even with one-order lower
particle density, the estimation accuracy is low due to
the bias caused by the linking error (Additional file 1:
Figure S1).

After global optimization (global SPT) of the linking,
the estimation accuracy of SPT method is improved. In
particular, under lower particle density conditions, it re-
produces the true diffusion constants to great accuracy
(Additional file 1: Figure S1). However, in the condition
with higher particle density (p > 2), this method also un-
derestimates the diffusion constants. This value of the
particle density roughly corresponds to that where
4pnDAt becomes comparable to 1 in Eq. 1. This result
suggests the limitation in SPT methods under high par-
ticle density conditions.
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On the other hand, the two SPT-free methods PICS and
PNN, which take the effects of surrounding particles ex-
plicitly into account, estimate the diffusion constants quite
well over the whole range of particle densities under
consideration (Fig. 3 and Additional file 1: Figure S1).
Though the standard deviations among independent sim-
ulations tend to increase along with the increase of par-
ticle density, these could be reduced if more data in the
same condition became available [16].

Thus, the estimation of diffusion constants using PICS
or PNN leads to similar performance with SPT-based
methods under lower particle density and outperforms
them under higher particle density. Therefore, we focus
on these two methods in the following discussion.

Effect of false detections

By comparing PNN and PICS from the above results,
one might conclude that the accuracy of PNN is slightly
better than that of PICS because the standard deviation
of the estimated results is smaller in the former than the
latter. However, the above comparison was performed
based on simulation in a quite ideal condition: particles

distributed uniformly without any false detection. On
the other hand, real single molecular measurements tend
to be performed under less ideal conditions with a lower
signal-to-noise ratio. This affects the accuracy of the de-
tection of peak positions from raw images, leading to
spurious particles that are wrongly detected in such
noisy images.

In order to mimic such a situation, we artificially
introduce additional particles independently drawn from
the same distribution in each time frame. We simply
refer to these additional particles as false detections. The
existence of false detections significantly degrades the
estimation accuracy (Fig. 4, left panels) of both PNN and
PICS. The effects of false detections in the diffusion con-
stant estimation are two-fold. One effect is to increase
the apparent density of surrounding particles in the sub-
sequent time frames, and the other is the addition of
spurious particles in the preceding time frames that im-
mediately disappear from the scope. The former effect
is, by design, treated both in PICS and PNN since the
particle density is estimated with both physical particles
and false detections. On the other hand, the spurious
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Fig. 4 Comparison of the performance of PICS and PNN in a uniform distribution with false detections. Box plots summarizing the comparison of
PICS (a and b) and PNN (c and d). The top row is for PICS and the bottom row is for PNN. The first column is the result before introducing the
state corresponding to the false detections. The second column is the result after introducing the state for false detection compensation. The x
axis is the particle density and the y axis is the estimated diffusion constant. The red line indicates the true diffusion constant

particles coming from false detections in the preceding assumptions in the PICS algorithm. On the other hand,
time frames behave like particles with an infinitely high  we have designed PNN to be applicable beyond this as-
diffusion constant. Therefore, the addition of false detec-  sumption. Here, we compare the performance of these
tions biases the estimated diffusion constants towards two methods under three inhomogeneous distributions:
higher values. Note also that similar effects may occur ~ Gaussian, circular and Gaussian mixture.

when actual particles disappear by internalization or dis- Figure 5, Additional file 2: Figure S2 and Additional
sociation of surface protein from the membrane, bleach-  file 3: Figure S3 show the results of estimation of diffu-
ing of fluorescent dye and so on. sion constants under three classes of inhomogeneous

Fortunately, as commented in Theory section, this ef-  distributions, a Gaussian distribution, a circular distri-
fect of false detections can be addressed by generalizing  bution forming an annulus and Gaussian mixture distri-
the probabilistic model both in PICS and PNN by intro-  butions, respectively. Panel B of each figure shows the
ducing an additional state for false detections with an in-  results of PICS, where the estimated diffusion constants
finitely large diffusion constant. With this generalization, are biased, especially for the higher particle density. This
both PICS and PNN improve their prediction accuracy result is more or less expected, since this type of inhomo-
(Fig. 4, right panels) with a cost of larger standard devi- geneous condition is beyond the original scope of PICS.

ation, which originates from the increase of the number Panel C of each figure is the result of the PNN esti-
of the parameters to be estimated, namely the fraction of  mation with the known theoretical distribution utilized
false detections. to generate simulated data. In this case, the estimated

diffusion constants are much closer to their true values.
Estimation with an inhomogeneous distribution Of course, in a real situation, we cannot access to the

As mentioned above, another idealization in the above true underlying distribution of the particles. Thus, we
simulation was the assumption of a uniform distribution  have to estimate the distribution from the data, and the
of the particles. In fact, this is one of the key accuracy of the diffusion constant estimation depends
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density distribution for the simulation is used for the diffusion constant estimation. d PNN where the particle density distribution is estimated
from the data using a k nearest neighbor algorithm. The x axis is the mean particle density over the area of interest, and the y axis is the
estimated diffusion constant. The red line indicates the true diffusion constant

b PICS
<
N
w
- 8
~ @ ©
€ ol L T o
SRR
o |t iTSeS -
o TR TEess
o - —_
< |
e T T T T T T T T T T
2 3 5 7 10
p [um?]
d PNN (knn particle density estimation)
2-
w
Q) - 7 - T & 2 T -
N R e ol S s N B
£ o | HEBEEREEEsEHE
EA R
— o
o
w |
o
<
° T T T T T T T T T T
1 2 3 8 9 10

4 5 6 7
p [um?]

upon the accuracy of the density estimation. However,
the results here demonstrate that as far as the particle
density is estimated accurately enough, PNN should
work reasonably well.

Panels D of Fig. 5, Additional file 2: Figure S2 and
Additional file 3: Figure S3 show the results of PNN with
a particle density estimated from the data itself. Here, in
order to estimate the particle density, we use k nearest
neighbor estimation. In general, there is a tradeoff be-
tween spatial resolution and statistical error in density
estimation. Since our algorithm of PNN relies on the
(first) nearest neighbor, smaller k values with high spatial
resolution would be preferable. However, density estima-
tion based on a smaller k tends to have a larger variance.
In order to circumvent this problem, we estimate the
particle density using all the post frames in the dataset
except for the one in the frame of interest while keeping
the effective k value equal to one (see Method section
for details). The accuracy of the resultant diffusion con-
stant is comparable to the accuracy using theoretical

distributions. Our result here demonstrates that, with a
suitable choice of density estimation methods, our algo-
rithm can be utilized to estimate the diffusion constant,
even under an inhomogeneous particle distribution.

Image based simulation

To mimic a realistic situation of diffusion constant esti-
mation from typical single molecular measurements, we
further examine our algorithm and others using artificial
image data generator for an open competition of SPT
organized in 2012 [24]. The image data generator is pro-
vided as a plugin “ISBI Challenge Track Generator” of
an open platform “ICY” for bioimage analysis. We gener-
ate image data of diffusion dynamics as triplicates for
each condition. We set the parameters of the simulator
to be relatively low signal-to-noise ratio, and short
sequence length, to increase the difficulty of the estima-
tion in the category of “BROWNIAN_UNIFORM” (see
Method section for details). Note also that the particles
in this simulation disappear with an extinction rate of
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0.05. A representative movie and images of this simula-
tion are in Additional file 4: Movie S1 and in Additional
file 5: Figure S4, respectively. The detection of the parti-
cles from image data was made by another plugin “Spot
Detector” of the ICY software.

The results of the estimation of diffusion constants are
summarized in Fig. 6. Here, we show the diffusion con-
stants estimated by PNN, PICS and Local SPT. Though
we have also applied global SPT to the same data, it
showed very strong dependence on the maximum dis-
tance parameter and we could not obtain sensible esti-
mation from the analysis (data not shown). Thus, the
results of global SPT are omitted. We observe very simi-
lar tendency as in the previous simulations. PNN provides
the most accurate results over the range of simulated con-
ditions. Local SPT shows very strong bias depending on
the particle density (number) and true diffusion constants.
PICS does not show particular bias but tends to have
higher variances. Visual inspection of the fitted curves of
PICS clearly indicated poor fitting due to the effect of dif-
fraction, as discussed in the original paper of PICS [16]. In
the paper, they discussed how to mitigate the effect of
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diffraction in an iterative algorithm. Here, instead of
implementing their iterative algorithm, we apply PICS to
the corresponding ground truth data provided by the
simulator, which are free from all the effects of diffraction
(Panel D). Though this additional favor improves the fit-
ting and the performance of PICS, PNN still seems to out-
perform the ground truth based PICS (Fig. 6). These
results indicate the advantage of PNN in the application
to the real image data from single molecular measurement
of living cells.

3D visualization of particle states

The key of the proposed algorithm is that it assigns a
probability of taking each possible state to each particle
detected without specifying a trajectory. This property of
the algorithm can be utilized to visualize time course
data itself. The data shown in the upper panel of Fig. 7
consists of particles taking three different states, namely
slower diffusion (0.2 umz/s), faster diffusion (2 pmz/s),
and false detections. The particle density including all of
the three states is 1 particles/um” The lower left panel
is the same data in color (red: slower particle, cyan:
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Fig. 6 The performance of different algorithms in image based simulations. Scatter plots summarizing the performance of the algorithms. The x axis is the
true diffusion constant used for the simulation and the y axis is the estimated diffusion constant. The red line indicates the diagonal line corresponding to
the successful estimation. @ PNN. b PICS. ¢ local SPT and d PICS applied to the corresponding ground truth data
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faster particle) after removing the false detections. We
apply the PNN algorithm to the data and infer the state of
each particle by choosing the most probable one among
the assigned probabilities. As shown in the lower right
panel, the resultant figure bears a strong resemblance to
the original data, giving another support for the validity of
this algorithm. Unlike canonical SPT methods attempting
to determine a hard-wired trajectory, our algorithm keeps
several possibilities at the same time. This application of
PNN to a visualization purpose would be useful, particu-
larly when one is interested in identifying rare events like
interactions between pairs of particles.

Application to real data

We applied the PNN algorithm to a real data. Lynj;-
Halotag construct, which is localized on cytoplasmic
membrane, was expressed in HeLa cells and single-
molecule imaging was performed (Additional file 6:
Movie S2). Particle detection data was generated by
using ICY and subjected to estimation of diffusion con-
stant by PNN. PNN with k nearest neighbor particle
density estimation resulted in diffusion constant of

2.81x10"% um?/s under the assumption where mole-
cules take only one state and those of 5.20 x 10~ % pum?/s
and 6.15 x 10” % um®*/s under the assumption where mol-
ecules take two states. We could also calculate AIC
under these assumptions and the result supported the
latter. In the case, fractions of false detection, slow and
fast states were estimated to be 36%, 24% and 40%, re-
spectively. A previous report [29] suggested that Lyn,
origin of the Lyn;; tag, exhibits two states, namely lat-
eral diffusion and transient confinement in a lipid region
through lipid-lipid interaction. This supports our result
where Lyn;;-Halotag has two states with slow and fast
diffusion. Together, this result suggests that the pro-
posed algorithm works well for real data and helps to
understand dynamics of molecules.

Conclusions

In this paper, we proposed a novel diffusion constant es-
timation algorithm based on a probabilistic model of the
nearest point without explicitly performing SPT. Though
conventional SPT methods try to link pairs of particles
in the subsequent frames in a hard manner, such hard
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linking inevitably leads to erroneous pairing if no other
information to distinguish particles is available. We have
derived a probabilistic model by explicitly considering a
Brownian particle surrounded by indistinguishable parti-
cles in a mean field approximation. Since our probabilis-
tic model allows us to estimate diffusion constants
without relying on particular hard-linked trajectories, it
performs well even in the cases with higher particle
density or higher diffusion speed, where standard SPT
methods underestimate the diffusion constant. Since
particle density is difficult to control in real experiments,
this is advantageous in practical usage.

We have also provided a generalization of our algo-
rithm to multiple diffusive states. This generalization
was the key to address the case with false detections,
since disappearing particles behave like particles with
the additional diffusive state whose diffusion constant
is infinity. Thus, in practice, one is recommended to
examine both models with and without a fraction of
disappearing particles, and select a model by compar-
ing a statistical indicator like the Akaike Information
Criterion [30].

In addition to high prediction accuracy, one of the ad-
vantages of PNN is its applicability beyond a uniform
particle distribution. This has been the limitation on
PICS, another existing SPT-free algorithm. We have
demonstrated that, with or without knowledge of the
underlying distribution, our algorithm accurately esti-
mates diffusion constants even for the cases where PICS
cannot be properly applied. In general, without prior
knowledge of the underlying particle distribution, the ac-
tual performance of diffusion constant estimation also
depends upon the accuracy of the estimation of the
underlying particle distribution from the data, though
the investigation of optimal density estimation itself is
beyond the scope of this paper.

Since PNN considers each particle separately, it allows
us to obtain detailed information about each particle.
With the help of the EM algorithm, PNN estimates the
probability that each particle is in each state. This kind
of information, combined with their spatial distribution,
can be used for providing further insights into the
underlying biology, as briefly demonstrated in Fig. 7.

Another advantage of the proposed method, which is
not apparent from the above benchmark results, is the
small number of hyperparameters to be determined be-
fore analyses. For example, SPT based methods typic-
ally have a hyperparameter corresponding to the
maximum distance parameter, which specifies the pos-
sible maximum displacement of diffusing particles to
avoid connections of completely irrelevant particles. As
mentioned in Result section, the estimated diffusion
constants tend to largely depend on the choice of such
a hyperparameter especially when particle density or
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diffusion speed is higher. PICS also requires several
number of hyperparameters to perform a fitting to the
empirical cumulative correlation functions [16], includ-
ing the bin size and the range of consideration, whose
optimal values may depend on data. On the other hand,
PNN under a homogeneous particle distribution effect-
ively has only a single hyperparameter, the margin to
define the range of interest of the preceding time
frames compared to the subsequent time frames, which
also needed for PICS in addition to the ones mentioned
above. We have confirmed that PNN has very weak de-
pendency on the margin parameter as expected from
the construction of the algorithm (data not shown). In
the case of PNN under inhomogeneous particle distri-
bution, the number of hyperparameters may vary de-
pending on the chosen method of particle distribution
estimation. In fact, in combination with the k nearest
neighbor estimation of particle distribution we utilized
in this paper, no hyperparameter, even the margin par-
ameter, is required. This nature of small number of
hyperparameters in PNN is very convenient in practice,
since, otherwise, many trials and errors are needed to
optimize hyperparameters. In particular, when the abso-
lute value of estimated parameters is of concern, it is
not a trivial matter to choose such hyperparameters
objectively.

Finally, we would like to emphasize the complemen-
tary role of diffusion constant estimation methods. First
of all, all of the methods we examined in this paper are
based on the assumption that identification of single
molecules from the image data is more or less possible.
If the particle density is too high, the resultant images
cannot have the resolution of single molecular imaging.
In this extreme case, other methods without relying on
particle detection at all, like image correlation micros-
copy [17-20], would be preferable. Or, if one can use
specially designed experimental equipments, some other
choices of methods to finely estimate diffusion constants
like [26, 27] are available. In the case of the typical time
lapse images of single molecules [3, 4, 12—15] which we
considered in this paper, we have demonstrated that
PNN is favorable than PICS, in terms of the accuracy,
the applicability to inhomogeneous distribution and the
convenience of the analysis due to the small number of
hyperparameters. However, PICS analysis also has an ad-
vantage that the analysis is more graphical than PNN
and one might be able to address the validity of the
model by a visual inspection as far as the underlying
spatial distribution of the particle is uniform. In turn,
though canonical SPT methods tend to underestimate
the diffusion constant and largely depend on hyperpara-
meters under higher particle distribution, they allow one
to analyze individual trajectories which may provide
otherwise inaccessible information of each trajectory. In
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this sense, these methods can be utilized in combination.
For example, one may first apply PNN to robustly esti-
mate diffusion constants. This information of diffusion
constants in turn might be utilized to determine the
hyperparameters of SPT methods to minimize the linking
error of SPT. Then, the resultant trajectories may be uti-
lized, not to estimate the diffusion constants any more,
but to extract other biologically interesting parameters
which PNN cannot infer. Thus, having different diffusion
estimation algorithms enlarges our freedom to analyze
data, and increases the chance of obtaining biologically
meaningful information from various single molecular
time course datasets. In this regard, our algorithm opens a
new window for accessing diffusion constants, in particu-
lar, in the regime where the particle density becomes com-
parable to the effective scale of diffusion.

Additional files

Additional file 1: Figure S1. Comparison of the performance of different
algorithms in uniform distributions with lower particle densities. Box plots
summarizing the comparison of the algorithms as in Fig. 3. The x axis is the
particle density and the y axis is the estimated diffusion constant. The red
line indicates the true diffusion constant. A, local SPT. B, global SPT. C, PICS
and D, PNN. (PNG 105 kb)

Additional file 2: Figure S2. Comparison of the performance of PICS
and PNN in a circular distribution. A, a representative snapshot of the
particle distribution. B, C, and D, box plots summarizing the comparison
between PICS and PNN under a circular distribution. B, PICS. C, PNN,
where the known particle density distribution for the simulation is used
for the diffusion constant estimation. D, PNN where the particle density
distribution is estimated from the data using the k nearest neighbor
algorithm. The x axis is the mean particle density over the area of interest,
and the y axis is the estimated diffusion constant. The red line indicates the
true diffusion constant. (PNG 171 kb)

Additional file 3: Figure S3. Comparison of the performance of PICS
and PNN in Gaussian mixture distributions. A, a representative snapshot
of the particle distribution. The red crosses represent centers of three
Gaussian distributions. B, C, and D, box plots summarizing the comparison
between PICS and PNN under a Gaussian mixture distribution. B, PICS. C,
PNN, where the known particle density distribution for the simulation is
used for the diffusion constant estimation. D, PNN where the particle
density distribution is estimated from the data using the k nearest neighbor
algorithm. The x axis is the mean particle density over the area of interest,
and the y axis is the estimated diffusion constant. The red line indicates the
true diffusion constant. (PNG 306 kb)

Additional file 4: Movie S1. A representative movie of the image based
simulation. A representative movie generated by the plugin, ISBI Challenge
Track Generator, of an open platform software ICY. Seed = 123,456, SNR =4,
sequence length = 10, particle density = 1000, sigma = 10 in the particle
motion with creator type "BROWNIAN_UNIFORM". The other parameters are
set to default, which means the extinction rate of each particle is 0.05.

(TIFF 2561 kb)

Additional file 5: Figure S4. Representative images of the image based
simulation. Representative images generated by the plugin, ISBI Challenge
Track Generator, of an open platform software ICY. Seed = 123456, SNR =4,
sequence length = 10, sigma = 10 in the particle motion with creator type
"BROWNIAN_UNIFORM". Particle densities are 100, 500 and 1000, respectively.
The other parameters are set to default. (PNG 517 kb)

Additional file 6: Movie S2. TIRF microscopic single molecule video
image of Lyn;;-Halotag in Hela cells. Membrane-localized single Lyn;-
Halotag protein molecules in a Hela cell were observed by a TIRF
microscope as described in Methods. (AVI 2796 kb)
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