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mechanisms for hypoxia mediated cell
cycle commitment for mesenchymal
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Abstract

Background: Existing experimental data have shown hypoxia to be an important factor affecting the proliferation
of mesenchymal stromal cells (MSCs), but the contrasting observations made at various hypoxic levels raise the
questions of whether hypoxia accelerates proliferation, and how. On the other hand, in order to meet the increasing
demand of MSCs, an optimised bioreactor control strategy is needed to enhance in vitro production.

Results: A comprehensive, single-cell mathematical model has been constructed in this work, which combines
cellular oxygen sensing with hypoxia-mediated cell cycle progression to predict cell cycle commitment as a proxy
to proliferation rate. With oxygen levels defined for in vitro cell culture, the model predicts enhanced proliferation
under intermediate (2–8%) and mild (8–15%) hypoxia and cell quiescence under severe (< 2%) hypoxia. Global
sensitivity analysis and quasi-Monte Carlo simulation revealed that within a certain range (+/− 100%), model
parameters affect (with varying significance) the minimum commitment time, but the existence of a range of
optimal oxygen tension could be preserved with the hypothesized effects of Hif2α and reactive oxygen species
(ROS). It appears that Hif2α counteracts Hif1α and ROS-mediated protein deactivation under intermediate hypoxia
and normoxia (20%), respectively, to regulate the response of cell cycle commitment to oxygen tension.

Conclusion: Overall, this modelling study offered an integrative framework to capture several interacting mechanisms
and allowed in silico analysis of their individual and collective roles in shaping the hypoxia-mediated commitment to
cell cycle. The model offers a starting point to the establishment of a suitable mechanism that can satisfactorily explain
the different existing experimental observations from different studies, and warrants future extension and dedicated
experimental validation to eventually support bioreactor optimisation.

Keywords: Intracellular modelling, Hypoxia, Cell cycle commitment, HIF, ROS, Global sensitivity analysis,
Mesenchymal stromal cells

Background
Hypoxia has been shown to enhance the proliferation of
cancer cells, stromal cells and stem cells [1–3], though
the exact mechanisms remain to be elucidated. It has
been hypothesised that a lower oxygen concentration
facilitates cell cycle progression and reduces the generation
of reactive oxygen species (ROS) [4–6], which would other-
wise incur elevated apoptosis and mutation [7]. On the

other hand, experiments have found that hypoxia can drive
cells into quiescence to escape from oxidative stress [7–10].
These inconsistent experimental findings in the literature
could potentially be attributed to cell pool heterogeneity or
different culture conditions. With the increasing market
demand for large-scale in vitro stem cell production, it is
crucial to establish the definitive impact of hypoxia on stem
cell proliferation. In particular, a mathematical model that
incorporates the key mechanisms regulating the influence
of oxygen concentration on cell cycle can be instrumental,
which is currently lacking.
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One factor that contributes to the controversy over
the effects of hypoxia on cell proliferation is the lack of
agreed definition for “hypoxia” and “normoxia” [11].
Physiologically, oxygen concentration in blood is around
5–13%, and is further reduced in tissues [2]. Some reports
used oxygen levels of less than 5% as the normoxic oxygen
standard [2, 12] to reflect the physiological “in situ
normoxia” [13]. Contrastingly, a majority of others used
atmospheric oxygen level of 20% to represent a con-
trolled normoxia environment for cell culture in vitro
[1, 9, 10]. Additionally, a wide range of oxygen levels
have been referred to as hypoxia in cell cultures, from
0.2% - 5% [3, 14–16]. The collective ambiguity in these
definitions imposes further challenges in identifying
how lower oxygen conditions affect cell proliferation.
To avoid confusion, the following ranges defining in vitro
cell culture oxygen tensions are used consistently through-
out the current paper: severe hypoxia (< 2%), intermediate
hypoxia (2% - 8%), mild hypoxia (8% - 15%), normoxia
(15% - 20%).
In general, each cell line possesses a unique set of

characteristics to govern how it responds to oxidative
stress. This work was designated as part of an effort to
improve in vitro culture of human mesenchymal stromal
cells (MSCs). However, due to the lack of a complete set
of protein expression data for MSCs from a single
source, results from experimental studies of different cell
lines have been used. The mechanisms/systems that are
evolutionarily conserved and shared across cell lines are
distinguished from those that are distinct in each tissues/
species. The basic cell cycle model has been found in
yeast, drosophila, mammalian cells, etc. [17]. It is believed
that the mechanisms are comparable, despite the genetic
differences. Hypoxic responses can be split into the down-
stream actors of hypoxia inducible factor (HIF) isomers,
Hif1α and Hif2α. Hif1α expression has been found in
most cells and it affects cell metabolism, angiogenesis, cell
cycle progression, survival, etc. [18]. Hif1α has also been
reported to maintain MSCs pool in a primitive state by
allowing selective self-renewal [19]. Hif2α is cell line specific
and regulates cell proliferation, vascularization and main-
tains stem cell characteristics [20]. Intracellular oxygen
molecule allows prolyl hydroxylase and 2-oxoglutarate to
corroborate in tagging HIF for ubiquitin-dependent degrad-
ation [18]. Despite similar mechanisms, the characteristics
of this oxygen-dependent degradation are different between
the isomers. As a result, the relative protein accumulation
under normoxia is different between the two isomers, albeit
always much lower than their hypoxic levels.
In the existing literature, most hypoxia-induced quies-

cence was reported under severe hypoxia [8–10, 21], where
the Hif1α level and activities are prominent. Enhanced
proliferation was observed under intermediate and severe
hypoxia conditions [1–3, 22–25], where the relative strength

of Hif2α overshadows that of Hif1α. The differential
responses of Hif1α and Hif2α to oxygen level are believed
to be key in explaining seemingly contradictory observa-
tions with respect to cell cycles under the broadly defined
hypoxia conditions [6, 11]. Other hypoxia-mediated
factors (i.e., Notch [26]) are not captured in this work
because of a missing consensus on their impact on cell
cycle progression.
Various sophisticated models [27–29] have been pro-

posed to predict the level of Hif1α protein in response to
cellular oxygen tension, which are continuously evolving
as more mechanisms are discovered. On the other hand,
an exponential decay model has been used as a proxy for
a simplified estimation of total Hif1α protein as a function
of oxygen tension [27, 30], which is also adopted in this
work.
A proliferating cell commits to cell cycle when it

passes the restriction point in late G1 phase, which is a
process that has been represented by a few existing
models. Bedessem and Stephanou [30] established a
model describing how hypoxia prolongs cell cycle com-
mitment, expanding on Novak and Tyson’s work [17].
The effect of oxygen on cell cycle was linked through Hif1α
protein. Hif1α was assumed to have a direct inhibitory
effect on cyclin D, based on the findings from Wen et al.
[16]. Threshold levels for cyclin E and SCF, a cyclin E
antagonist, were set to collectively mark G1-S phase
transition. The model showed that the time required by
the commitment to cell cycle increases as oxygen tension
decreases. At below 0.06% oxygen, cell quiescence was
reached. The Hif1α estimation is only applicable in the
case of up to 6% oxygen. The authors acknowledged the
activation effect of Hif2α on cyclin D but only focused on
the effect of Hif1α in their model.
Dong et al. [31] modelled the effect of E2F level on cell

cycle entry with experimental validation. More than 100
single-cell analyses were performed to correlate cell pro-
liferation status against their E2F level. The level of E2F
was found to govern G1-S phase commitment, whereas
the levels of cyclins D and E and Myc affect the time
required to reach the transition point. Different Myc-
inhibitors were tested to indicate the significance of
Myc protein in regulating cell cycle. The model presented
in Dong et al. [31] incorporates the cumulative findings
from the previous simulation and experimental discoveries
by their group [32, 33]. The effect of CDKI (cyclin
dependent kinase inhibitor) and possible linkage to
hypoxic responses were not addressed in the study.
Another approach in modelling proliferation has been

associated with cellular metabolism and the consideration
of nutrient supplies [34]. HIF alters cellular metabolic
pathways and nutrient uptakes under hypoxia [35]. The
current study does not include the metabolic impacts on
proliferation and assumes the nutrient supply to be always
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in excess. Other HIF-mediated hypoxic regulation of
proliferation has been reported [36] but the incorporation
of these pathways is beyond the scope of this study.
With the purpose of enhancing stem cell proliferation,

this work aims to distinguish the effects of hypoxia on
cell proliferation qualitatively and quantitatively, through
modelling the protein-level variations. To this end,
models described in the literature mentioned above,
although very relevant, need to be further enhanced par-
ticularly in two respects, namely (i) incorporating both
Hif1α and Hif2α into the cell cycle model to encompass
their distinctive roles, and (ii) connecting the hypoxia
sensing model with the cell cycle model, through Myc
protein, to enable the direct prediction of the effect of
hypoxia level on cell cycle commitment. The intention
of this work is to build such an improved model and use
it to (i) make predictions of the impact of hypoxia on cell
proliferation over the whole range of relevant oxygen
concentration levels, against various experimental obser-
vations as introduced earlier, (ii) elucidate the likely roles
of parallel mechanisms regulating cell cycle progression
that underpin the predicted and observed behaviours, and
(iii) identify significant model parameters and hypotheses
that deserve special attention of further investigation. The

learning from this work thus may hold the potential to
form a foundation of future research for enhancing the
in vitro culturing efficiency of MSCs and other cell
lines by the optimal control of oxygen concentration in
bioreactors.

Methods
A model to quantitatively reflect how hypoxia affects
cell proliferation has been constructed (Fig. 1). The key
features of the model include linking hypoxia sensing
and cell cycle progression. Furthermore, Myc protein is
used as the primary intermediate actor to correlate HIF
protein levels to various cell cycle regulators. Hif1α and
Hif2α physically bind to Myc to inhibit or enhance its
activity, respectively. As the availability of two HIF isoforms
varies with oxygen concentration, the effective Myc level is
affected and results in the change in the cell proliferation
status. A direct transcriptional inhibition of Hif1α on cyclin
D is included [16, 30].
The current model aims to capture the effects of oxygen

content in regulating the time required for a proliferating
cell to commit to progressing past the restriction point,
after which the process of cell division becomes irrevers-
ible. The model considers a hypoxic culture condition with

Fig. 1 Assumed simplified mechanisms for the effects of hypoxia on cell cycle commitment. Hypoxia varies the active amount of Hif1α and Hif2α
proteins, through which cell cycle regulating proteins are regulated. The variation in cell cycle regulators positively (cyclin D, cyclin E, Myc) or
negatively (p21/p27 and Rb) controls the downstream protein level of E2F. The progression of cell cycle G1-phase into S-phase commitment is
controlled by the accumulation of E2F protein exceeding a set threshold level. Different biological interactions are shown in the figure
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a specific oxygen level which determines the concentra-
tions of HIF. To focus on key mechanisms and maintain
simplicity, assumptions were made in several parts of the
model, in comparison with the more detailed treatments
available in the literature [28]. Non-stem-cell data was used
to calibrate Hif1α and cell cycle models, as they appear
to be common among different cell types. No literature
evidence was found to question the validity of using
these data for stem cell modelling. Stem cells data on
Hif2α expression were obtained from the literature.
The model equations are presented in the following

sections. In general, the mechanisms for protein-protein
binding, transcription and phosphorylation are represented
by the Hill function to capture the sigmoidal or hyperbolic
behaviour. The behaviours that are regulated by more
than one factor (e.g., the Myc-dependent auto-catalytic
transcription of E2F) are captured by multiplying the
relevant terms. Protein-protein interactions are described
with mass-action kinetics, consistent with literature models
[31, 33]. In these equations, variables in brackets represent
concentrations of various species (including proteins and
oxygen). “k”, “m” and “n” are used to denote different types
of constants, which are further distinguished by subscripts.
“kf” and “kr” are the respective forward and reverse rate
constants. “g” indicates the basal generation rate and “d”
represents the basal degradation rate of respective proteins.
Protein-to-protein binding is represented by “-” that
connects two proteins. “DEG” is a parameter that rep-
resents a basal protein deactivation and degradation
mechanism. Exponential and absolute value functions
are expressed by “exp” and “abs”, respectively.
Overall, the hypoxia sensing – cell cycle progression

model consists of 13 ODEs and 3 algebraic correlation
equations (Eqs. 1, 2 and 8). The parameters and initial
conditions were obtained or adjusted from literature data,
as shown in the Supporting Information (Additional file
1). Unless stated otherwise, these values have been taken
as nominal values in the simulation studies reported in
this work.

HIF modelling
An exponential expression is used in place of the more
complex depiction to estimate the available HIF protein.
Bedessem and Stephanou [30] and Dayan et al. [27] applied
such an approach to estimate the total amount of Hif1α
protein at different oxygen concentrations. Experimental
data from six different cell lines from Bracken et al. [37]
confirms the validity of the exponential relationship.
It is further assumed that all available Hif1α proteins
are functionally active and nucleus-bound. Equations
1 and 2 estimate the level of Hif1α and Hif2α pro-
teins, respectively. “ti” is the normalization oxygen
level and “pi” is the oxygen level where HIF protein
peaks, i = 1 or 2.

Hif 1α½ � ¼ m1
� exp b1 � 1−abs p1– O2½ �ð Þ=t1ð Þð Þ ð1Þ

Hif 2α½ � ¼ m2
� exp b2 � 1−abs p2– O2½ �ð Þ=t2ð Þð Þ ð2Þ

Jiang et al. [15] reported the measured Hif1α level for
0.5–10% oxygen, which was used for model calibration.
A decline in Hif1α level at below 0.5% was also observed
[15]. Various reports found that Hif1α protein was
undetectable at greater than 5% oxygen in stem cells
[3, 14]; Bracken et al. reported that Hif1α protein became
negligible at higher than 10% oxygen in various cell lines
[37]. In our model, the operating range for Hif1α is set at
0.5%–10% oxygen with an exponential decline behaviour.
The simulation result is shown in Fig. 2. The maximum
Hif1α concentration is assumed to be 5 μM, using data
reported from abcam [38]. Note that Hif1α protein has
been detected under atmospheric oxygen condition; this
phenomenon may be cell line or medium specific [37],
and will be accounted for when a complete, comprehen-
sive data set becomes available in the future.
No existing model for the response of Hif2α to oxygen

level was found in the literature. Hif2α is thus assumed
to behave in the same exponential fashion as Hif1α. In
stem cells, Hif2α protein was found to peak at oxygen
levels between 2 and 5%, higher than that of Hif1α [6].
The model sets a peak value for Hif2α protein at 5%
oxygen. At below 5% oxygen, Hif2α protein level is
assumed to mirror its behaviour at greater than 5%.
Hif2α proteins are detectable in cells cultured under
20% oxygen [3, 14]; therefore, the exponential decline is
assumed to be valid for the entire range of the simulated
oxygen level. The expression level of Hif2α appears to
vary significantly across cell lines, therefore it is neces-
sary to use stem cell data for calibrating its model. The
western blot data of human Embryonic stem cells
(hESCs) from Forristal et al. [3] distinguished the relative
expression of Hif2α protein between 5% and 20% oxygen,
while Hif1α level was not detectable at 5%. Narva et al. [14]
measured the relative level of Hif1α and Hif2α proteins
at 4% oxygen. The relative ratios acquired from the two
papers were used to derive the exponential decay model
of Hif2α with respect to oxygen. The simulated trend of
Hif2α protein level is shown in Fig. 2.

Cell cycle modelling
A cell cycle model was built on the basis of several pub-
lished models in the literature [17, 30, 31, 39]. The model
describes the interactions between Myc, CDK, cell cycle
regulatory protein-Rb, cyclins and cell cycle commitment
determinant protein-E2F, as shown in Fig. 1. Cell cycle is
modelled up to the restriction point (RP) in late-G1 phase,
beyond which cell proliferation is imminent. Different basal
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generation and degradation rates are applied to different
proteins.
The binding of Hif1α and Hif2α to Myc respectively

alters its activity negatively or positively. The activity of
Myc and Hif1α alters downstream accumulation of cell
cycle regulators. Previous models used different identi-
fiers to indicate progression past RP (or commitment to
S-phase). The exceeding of a target E2F concentration is
used in our model to indicate commitment to cell cycle,
as confirmed with simulation and experimental results in
Dong et al. [31]. Yao et al. [33] reported the limit of 1 μM
E2F concentration in turning the cell “on” to proliferate.
The duration required for cells to reach the E2F threshold,
termed “commitment time” thereafter, is dependent on
the oxygen level via the levels of HIFs, governed by the
following equations (Eqs. 3–7).

d Hif 1a−Myc½ �
dt

¼ –kr3A∙ Hif 1a−Myc½ � þ kf 3A∙ Hif 1a½ �∙ Myc½ �
–dHif 1a–Myc∙ Hif 1a−Myc½ �∙DEG

ð3Þ

d Hif 2a−Myc½ �
dt

¼ –kr3B∙ Hif 2a−Myc½ � þ kf 3B∙ Hif 2a½ �∙ Myc½ �
–dHif 2a–Myc∙ Hif 2a−Myc½ �∙DEG

ð4Þ
d Myc½ �

dt
¼ gMyc þ kr3A∙ Hif 1a−Myc½ �–kf 3A∙ Hif 1a½ �∙ Myc½ �
þkr3B∙ Hif 2a−Myc½ �–kf 3B∙ Hif 2a½ �∙ Myc½ �
–dMyc∙ Myc½ �∙DEG

ð5Þ

d cycE½ �
dt

¼kr12∙ cycE−p=p½ �–kf 12∙ cycE½ �∙ p=p½ � þm9∙
E2F½ �

E2F½ � þ k9

−dcycE ∙ cycE½ �∙DEG
ð6Þ

d E2F½ �
dt

¼m13∙
Myc½ �

Myc½ � þ k13
∙

E2F½ �
E2F½ � þ k 013

þmE2F ∙
Myc½ �

Myc½ � þ kE2F

þm13∙ε∙
Hif 2a−Myc½ �

Hif 2a−Myc½ � þ k13
∙

E2F½ �
E2F½ � þ k 013

þmE2F ∙
Hif 2a−Myc½ �

Hif 2a−Myc½ � þ kE2F

þmE2F−RbP ∙
E2F−RB½ �∙ cycD½ � þ cycD−p=p½ �ð Þ

E2F−RB½ � þ kE2F�RbP

–k8∙ RB½ �∙ E2F½ �−dE2F ∙ E2F½ �∙DEG
ð7Þ

Among the CDKIs, p21 and p27 are used in the model
to represent the CIP/KIP family of its inhibitory action on
cyclin D-CDK4/6 and cyclin E-CDK2. In the literature,
different side functions for p21 and p27 were reported
[40]. Our model only focuses on the shared cyclin-CDK
inactivation of the two proteins. Owing to the much
shared commonality between cancer cells and stem cells,
a cell mass-independent p27 production rate, previously
applied to cancer cells [39], is assumed. INK4 family is
another type of CDKI with specific inhibitory effect on
cyclin D-dependent kinase [41], which however can be
captured through the function of p21/p27 and thus is not
included as a separate mechanism in this model.
The concentrations of CDK2, CDK4 and CDK6 do not

vary throughout cell cycle and are not expected to be
rate limiting [31]. The cyclins are introduced in the model
to represent the respective cyclin-CDK dimers. The three
different isoforms of cyclin D (cyclin D1, D2 and D3) are
not distinguished in the model for simplicity. Cyclin D
and cyclin E carry out their functions through Rb phos-
phorylation [17, 31] and p21/p27 inactivation. Cyclin D
physically binds to p21/p27 and deters it from inactivating
cyclin E [42]. Equation 8 captures the effect of Hif1α, Myc
and Hif2α-Myc on cyclin D transcription, alongside the

Fig. 2 Simulated expression of Hif1α and Hif2α at different oxygen levels from this study. Hif1α (black) level corresponds to the primary axis.
Hif2α (blue) level corresponds to the secondary axis
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binding effect of p21/p27. Different factors regulating
p21/p27 (denoted by “p/p”) and the associated complexes
are shown by Eqs. 9, 10 and 11. The complex of cyclin
D-p21/p27 is assumed to share the same activity as cyclin
D for Rb phosphorylation [43].

d cycD½ �
dt

¼ gcycD∙ 1−
Hif 1a½ �

Hif 1a½ � þ k3a

� �
–kf 6B∙ p=p½ �∙ cycD½ �

þkr6B∙ cycD−p=p½ �

þm5cycD∙ε∙
Hif 2a−Myc½ �

Hif 2a−Myc½ � þ k5cycD

þm5cycD∙
Myc½ �

Myc½ � þ k5cycD
–dcycD∙ cycD½ �∙DEG

ð8Þ
d p=p½ �

dt
¼gp=p∙ 1–k4∙ Myc½ �ð Þ−kf 6B∙ p=p½ �∙ cycD½ �
þkr6B∙ cycD−p=p½ �–kf 12∙ p=p½ �∙ cycE½ �
þkr12∙ cycE−p=p½ �–dp=p∙ p=p½ �∙DEG

ð9Þ

d cycD−p=p½ �
dt

¼ kf 6B∙ p=p½ �∙ cycD½ �–kr6B∙ cycD−p=p½ �
–dcycD−p=p∙ cycD−p=p½ �∙DEG

ð10Þ
d cycE−p=p½ �

dt
¼ kf 12∙ p=p½ �∙ cycE½ �–kr12∙ cycE−p=p½ �
–dcycE−p=p∙ cycE−p=p½ �∙DEG

ð11Þ
The mechanisms associated with Rb activities are based

on Dong et al. [31]. Free Rb protein binds to E2F and
inhibits its downstream transcription. Rb is inactivated
through cyclin D or cyclin E-dependent phosphorylation.
Cyclin D can also dissociate E2F-Rb complex through Rb
phosphorylation [31, 33]. Equations 12 and 13 quantify
the responses of Rb and E2F-Rb complex, and incorporate
the mechanisms of cyclin D-dependent phosphorylation
and Rb-to-E2F binding.

d Rb½ �
dt

¼gRb–mcycD−Rb∙
cycD½ � þ cycD−p=p½ �ð Þ∙ Rb½ �

RB½ � þ kcycD�Rb

þmRbP ∙
RbP½ �

RbP½ � þ kRbP
–k8∙ Rb½ �∙ E2F½ �−dRb∙ Rb½ �∙DEG

ð12Þ

d E2F−Rb½ �
dt

¼ k8∙ Rb½ �∙ E2F½ �
−mE2F−RbP ∙

E2F−Rb½ �∙ð cycD½ �:þ cycD−p=pÞ½ �
E2F−Rb½ � þ kE2F�RbP

−dE2F−RbP ∙ E2F−RbP½ �∙DEG
ð13Þ

Hypo-phosphorylation of Rb is assumed to be carried
out only by cyclin D; subsequent cyclin E-dependent
hyper-phosphorylation can then take place. Different
levels of hyper-phosphorylation have been claimed in the
literature; our model assumes a maximum binding of 4
phosphate groups onto Rb. Equations 14 and 15 quantify
the change in the concentration of hypo-phosphorylated
and hyper-phosphorylate Rb, respectively.

d RbP½ �
dt

¼ mcycD−Rb∙
cycD½ � þ cycD−p:p½ �ð Þ∙ Rb½ �

Rb½ � þ kcycD�Rb

–mcycE−RbP ∙
cycE½ �∙ RbP½ �ð Þ^ n−1ð Þ

RbP½ �ð Þ^ n−1ð Þ þ kcycE�RbP

–mRbP ∙
RbP½ �

RbP½ � þ kRbP

þmE2F−RbP ∙
E2F−RB½ �∙ cycD½ � þ cycD−p=p½ �ð Þ

E2F−RB½ � þ kcycE�RbP

þmRb−nP ∙
Rb−nP½ �^ n−1ð Þ

Rb−nP½ �n−1 þ kRb�nP

−dRbP ∙ RbP½ �∙DEG n ¼ 4ð Þ
ð14Þ

d Rb−nP½ �
dt

¼ mcycE−RbP ∙
cycE½ �∙ RbP½ �ð Þ^ n−1ð Þ

RbP½ �ð Þ^ n−1ð Þ þ kcycE�RbP

−mRb−nP ∙
Rb−nP½ �^ n−1ð Þ

Rb−nP½ �^ n−1ð Þ þ kRb�nP
n ¼ 4ð Þ

ð15Þ

Different isoforms of E2F are not considered in the model,
for simplicity. Our model allows the total concentration
of different E2F-involving species to be dynamically
varied (Eq. 14) [31, 33], unlike the conservation of indi-
vidual E2F-involving species assumed by Novak and Tyson
and Bedessem and Stephanou [17, 30].
Previous models used different identifiers to indicate

progression past RP (or commitment to S-phase). The
exceeding of a target E2F concentration is used in our
model to indicate commitment to cell cycle, as confirmed
by simulation and experimental results in Dong et al.
[31]. Yao et al. [33] reported the limit of 1 μM E2F
concentration in turning the cell “on” to proliferate.
The results from Dong et al. [31] and Yao et al. [33]
showed that a 0.66 μM E2F would lead 75% of cells
committing to proliferation. The duration required for
cells to reach E2F threshold is simulated at different
oxygen conditions.
Other models have correlated the basal generation

rates of certain cell cycle species to cell mass [30, 39].
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The mass-dependent synthesis is not yet incorporated in
our model, as it currently focuses on commitment time
only and does not offer a full account of cell growth.

Modelling of protein deactivation
A first-order basal degradation rate is inferred from the
literature for each expressed protein. This work assumes
an additional ROS-mediated protein deactivation as a
function of oxygen tension beyond a threshold oxygen
level, which includes proteolytic protein degradation,
alteration of protein orientation, oxidation of functional
groups and other interactions that remove proteins from
actively engaging in reactions. ROS is a collection of
reactive species (i.e. superoxide, hydroxyl radicals, etc.)
generated as by-products of respiration in mitochondria,
as a function of local oxygen level [44, 45]. Enzymes, such
as superoxide dismutase (SOD), combat superoxides to
reduce cell senescence and ageing [46]. Superoxides are
reduced by these enzymes to H2O2 or, in the presence of
reduced transitional metal, to hydroxyl radicals [47]. Com-
pared to niche-grown stem cells, normoxically cultured
cells experience elevated pericellular oxygen tension which
results in greater ROS generation and reduced ROS
metabolism [48]. An elevated intracellular ROS level
facilitates protein degradation through an ATP-independent
and calcium-independent proteolytic pathway [49].
At an oxygen level below a certain threshold, ROS level is

thought to be negligible due to the limited intracellular
oxygen availability. However, various literature reports have
demonstrated higher ROS levels between 1 and 3% oxygen
[50, 51]. This may be credited to additional ROS production
mechanisms under severe hypoxia [45, 52]. Under inter-
mediate and severe hypoxia, superoxides are recognized to
facilitate Hif1α stabilization and the induction of hypoxic
responses [51, 53]. Due to insufficient understanding and
high ROS detection variability, this ROS-mediated Hif1α
stabilization has not been included in the model. Instead,
Hif1α activity is thought to be solely dependent on oxygen
tension.
An accurate quantitative correlation between oxygen

tension and the overall intracellular ROS level has not
been established in literature. This work assumes that a
threshold oxygen level ([O2]TH = 10%) may exist, beyond
which superoxide production surpasses the neutralising
capacity of combating enzymes and results in efflux out of
mitochondria and influx to other cellular compartments
[44]. If oxygen tension exceeds this level, the amount of
intracellular ROS surpasses the cell’s inherent anti-oxidant
capacity and initiates ROS-mediated deactivation mechan-
ism across all proteins. Different activation levels have
been tested in this study. An exponential decay function is
assumed for this general deactivation mechanism (Eq. 16),
where n_deg is an adjustable parameter.

DEG ¼ exp n deg � O2½ �– O2½ �TH
� �

= O2½ �TH
� �

if O2½ � > 10%ð Þ
ð16Þ

Analysis with different parametrisation
Sensitivity analysis was performed to capture the signifi-
cance of model parameters within the range of +/− 100%. In
particular, the derivative-based global sensitivity measures
(DGSM) approach [54] was adopted to identify the most
prominent parameters in regulating model output inde-
pendently and interactively. The principle of DGSM
can be described by Eqs. 17–19 [55]:

Ei ¼ ∂ f
∂xi

¼ f xi � 1þ d%ð Þð Þ− f xið Þ
d%

ð17Þ

gi ¼
Z
Hn
E2
i dx ð18Þ

Gi ¼ gi

� Xn

i¼1
gi

� �
ð19Þ

In the above equations, Ei calculates the local derivatives
of the model output f (which is the commitment time, CT,
in this case) with respect to the ith parameter (xi) in a
n-dimensional parameter space (denoted as Hn), where n
is the number of studied parameters. gi represents an
averaged value of Ei

2 over the space Hn. Finally, the value
of Gi (referred to as G-score) indicates the relative sig-
nificance of parameter i on impacting the simulation
outcome. The integration in Eq. 18 can be approxi-
mated by using a quasi-Monte Carlo (QMC) sampling
method [47]; this work has adopted particularly the
Sobol sequence [55] with an incremental sampling size
of 500 in the course of obtaining a converged value for
a G-score. In order to reduce the computational cost, a
preliminary screening based on local sensitivities was
used to pick out a subset of parameters, which demon-
strated greater impact on the simulation output and
were therefore subjected to further analysis by DGSM.
In addition to support DGSM, the set of (parameter

value) samples generated by the QMC method has also
been adopted for carrying out simulations to assess to
what extent the predicted minimum CT and optimal
oxygen level vary with the parameter values adopted.
This set of simulations is referred to as QMC simulation
(named after how the parameter values are sampled).
The simulation results have also been used to study the
variation in the shape of the curve of CT vs. oxygen
level, referred to as the “characterisation curve” in this
work, which is quantified through a factor k according
to Eq. 20:

k ¼ CTnorm−CTmin

20%−O2eq
ð20Þ
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where CTnorm and CTmin are the CT corresponding to
normoxia (i.e 20% O2) and the minimum CT, respectively;
O2eq is the hypoxic oxygen level at which the CT is identical
to CTnorm.

Results
Dynamic numerical simulations revealed the temporal
change in concentrations of key cell cycle regulators for
a specified oxygen level. The CT was found to vary with a
change in oxygen level. A “U-shape” characterisation
curve has been discovered from simulation results, which
offers a hypothesis that could potentially explain the
varied experimental observations reported in literature.
The sensitivity analysis highlighted the relative significance
of the model parameters under different oxygen tensions.
For each set of parameter values, the oxygen level that
results in the lowest CT is termed the optimal oxygen
level (O2-optimal). The persistency of the existence of an
optimal oxygen level (O2-optimal) is demonstrated by the
QMC simulation results. The shape of the characterisation
curve was generally preserved but appeared sensitive to
the degree of ROS-mediated protein deactivation. Hif2α
was found to play a crucial role in facilitating commitment
to cell cycle under different gradients of hypoxia.

Dynamic behaviours
Figure 3 shows an example of the simulation output for
key cell cycle regulators, at 2% oxygen. It should be
noted that, although the model presented above could
mathematically predict steady states, they do not carry
any biological significance. The useful output of the
simulation is only the transient behaviour leading to the

accumulation of E2F towards its threshold level, which
is reached at 13.5 h in the case shown in Fig. 3. The
effective Myc rises steadily, contributed by the basal
generation of Myc and the formation of Hif2α-Myc.
p21/p27 level rises initially until the Myc-dependent
inhibitory effect becomes dominant. Cyclin D is kept at
a sustained low level due to the direct inhibition from
Hif1α. Rb increases initially due to the disintegration of the
pre-existing E2F-Rb dimers. As more E2F is generated, the
synthesis rate of Rb-E2F complex increases until all
the available Rb is consumed. E2F experiences the initial
lag phase due to Rb binding. The sharp sigmoidal behaviour
of E2F can be attributed to its Myc-dependent, auto-
catalytic mechanism. The level of Cyclin E rises trailing that
of E2F, as a result of the E2F-dependent transcription. The
trajectories of E2F and cyclin E share the same sigmoidal
behaviour. Cyclin E was used as the marker for proliferation
identification in Bedessem and Stephanou [30], which
would yield a comparable CT according to Fig. 3, also
consistent with the range shown in Dong et al. [31].
The behaviour shown in Fig. 3 was predicted using the

(default) initial conditions (presented in the Supporting In-
formation (Additional file 1)). To reveal the potential im-
pact of the initial conditions on the qualitative behaviour of
the system, dynamic simulations with different initial condi-
tions sampled from a hypercube space formed by +/− 100%
of the default initial condition values were carried out, for
each of the parameter value sets similarly sampled from a
parameters space (details are given in the Supporting Infor-
mation (Additional file 2)), and across the entire range of
oxygen levels. In this analysis, the steady states predicted by
the simulations were recorded which, although not carrying

Fig. 3 Simulation results showing the dynamic change of selected cell cycle regulators under 2% oxygen. This simulation was completed with
the nominal model parameter setting. E2F threshold level (E2F_TH) is shown as the horizontal forest green line. The vertical red line indicates
commitment time marking the time when E2F level exceeds the threshold level
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any biological significance in themselves as stated earlier,
were used to indicate alternative trajectories of the transient
behaviour leading to the threshold level of E2F that could
arise from different initial conditions. It was found that
multiple steady states are indeed present for the combin-
ation of a sub range of oxygen levels and a subset of param-
eter values, but these cases (where a steady state different
from that from the default initial conditions was reached)
represent only a small potion (less than 2%) of all the
simulations carried out. Therefore, model predictions with
the default initial conditions are considered to be able to
reveal the representative behaviour of the system, and
hence have been used for the analysis reported in this work.

The effect of oxygen level on CT
Simulated CT results under different oxygen concentra-
tions are shown in Fig. 4a. A lower hypoxic CT indicates

an enhanced proliferative behaviour, whereas, a greater
CT corresponds to a prolonged period till cell cycle
commitment. With a culture oxygen level under 2.9%,
E2F accumulates much slower, as the inhibitory effect of
Hif1α on Myc and cyclin D begins to dominate cell cycle
regulation. More severe hypoxia further exacerbates E2F
accumulation and leads to cell quiescence at less than
1.2% oxygen.
When the oxygen level is greater than 2.9%, the inhibi-

tory activity of Hif1α is hampered. Myc proteins are less
inhibited by Hif1α binding and more E2F and cyclin D are
produced. The Hif2α-Myc complex and Myc contribute
to E2F availability directly through transcription, and
indirectly, through enhancing the production of cyclin D
protein for Rb inactivation. Shortened protein accumu-
lation and cell division time under mild hypoxia are
revealed from the simulation. The difference in CT is

Fig. 4 a Simulated cell cycle commitment time under different oxygen tensions at the nominal model parameter setting. b Compiled literature
experimental data of the hypoxic proliferation rate. The ratio between hypoxic and normoxic proliferation rate for each set of the literature data
(S1-S15) is plotted. A list of the corresponding references is included in the Supporting Information (Additional file 3). The simulation results from
this study (Sim) are shown for the swept oxygen tensions
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small in the mid-range of oxygen concentration. As
oxygen tension rises into the normoxia regime, the effect
of ROS-mediated protein deactivation becomes more pro-
nounced reducing the accumulation rate of proliferation
determining proteins, which is reflected as ascending CT
values. Overall, a minimum CT lies between 8 and 10%
oxygen, which is the optimum oxygen concentration for
commitment to cell cycle, with the nominal model param-
eters setting adopted for producing Fig. 4a.
Past experiments on a specific cell type (e.g. MSC) at

various individual levels of oxygen below 20%, though all
referring to as hypoxic conditions, have shown both
higher and lower proliferation rates compared to that
with normoxia (20%), hence leading to some ambiguity
as to the role of hypoxia in cell proliferation. A compiled
list of hypoxic literature experimental data for MSCs,
converted in this work to the ratio of hypoxic proliferation
rate to the rate at normoxia (20% oxygen), is shown in
Fig. 4b [21–25, 56–64], as well as the hypoxia-to-
normoxia ratio of the inverse of cell cycle commitment
time (as an indicator of proliferation rate) obtained in
simulation as presented in Fig. 4a. The rate ratios are
shown on a logarithmic scale. The majority of the available
data was collected under the range of in vitro intermediate
or severe hypoxia, which limited the applicable range of
comparison. Fig. 4b demonstrates that the simulation
yielded results at the same level of magnitude as most of
the literature findings. It also shows the lack of consensus
between the experimental studies with respect to hypoxia-
mediated effects on proliferation, possibly caused by the
difference in cell line, culture condition and duration
between these existing experimental studies. Future ex-
perimental work to produce a consistent data set that
covers a sufficient range of oxygen level is thus needed
to allow further validation and calibration of the model.

Sensitivity of model parameters
Global sensitivity analysis was conducted to test the
robustness of the constructed model. The selected eight
sensitive parameters are shown in Table 1. The two
parameters for modelling ROS-mediated protein deactiva-
tion were investigated separately due to their special status.
The converged G-scores across selected oxygen tensions
are shown in Fig. 5. The effect of each parameter to cell
cycle commitment time is sensitive to the applied oxygen
level. Parameters P1, P3, P8 are identified as the top three
parameters of significance. P1 dominates the proliferation
response at oxygen tension less than 0.05, consistent with
its role in positively regulating Hif1α level. Under mild

hypoxia, Hif1α protein becomes negligible alongside with
the diminishing importance of P1. P3 and P8 regulate
Myc-facilitated E2F protein transcription and enhance
Hif2α-Myc activity, respectively. Under mild hypoxia and
normoxia, Hif1α-mediated Myc inactivation is liberated,
allowing more Myc and Hif2α-Myc to take part in E2F
transcription. This effect is reflected by the rising G-scores
for P3 and P8 with an increase in oxygen tension. The
results of DGSM highlight a few parameters that have a
greater impact on simulation output, depending on the
hypoxic oxygen level. The parameters with high sensitivities
shall be prioritized in future model calibration and experi-
mental validation.

Variability in minimum CT and optimal oxygen level
Fig. 6a) and 6b) plot results of O2-optimal and the corre-
sponding minimum CT from the QMC simulation.
Fig. 6a) shows the large spread of CT at different optimal

oxygen levels and Fig. 6b) confirms the existence of a
concentrated range of the optimal oxygen level, which
leads to the shortest commitment time. Despite the
variation in parameter values, 98% of the simulated sample
sets reported an optimal oxygen level within 9–10.5%, sug-
gesting that the optimal oxygen level is relatively independ-
ent of the 8 highlighted parameters (P1-P8). This range is
expected to change with different types of cells (cf. the later
section on ROS-mediated protein deactivation), subject to
their inherent and niche properties, but the convexity of
the “U-shape” characterisation curve (as shown in Fig. 4)
may be consistently preserved under the assumed mecha-
nisms of HIFs and ROS, as shown by the QMC simulation
results.
Fig. 6c) plots the frequency of minimum CT from each

QMC run. The minimum CT appears to be sensitive to
parameter settings, contrary to the narrow range observed
for O2-optimal. A change in parameter values represents a
quantitative shift in cellular behaviour, which directly
affects the accumulation rates of cell cycle regulating
proteins, hence the minimum CT. Nevertheless, approxi-
mately 90% of the minimal CT has been identified within
the range of 3–11 h.

Consistency of the shape of the characterisation curve
The QMC simulation results show that the convexity of
characterisation (“CT – O2 level”) curve is preserved
across the parameter sets. The shape of the characterisa-
tion curve was assessed with several exemplary cases,
shown in Fig. 7a), via their respective k factors. A smaller k
signifies a flatter parabola and a greater k indicates a higher
oxygen dependency. For reference, the k value for the
curve shown in Fig. 4a is 27.9. The frequency of k values
for 39,000 QMC simulations (with n_deg = 1) is shown in
Fig. 7b) (among results corresponding to other n_deg
values, which are discussed in the later section). When

Table 1 Parameters evaluated in DGSM study

P1 P2 P3 P4 P5 P6 P7 P8

b1 k’13 m13 k8 g_rb m_e2f_rbp d_cyce_pp ε
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n_deg (i.e. the parameter that controls protein deactivation)
assumes this nominal value, the k values for over 99% of
the simulated runs are within 1–40, representing the
expected parabolic characterisation curves. The local
derivatives of CT at O2-optimal are relatively small, showing

the robustness of cell cycle progression to a small per-
turbation in oxygen level in the vicinity of O2-optimal.
This suggests that a rather tolerating range of oxygen
control for cell growth may be accepted in designing
the bioreactor control strategy.

Fig. 5 Derivative-based global sensitivity measure (DGSM) results for the selected model parameters. Relative parameter global sensitivity is
shown as the calculated G-score on the z-axis. Eight different parameters have been evaluated under seven oxygen tensions (0.01, 0.02, 0.05, 0.08,
0.1, 0.15 and 0.2)

Fig. 6 Results of QMC simulation with 39,000 sets of parameter values. a. Commitment time at optimal oxygen levels. Each point shows the
minimum CT in each simulation. b. Frequency plot of optimal oxygen tension. c. Frequency plot of minimum commitment time (CT) across
hypoxic oxygen tensions
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If the value of k drops below 1, CT decreases significantly
under severe and intermediate hypoxia with alleviated
hypoxic stress, and then plateaus with negligible further
reduction. The “U-shape” convexity is no longer present.
This behaviour is only applicable in special scenarios,
which are discussed in later sections.

Impact of ROS-mediated general protein deactivation
Both n_deg and [O2]TH are parameters associated with
ROS-mediated general protein deactivation (shown in
Eq. 16). Due to limited information and the distinct
nature of these two parameters (they were fixed and not
included in the global sensitivity analysis), separate sen-
sitivity analysis was performed, to explore the impact of
the extent of protein deactivation and the activation level.
Values of n_deg between 0.01 and 1 have been studied.

When n_deg = 0.01, ROS-mediated protein deactivation
is negligible. Fig. 8a and b show that a smaller n_deg
shifts the peaked optimal oxygen level towards normoxia
with negligible impact on minimal CT. The reduction of
n_deg also significantly alters the shape of the character-
isation curve, as shown by an increase in the frequency
of k values below one (Fig. 7b)). With n_deg below 0.1, the
prolonged commitment to cell cycle under normoxia is
mitigated, making higher oxygen tension more favourable
for proliferation (Fig. 8a)).
The ROS activation level ([O2]TH) was varied from 5%

to 15% reflecting oxygen levels potentially leading to dif-
ferent degrees of superoxide production that surpassed
the inherent cellular degradation rate. Figure 9 plots the
distribution of optimal oxygen level from QMC runs. O2

TH is shown to have a significant impact on the oxygen
level for quickest commitment to cell cycle; the level of
dependency varies with the position of [O2]TH within the

range of hypoxic stress. Under intermediate hypoxia
([O2]TH = 5%), other factors such as Hif1α and Hif2α-
mediated responses share the control together with
protein deactivation over cell cycle commitment time.
Moving towards normoxia ([O2]TH = 15%), proliferation
responses from the two hypoxic factors are negligible.
This further implies the significance of ROS-mediated
protein deactivation on regulating commitment to cell
cycle under the higher oxygen end of the hypoxic
condition.

Roles of parallel mechanisms on cell cycle commitment
A primary hypothesis during model building was the
counteracting effects of Hif1α and Hif2α on commitment
to cell cycle. From the simulation results, Hif1α competes
with Hif2α for Myc binding and inactivates Myc for E2F
production. Hif2α contributes consistently to E2F produc-
tion individually and through paired Hif2α-Myc dimer
under different gradients of simulated hypoxia. Under
severe hypoxia, the pro-proliferation effect of Hif2α is to
be overshadowed by that of Hif1α, which dominates the
proliferation response and delays the progression towards
meeting the cell cycle commitment requirement. As severe
hypoxic stress is alleviated, the effect of Hif2α becomes
more prominent and shortens CT.
Under oxygen levels greater than 10%, ROS-mediated

general protein deactivation, when [O2]TH is set to 10%,
acts on all cell cycle regulators (Myc, Hif2α-Myc, E2F, etc.)
and postpones the net accumulation of E2F. Hif2α-mediated
E2F generation partially offsets the deactivation loss, when
the effect of ROS is accounted for (with n_deg = 1). At
n_deg = 0.01, ROS-mediated protein deactivation is negli-
gible, Hif2α continues to facilitate commitment to cell
cycle in the absence of any counteracting force under mild

Fig. 7 The shape of characterisation curves. a Sample curves for characterisation curves convexity factor k. The curves are selectively extracted
from QMC simulation results for representation. b The frequency plot of the effect of parameter n_deg on factor k from compiled 39,000 sets of
QMC simulation results
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hypoxia and normoxia. A decrease in Hif2α concentration
is expected with rising oxygen level beyond 5%, but the
associated effect appeared to be mitigated by other
dynamics embedded in the system. The peak oxygen
level of Hif2α was found to have negligible effects (results
not shown). Consequently, the flat-bottomed “L-shape” is
observed when ROS-mediated protein deactivation is
absent, making normoxia the favoured proliferation
condition (Fig. 10).

Additionally, Hif2α is found to have dual effects on
regulating E2F production and commitment to cell cycle.
On the one hand, Hif2α-Myc dimer enhances E2F tran-
scription activity. On the other hand, the displaced Myc
is prevented from direct E2F transcription and cyclin D
generation to free RB-bound E2F. Even though the two
effects work in competition, both are needed to facilitate
cell cycle commitment. This combined effect from the
dual actions seems to be responsible for the decoupling

Fig. 9 Simulations of various ROS-mediated protein deactivation activation oxygen level. The simulations were completed with activation oxygen
level of 5% (left), 10% (central) and 15% (right). Each simulation was completed with the same 1000 QMC parameter value sets. The red dots represent
the optimal oxygen level for each parameter set, showing the minimum commitment time in each simulation

Fig. 8 Impact of n_deg inferred from 39,000 sets of QMC simulation results. a The effect of n_deg on the frequency of optimal oxygen levels.
b The effect of n_deg on the frequency of minimum CT
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of the optimal oxygen level (9–10.5%) with the peak
Hif2α oxygen level (5%).
If ROS-mediated protein deactivation is absent, the

optimal oxygen level extends to normoxia rather than
falls within mild hypoxia. This is because the negative
impact of Hif2α in Myc displacement plays a more
prominent role when ROS-mediated protein deactivation is
not in place, which leads to the “L-shape” characterisation
curve. A characterisation curve with protein deactivation
but without the presence of Hif2α can also be found in
Fig. 10. In this case, the applicable range that leads to
cell cycle commitment is much narrower, the minimal
CT is greater, and the optimal oxygen level deviates
from normoxia, as expected.
In summary, the simulation results indicate that Hif2α

counteracts proliferation delay caused by ROS-mediated
protein deactivation and Hif1α under normoxia and severe
hypoxia, respectively, through facilitating E2F build-up.
ROS-mediated protein deactivation may be a primary
driver in causing proliferation delay under normoxia,
which results in the observed hypoxia-mediated enhanced
proliferation with certain cell lines.

Discussion
Culturing MSCs under hypoxia in vitro has several
observed advantages, such as stemness preservation
and reduced senescence. This work has focused on the
impact of hypoxic oxygen tension on the rate of cellular
proliferation. Due to the resource-intensive process in
experimentally testing all hypoxic oxygen tensions, most of
the experimental work compare data from 1 to 3 hypoxic

levels against the result acquired under normoxia (Fig. 4b);
consistent experimental data on culturing MSCs over a full
range of oxygen concentration have not yet been reported.
This study incorporated a number of known mechanisms
and hypotheses into a mathematical model to predict
quantitatively the hypoxic response of cell cycle under con-
ditions ranging from severe hypoxia to normoxia. In the
following, we discuss about our model and the simulation
results against data, knowledge and hypotheses given in
the literature, highlight key implications, and also identify
important limitations of this work to be addressed in the
future.
Different reports have shown the counteracting effects

between the Hifα isoforms on proliferation [4–6, 65, 66]
and their functions in regulating many hypoxic functions
[18, 67, 68]. To our knowledge, this study is the first
attempt to integrate hypoxia sensing and cell cycle pro-
gression to capture the oxygen-dependent differential
proliferation responses. The Myc protein was used to
quantitatively couple and directly regulate key cell cycle
regulating proteins. The simplified mechanism (Fig. 1)
neglects the potential interactions from other Hifα-
dependent [36, 69, 70] or Hifα-independent [26, 58, 71]
hypoxic proliferation pathways. These pathways have been
considered during model construction, but not included
in the model. Some of their downstream regulators have
been captured by the considered mechanisms, while
others are either less significant or lack consensus in the
literature. As confirmed knowledge about these and new
pathways emerges, the first working model established in
this study needs to be extended.

Fig. 10 Comparative simulation results on the effect of ROS-mediated protein deactivation and Hif2α. The green dots indicate the nominal model
parameter setting condition with ROS-mediated protein deactivation and the effects of Hif2α. The black dots account for Hif2α but not ROS-mediated protein
deactivation. The blue and red simulations do not account for Hif2α. Simulations in red account for ROS-mediated deactivation, whereas simulation in blue
does not. Note that in all cases Hif1α was assumed to function normally. The results were simulated with nominal parameter settings unless stated otherwise
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The simulation results, from applying a unified model
over a wide range of oxygen levels, show that the effect
of hypoxia on proliferation is dependent on its severity,
due to the combined regulation originated by the two HIF
factors and ROS-mediated protein deactivation. As such,
the model has the potential to offer a reconciliation of the
previously reported experimental results [1, 8, 10, 36, 69,
70, 72, 73]. Generally, a “U-shape” characterisation curve
appears to be followed by the response of the commit-
ment time to a change in in vitro hypoxic oxygen tension
(Fig. 4a). The characterisation curve is subject to shift and
contract, depending on the model parameter values,
which in principle are dictated by properties of different
cell lines and other culture conditions (medium, surface
characteristics, etc.). However, under the assumptions of
ROS-mediated protein deactivation, a specific, relatively
narrow range of optimal oxygen tensions (9% - 10.5%) that
would allow the quickest cell cycle commitment was
consistently observed, despite the variation in parameter
values (Fig. 6). This shows that, although the model has
not been calibrated with a complete data set of any
specific cell line hence is not suitable to make accurate
predictions, a number of cell lines and culture systems
may find their optimal oxygen concentration level within
this range.
Global sensitivity analysis revealed the relative signifi-

cance of selected parameters on impacting simulation
output (Fig. 5). The parameter-specific dependency on
oxygen tension was observed, which in some cases, were
due to the nature of certain model equations (e.g., P1);
other high impact parameters (e.g. P3 under in vitro
normoxia) were a result of the interactions between
multiple mechanisms modelled. The obtained ranking of
parameters significance under different oxygen tensions
shall be used to prioritize future work in experimental
validation and parameter calibrations. Meanwhile, when
comparing literature experimental findings, the sensitive
parameters under the relevant oxygen level shall be
accounted for to ensure a reflective comparison.
The net oxidative stress activation level (ROS-mediated

protein deactivation threshold) has shown a significant
impact over determining the range of the optimal oxygen
levels (Fig. 9).In the complete absence of the ROS-medi-
ated generic protein deactivation, the resultant
“L-shape” characterisation curve is not an accurate
reflection of the observed effect of hypoxia-enhanced
proliferation [5, 8, 10, 11, 69, 72]. This behaviour, however,
may be applicable for other types of cells with higher
niche oxygen level, a projection to be confirmed by future
experimental observations. Inherent anti-oxidant enzymes
are expressed in stem cells to combat oxidative stress,
however, with limited capacity, overwhelming ROS would
lead to higher senescence and apoptosis [74, 75]. Bertolo
et al. showed higher intracellular ROS led to longer

division time in MSCs, which more than doubled in late
passaged cells [76]. When exposed to the atmospheric
oxygen level, which is much higher than MSCs niche con-
dition, the levels of intracellular ROS and other reactive
species could rise [48, 77–79]. The anti-oxidant capacity
is believed to be cell type specific, which would result
in a variation in the threshold and magnitude of ROS-
mediated protein deactivation and consequently (as
shown in our simulation) a shift in the range of optimal
oxygen tension. This theoretical prediction however still
needs to be validated through carefully designed experi-
ments. Beyond what has been implemented in the current
model, an increase in mitochondrial intracellular ROS
production under severe hypoxia have also been reported
[45, 80, 81]. The ROS also facilitates the stabilization of
Hifα isoforms [51, 52, 82]. The impacts of those effects
shall be considered in future studies.
To our knowledge, this work is the first one that

mathematically models the role of Hif2α in cell cycle
regulation. As a key hypoxia-regulating factor, it links to
multiple functions in stem cell maintenance, pluripo-
tency, and proliferation [5, 20, 36, 83–87]. In particular,
various studies have reported the opposing effects of
Hif2α with Hif1α [4, 6, 65, 66]. The simulation in this
study showed that under intermediate hypoxia, Hif2α
combats the negative effect of Hif1α on cell cycle pro-
gression; under normoxia, Hif2α can partially mitigate
the delayed proliferation response caused by ROS-
mediated protein deactivation. In this work, the Hif2α
expression rate as a function of oxygen concentration
was estimated by synthesizing various literature data; an
improved measurement of intracellular Hif2α protein in
MSCs through dedicated experimentation would yield a
more accurate function. The dynamic variation of individ-
ual cell cycle regulating proteins during different stages of
G1-phase progression provides insights into establishing a
dynamic control strategy (i.e. for bioreactor operations)
that may reduce the proliferation period via other controls,
e.g. specific growth factors.
Several assumptions and simplifications were made to

allow the construction of the current model, which
require caution in interpreting the simulation results and,
in many cases, point to important future work:

� The model focuses on the overall oxygen-dependent
behaviour of cell cycle commitment and is not expected
to be taken for making predictions at rather extreme
conditions. In particular, under severe hypoxia
pro-survival response in stem cells is expected to
dominate and could result in quiescence to reduce
DNA damage [9, 21, 88] despite a few reports
showed the successful proliferation of MSCs under
anoxic conditions [89, 90], which may be due to
different factors as addressed in the original papers.
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� The current model only estimates the time required
for commitment to cell cycle in late-G1 phase.
Future work will expand to include the entire cell
cycle process to capture the rate of proliferation.
The process of cell growth and metabolic uptake
may also be considered in future work.

� More detailed Hif1α mechanistic models are
available in the literature [28, 91] and may be
incorporated to improve model accuracy and help
identify cytokines to improve Hifα stabilization
during in vitro culture.

� A key limitation of this study has been on data
availability. The on-going growth in proteome and
transcriptome studies poses the possibility of offering
data with enhanced quantity and quality [92, 93].
With these newly available data, estimation of cell
proliferation rate and identification of the optimal
oxygen concentration and cell cycle commitment time
could then be become more accurate.

� Finally, this single-cell model is intended to be
integrated with a dynamic population model to capture
the status of the overall cell pool in a bioreactor,
addressing the growth kinetics and the heterogeneity
of the MSCs pool.

Conclusions
A single-cell mathematical model has been established
to predict the time required for cell cycle commitment
in a hypoxic environment as a proxy to proliferation rate.
Incorporating known roles of HIF factors and introducing
a hypothesis on ROS-mediated protein deactivation within
a cohesive quantitative framework, the constructed model
represents the first attempt to mechanistically capture these
key factors in hypoxia sensing and cell cycle regulation. In
particular, it implements a novel approach in using Myc to
link oxygen sensing and G1 phase progression, allowing
the differential responses of Hif1α and Hif2α to Myc
activities and their respective oxygen-dependent availabilities
to be quantified so as to predict cell proliferation status
under different oxygen tensions.
Through extensive simulation that explored the parame-

ters space using the quasi-Monte Carlo approach, the
model revealed the preservation of optimal oxygen tension
and the convexity of characterisation curve under the
assumption of ROS-mediated protein deactivation, which
suggests that the behaviours of severe hypoxia-mediated
cell cycle arrest and mild hypoxia-mediated facilitated
proliferation may be a rather common cellular response.
Furthermore, the interactive effects of Hif2α on cell cycle
progression with Hif1α and ROS-mediated protein deacti-
vation appeared to act as opposing forces in regulating
hypoxia-mediated proliferation.
The model developed in this work has been based on a

synthesis of known biology and limited literature data. It

offers a first vehicle for prediction cell cycle commitment
overall a wide range of oxygen levels, which has not been
covered by any existing experimental data set. While
the order of magnitude of its predictions appears to be
consistent with published data, it remains an important
task to validate and calibrate the model with experi-
mentation on specific cell lines, so that the model can
eventually be used to suggest optimal operational strategies
of bioreactors. The outstanding importance of certain
model parameters revealed by the global sensitivity analysis,
together with the high sensitivity of some mechanisms
identified through the simulation studies, could offer useful
guidance to the planning of future experimental work.
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