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Abstract

Background: Gastric Carcinoma is one of the most lethal cancer around the world, and is also the most common
cancers in Eastern Asia. A lot of differentially expressed genes have been detected as being associated with Gastric
Carcinoma (GC) progression, however, little is known about the underlying dysfunctional regulation mechanisms. To
address this problem, we previously developed a differential networking approach that is characterized by involving
differential coexpression analysis (DCEA), stage-specific gene regulatory network (GRN) modelling and differential
regulation networking (DRN) analysis.

Result: In order to implement differential networking meta-analysis, we developed a novel framework which
integrated the following steps. Considering the complexity and diversity of gastric carcinogenesis, we first collected
three datasets (GSE54129, GSE24375 and TCGA-STAD) for Chinese, Korean and American, and aimed to investigate
the common dysregulation mechanisms of gastric carcinogenesis across racial groups. Then, we constructed
conditional GRNs for gastric cancer corresponding to normal and carcinoma, and prioritized differentially regulated
genes (DRGs) and gene links (DRLs) from three datasets separately by using our previously developed differential
networking method. Based on our integrated differential regulation information from three datasets and prior
knowledge (e.g., transcription factor (TF)-target regulatory relationships and known signaling pathways), we
eventually generated testable hypotheses on the regulation mechanisms of two genes, XBP1 and GIF, out of 16
common cross-racial DRGs in gastric carcinogenesis.

Conclusion: The current cross-racial integrative study from the viewpoint of differential regulation networking
provided useful clues for understanding the common dysfunctional regulation mechanisms of gastric cancer
progression and discovering new universal drug targets or biomarkers for gastric cancer.
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Background
Gastric Carcinoma (GC) is one of the most common
and lethal tumor around the world, which is character-
ized by high heterogeneity, easy metastasis, and poor
prognosis [1, 2]. The morbidity and mortality of gastric
carcinoma in Eastern Asia are much higher than the
world average level [3]. During the last decade, quite a
series of high-throughput profiling, including genetic
variation study [4–7], genome-wide association study
(GWAS) [7], gene expression analysis [8–10], epigenetic
variation study [11], and integrative genomic analysis
[12–15], have greatly help to understand the biology of
GC, and identified quite a lot of GC-associated genes.
It was noticed that the above studies always collected
GC samples from a certain racial group such as Chinese
[7, 12, 16], Korean [8], and American [14, 17], respectively,
while the common dysregulation mechanisms of gastric
carcinogenesis across racial groups has been paid little at-
tention due to lack of integration research based on cross-
racial GC datasets.
It has been widely accepted that cancer results from

the dysregulation of multiple fundamental cell processes
including proliferation, differentiation, migration, apop-
tosis, and so on [18], which could be captured by gene
regulatory network (GRN) modelling, a widely used ap-
proach to explore the pathogenesis of complex diseases
from the systemic aspect [19–21]. In recent years, a
novel theme “differential networking” was put forward
and a number of methods have been developed to
identify the regulators, the relationships, and even the
sub-networks that differ between phenotypes [20–23].
With the rapid accumulation of transcriptomic data, dif-
ferential network analysis is helpful to survey the dy-
namics of gene regulation, which is crucial to the
understanding of pathophysiological processes [24–26].
In our previous studies, we designed and implemented a
differential co-expression analysis (DCEA) approach
called DCGL to recognize differential co-expression
genes (DCGs) and links (DCLs) in a link-based quantita-
tive way [27–29]. Based on this methodology, we further
developed a differential regulation networking (DRN)
framework [30, 31], which built conditional gene regula-
tory network (GRN) or combinatorial GRN (cGRN) and
then prioritized differentially regulated genes (DRGs)
and links (DRLs). Our DRN strategy proves to substan-
tially reduce the computational burden and leads to
insightful comments on selecting subject related genes
and their differential regulation mechanisms underlying
phenotypic changes.
Based on the previous methodologies, the current

study aimed at investigating the common dysregulation
mechanisms of gastric carcinogenesis across Chinese,
Korean and American. To this end, we constructed a
novel integrative analysis framework from the viewpoint

of differential regulation, which integrated a variety of
modules with differential regulation networking (DRN)
analysis and integrative analysis as the core steps. First
of all, the conditional gene regulation networks (GRN)
were built from three Gastric Carcinoma datasets
(GSE54129, GSE24375 and TCGA-STAD) separately,
and differentially regulated genes (DRGs) and differen-
tially regulated links (DRLs) were prioritized then. It was
found that known cancer genes and drug targets are
significantly ranked higher, and most of top-10 DRGs
from the three datasets have been reported to be GC re-
lated (~ 60%), or cancer related (~ 90%); meanwhile,
there is a lack of consistency among the three top DRG
lists. By integrating DRGs and DRLs from three datasets
to the prior regulation knowledge, it was found that the
16 common DRGs across racial groups are mainly
located in the transcription factor complex in nucleus
and their functions were enriched in transcriptional
regulation of RNA polymerase II, transcriptional activa-
tor activity and transcription factor binding. We there-
fore proposed two common cross-racial DRGs (GIF,
XBP1) and their related regulation relationships which
might play crucial roles in the dysregulation mechanisms
of gastric carcinogenesis. This integration analysis of GC
across racial groups provided useful clues for under-
standing common dysfunctional regulation mechanisms
of gastric carcinogenesis and discovering new universal
drug targets or biomarkers for gastric cancer, and also
indicated the complexity and diversity of gastric carcino-
genesis as well.

Methods
Gene expression datasets
The Affymetrix GeneChip Operating System (GCOS)
was used to measure expression level of 111 Chinese
gastric carcinoma samples and 21 Chinese normal mu-
cosa samples (GSE54129). The raw expression datasets
were normalized by robust RMA method and log2 trans-
formed. The evaluation of GSE54129 raw data in terms
of expression level distribution, density distribution and
correlations of samples were shown in Additional file 1:
Figure S1. After mapping probe sets to Gene Symbols
based on their platform annotations, 20,307 unique
genes were obtained.
We also downloaded the mRNA expression dataset of

stomach adenocarcinoma (STAD) from The Cancer
Genome Atlas (TCGA) Data Protal (https://cancergenome.
nih.gov/), which contains sequenced 29 matched American
tumor-normal pairs with Illumina Hiseq platform. After
discarding genes with more than 20% missing values,
we got 19,211 RPKM normalized and log2 transformed
unique genes.
The normalized gene expression profile of Korean gas-

tric carcinoma GSE24375 [7] was downloaded from
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Gene Expression Omnibus (GEO) and all measurements
were log2 transformed. The dataset includes eight
patient-matched gastric normal mucosa, adenoma and
carcinoma samples and two additional carcinoma sam-
ples. Probe sets with more than 20% missing values were
discarded, while probe sets with less missing values were
filled up with KNN method. After probe sets filtering,
18,468 probe sets were mapped to Gene Symbols based
on their platform annotations and 12,658 unique genes
were obtained. The distributions of normalized and log2
transformed expression levels of genes in three datasets
are presented in Additional file 1: Figure S2.

Enrichment analysis: Function, pathway, cancer genes and
drug targets
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) [32] was used to identify
over-represented KEGG pathways and GO terms based
on the hypergeometric distribution with p-values < 0.05
were considered statistically significant.
A total of 486 cancer genes and 2093 drug targets were

downloaded from Cancer Gene Census (http://cancer.
sanger.ac.uk/cancergenome/projects/census/) and Drug-
Bank (http://www.drugbank.ca/), respectively, which were
used to validate the differential regulation analysis on the
three gene expression datasets.

Differential networking meta-analysis framework
In order to implement differential networking meta-
analysis, we developed a novel framework which inte-
grated a variety of modules as follows (outlined in
Additional file 1: Figure S3).
Differentially co-expressed genes (DCGs) and links

(DCLs) were identified with our previously developed dif-
ferential coexpression analysis (DCEA) methods [27, 28].
DCGs with p-values less than 0.05 were selected by DCp
method, and DCLs were picked out by DCe method with
LFC model in DCGL package [28].
The conditional gene regulatory networks (GRN) were

constructed for the three preprocessed datasets respect-
ively based on DCGs and DCLs by using the conditional
GRN modelling approach developed in our previous
work [30]. First, we applied DCGL package to the ex-
pression dataset (GSE54129, GSE24375 and TCGA-
STAD, respectively) to extract differentially coexpressed
genes (DCGs) and differentially coexpressed gene links
(DCLs) between normal and cancer. The DCGs and the
gene pairs in the DCLs which involved at least one DCG
between normal and carcinoma were selected as core
seeds for the construction of conditional GRNs. Then
we constructed the conditional GRNs based on forward
predicted TF-target regulatory relationships and the core
seed genes by using stepwise linear regression according
to our previous method [30]. In this way, we built three

normal and cancer GRN pairs corresponding to the three
expression datasets (GSE54129, GSE24375 and TCGA-
STAD) separately.
The differential regulated genes (DRGs) and links

(DRLs) in conditional GRNs were ranked by our previ-
ously developed quantitatively methods [30], DR
measure and modified LFC model, respectively. The
power of the above two methods in cancer genes and drug
targets prioritization have been validated strictly in our
previous work. In order to further test the power of
prioritization of DRGs and DRLs methods in the three
GRN pairs from 3 GC gene expression datasets, we car-
ried out permutation tests by randomly perturbing the
DRGs lists for 5000 times for each gene expression dataset
as similar as the method described previously [30, 33].
The integrative analysis was carried out based on both

genes and functions. In order to prioritize common
DRGs across gastric cancer datasets, we combined DRG
lists from the three GC datasets to select cross-racial
DRGs which listed in the top N (< 100) DRGs commonly
in at least two racial groups. To globally understand the
common functional relevance of differential regulation
across all the three GC datasets, we performed GO/
KEGG functional enrichment analysis on both top 10
DRGs out of every single dataset and common cross-
racial DRGs by using DAVID 6.8.

Results
Screening for differentially co-expressed genes
According to DCGL method [28], the genes with the p-
value of dC less than 0.05 were taken as DCGs between
normal and carcinoma. A total of 3875 DCGs were
selected from GSE54129 dataset; 3604 DCGs from
TCGA-STAD dataset; and 2524 DCGs from GSE24375
dataset.
The intersection and enrichment significance among

three DCG sets (Fig. 1) shows that the DCGs between
every two datasets are significantly overlapped by Kappa
test. This suggests a basically coherent profile of molecu-
lar interactions underlying gastric carcinogenesis across
racial groups included in this study, Chinese, Korean,
and American.

Construction of GRNs and identification of DRGs and DRLs
Based on the (normal and carcinoma) expression data of
the selected DCG sets, we built paired conditional
(normal and carcinoma) GRNs (Fig. 2) respectively cor-
responding to Chinese (GSE54129), Korean (GSE24375)
and American (TCGA-STAD) by using the method de-
scribed in the section of Materials and methods. The
statistics of the three pairs of GRNs are listed in Table 1.
It was found that the paired GRNs, i.e., normal and car-
cinoma GRNs for a certain dataset, always share the
same regulators and most of the target genes, however,
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they share only a few of links, indicating that our
analysis method did efficiently narrow down the search
space and build stage-specific networks enriching subject
relevant regulation relationships as expected [30, 31]. We
then checked the global topological change between
normal and cancer GRNs across the three datasets. Ac-
cording to the node number, the network size for Chinese
(GSE54129) and Korean (GSE24375) expanded from nor-
mal to cancer, while that for American (TCGA-STAD)
shrank. According to the average degree of nodes, the
network complexity for Chinese (GSE54129) increased
from normal to cancer, while that for Korean
(GSE24375) and American (TCGA-STAD) decreased.
Considering the inconsistency of the sample size of
the three datasets, the above observation need to be
further evaluated based on data from larger patient
populations.
As shown in Table 2, known cancer genes and drug

targets were enriched in all the conditional GRNs by
Fisher’s Exact Test, demonstrating that our conditional

GRNs have the potential to highlight crucial cancer-
related regulation relationships, thus proving the ration-
ality of the three GRN pairs.
After constructing conditional GRNs, a key issue is

to quantitatively analyze the dynamic changes of gene
regulation during phenotypic changes, i.e., from
normal to carcinoma in the current work. Two
methods were used to measure the differential regula-
tion of a specific gene or gene link between two
conditional GRNs as described in the section of
Materials and methods, based on which differentially
regulated genes (DRGs) and differentially regulated
gene pairs or links (DRLs) were prioritized.
Permutation test showed that gastric cancer genes

were significantly ranked higher in the DRG lists from
three GC expression datasets, with p-values of 1.36e-05
(GSE24375), 6.54e-53 (GSE54129) and 0.00793 (TCGA-
STAD). The rank of drug targets in these DRG lists pre-
sented a similar trend, though not significant in datasets
GSE24375 and TCGA-STAD. This indicates that DR

Fig. 1 The intersection and enrichment significance among three DCG sets selected from GSE54129 (Chinese, yellow), GSE24375 (Korean, green)
and TCGA-STAD (American, cyan) gastric cancer datasets
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ranking is appropriate to prioritize disease related genes
in the current conditional GRNs.
The top 10 DRGs identified from three GC expression

datasets were listed in Table 3. Among the top 10 DRGs
for Chinese (GSE54129), six genes have been reported to
be gastric cancer (GC) related (REG4 [34], ANXA13
[35], C7 [36], ASS1 [37], MSMB [38], CREB1 [39]) and
the rest four were directly regulated by known gastric

cancer genes in our GRNs, in which two genes are also
cancer related (BPTF [40], CLCA1 [41]). Among the top
10 DRGs identified for Korean (GSE24375), six genes
are GC related (ESRRG [42], LIMS1 [43, 44], GATA3
[45], GATA6 [46], SOX9 [47], POU2F1 [48]) and the
other four are cancer related (IRF2 [49], RGS3 [50],
MRPL36 [51], FOSB [52]). Among the top 10 DRGs
identified from TCGA-STAD dataset, six are GC related

Fig. 2 The normal and carcinoma conditional gene regulation networks (GRNs) for GSE54129 (Chinese), GSE24375 (Korean) and TCGA-STAD
(American) gastric cancer datasets

Table 1 Statistics of conditional GRNs from three datasets

GSE54129 TCGA-STAD GSE24375

GRNs Links (#) TFs (#) Targets (#) Links (#) TFs (#) Targets (#) Links (#) TFs (#) Targets (#)

Normal 1621 30 1242 2109 21 1462 878 22 507

Carcinoma 2725 30 1657 1071 21 797 816 22 564

shared by normal and carcinoma GRNs 723 30 972 760 21 718 303 22 331
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(E2F1 [50], AK1B10 [51], CEBPA [52], PTK7 [53],
RASAL1 [54], GKN [55]), and three are cancer related
(DPCR1 [56], GGT6 [57], RAB25 [58]). Additionally,
873 DRLs, 590 DRLs and 319 DRLs were identified for
Chinese (GSE54129), American (TCGA-STAD) and
Korean (GSE24375), respectively (Additional file 2:
Table S1). We noticed that the vast majority of top
10 DRGs are gastric cancer related in all three data-
sets, while the three gene lists do not overlap at all,
suggesting that the most crucial factors during gastric
carcinogenesis may vary across racial groups. We
therefore carried out the following integrative analysis
aiming to identify cross-racial dysregulation mecha-
nisms underlying gastric carcinogenesis.

Integrative analysis of cross-racial DRGs and the
proposed mechanisms
In order to prioritize common DRGs across gastric can-
cer datasets, we combined the three DRG lists from the
three GC datasets in Table 4. Since there are no com-
mon DRGs within the top 50 DRG lists among the three
datasets, we first checked the overlap between every two
datasets. As shown in Table 4, CEBPA, GATA6, GATA3
and GIF genes appear in the top 30 DRGs commonly in
at least two different GC datasets, i.e., two racial groups;
similarly, GIF, XBP1, CEBPA, GATA6, DPP4, PTK7 and
GATA3 appear in the top 50 DRGs. There are 16 cross-
racial DRGs in the top 100 DRGs commonly in at least
two racial groups, including GIF, XBP1, CEBPA, GATA6,

DPP4, PTK7, GATA3, FOSB, EPAS1, CCND2, MALL,
IRF1, SOX9, VILL, GALNT3 and LGALS4. The number
of TOP N (<=100) overlapping DRGs across racial
groups are not significantly different as shown in
Table 4. Meanwhile, we also noticed that among a total
number of 6399 DCGs for Chinese and Korean, 12% (769)
were shared by the two DCG lists; among 7479 DCG for
American and Korean, 10.7% (803) were shared; while
among 6128 DCG for Chinese and American, 7.8% (480)
were shared (Fig. 1). This suggests that Chinese and
Korean have similar gastric carcinogenesis, compared with
American.
To globally understand the common functional rele-

vance of differential regulation across the three GC
datasets, we performed GO/KEGG functional enrich-
ment analysis on the top ranked DRGs (as shown in
Tables 3 and 4) by using DAVID 6.8 [32]. First, the TOP
10 DRGs from three GC dataset (GSE54129, GSE24375
and TCGA-STAD) were analyzed separately. However,
no GO/KEGG terms were significantly enriched in any
of the three gene sets after multiple hypothesis test
correction. Secondly, the terms “transcription regulatory
region DNA binding” and “RNA polymerase II transcrip-
tion factor binding” were identified based on seven com-
mon TOP-50 DRGs (GIF, XBP1, CEBPA, GATA6, DPP4,
PTK7 and GATA3) between at least two GC datasets.
Similarly, based on 16 common TOP-100 DRGs, the
terms of “transcription from RNA polymerase II pro-
moter”, “positive regulation of transcription from RNA

Table 2 The enrichment of cancer genes and drug targets in conditional GRNs

GSE54129 TCGA GSE24375

GRNs Cancer Genes Drug Targets Cancer Genes Drug Targets Cancer Genes Drug Targets

Normal 8.40E-10 2.84E-13 0.00012 6.776e-08 0.0034 0.039

Carcinoma 2.48E-12 2.21E-10 2.08E-6 4.841e-07 0.0015 0.0002

Enrichment significance (p-value) was calculated by Fisher Exact Test

Table 3 The top 10 ranked genes from three datasets

TCGA-STAD GSE54129 GSE24375

DRGs DR_value rank DRGs DR_value rank DRGs DR_value rank

E2F1 18.45799 1 SLC7A9 65.03438 1 LIMS1 3401.341 1

AKR1B10 15.58216 2 REG4 22.26006 2 FOSB 582.8947 2

CEBPA 12.34533 3 BPTF 20.02962 3 MRPL36 261.5739 3

PTK7 11.85102 4 DHRS11 19.11607 4 ESRRG 247.57 4

PLAU 11.5865 5 ANXA13 17.92791 5 GATA3 132.0578 5

DPCR1 11.37501 6 C7 15.36403 6 GATA6 85.31825 6

GGT6 11.14235 7 ASS1 15.10191 7 SOX9 47.91384 7

RAB25 9.645954 8 MSMB 13.03145 8 POU2F1 41.98352 8

RASAL1 9.191246 9 CLCA1 12.91625 9 IRF2 37.68406 9

GKN2 8.602126 10 CREB1 12.84939 10 RGS3 35.60814 10

The genes are sorted by DR value. Genes in bold refer to GC-related genes; genes in italic refer to cancer-related genes
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polymerase II promoter”, “transcriptional activator activ-
ity, RNA polymerase II core promoter proximal region
sequence-specific binding”, “sequence-specific DNA
binding”, “transcription factor complex” and “nucleo-
plasm” were recognized. That is, the 16 common DRGs
across racial groups are mainly located in the transcrip-
tion factor complex in nucleus and their functions were
enriches in transcriptional regulation of RNA polymer-
ase II, transcriptional activator activity and transcription
factor binding. This is consistent with the basic under-
standing that transcription factors (TFs) play crucial
roles in the proliferation and differentiation of cells.
It is interesting that GIF, the overlapping gene in the

three top-100 gene lists across Chinese, Korean, and
American, which is also a TOP-30 DRG commonly in at
least two racial groups, was reported to be a prognosis
biomarker of gastric cancer and its decreased expression
was reported to be correlated with the progresses of gas-
tritis [53, 54]. The down-expression of GIF in gastric
carcinoma samples was indeed observed in all three GC
dataset. We proposed GIF might be a common GC
related gene across racial groups, which participates in
carcinogenesis by differential regulation. We then
focused on GIF and its surrounding DRLs to generate
hypotheses on the regulation mechanisms of gastric car-
cinogenesis. In our integrative DRN analysis, GIF were
regulated by GATA3 in GSE24375 (− 2.896 vs 0.01; DRL
TOP 25) and TCGA-STAD (2.893 vs − 0.01; DRL TOP7)
datasets but their regulation efficacy changes were not
consistent. However, GIF was regulated by CEBPA in
GSE54129 (− 3.412 vs 0.01; DRL TOP7). It was noticed
that the DRLs of GIF were all ranked in TOP 30 in every
dataset. According to the clinical information of TCGA-
STAD, the GIF expression in different patient groups
based on Neoplasm Histologic Grade were significantly
different with Kruskal Wallis Test p-value 0.002 as
shown in Additional file 1: Figure S4. We therefore
suggest that GIF and its regulation are worthy of further
investigation to elucidate its role in gastric carcinogen-
esis in diverse racial groups.
XBP1 is the only overlapping transcription factor (TF)

in the three top-100 gene lists across the three racial
groups included in our analysis. Considering the crucial

roles of TF in cancer progression, we put much atten-
tion to XBP1 although its DR rank and surrounding
DRLs are all out of TOP-30 in every dataset and the mu-
tation frequency of XBP1 is low (0.9%) in 588 gastric
cancer samples in ICGC database (https://icgc.org/). By
integrating our differential regulation analysis results to
the prior knowledge, the dysfunctional regulation mech-
anisms underlying gastric carcinogenesis around XBP1
were proposed in Fig. 3. In all the three GC datasets, the
positive regulation of PPP1R1B by XBP1 was increased
from normal to cancer, and the negative regulation of
FKBP11 by XBP1 was strengthened. The up-regulation
of PPP1R1B was reported to inhibit apoptosis through
NF-κB/FLIP(S) pathway [55] and promote cell invasion
[56] and gastric tumorigenesis [57, 58]. The down-
regulation of FKBP11 leads to the inhibition of autoph-
agy through MTOR pathway and induces carcinogenesis
[59]. In Chinese and Korean datasets (GSE54129 and
GSE24375), the positive regulation of GATA6 by XBP1
was increased from normal to cancer, while it was
decreased in American dataset (TCGA-STAD) during
carcinogenesis. This might contribute to the differential
gastric carcinogenesis between Asian and American. It is
interesting that the positive regulation of CA9 by
GATA6 was decreased in all three racial groups. This is
consistent with the observation that Ca9 expression was
frequently lost in gastric cancers in part by methylation
[60], while contradictory to another report that the ac-
tivity of Ca9 contributes to invasion and thus advanced
tumor progression in a subset of gastric cancers [60–62].

Discussion
In this work, we carried out a cross-racial integrative
research on gastric cancer in terms of dysfunctional
regulation mechanisms by implementing a novel differ-
ential networking meta-analysis framework. Differential
regulation networking (DRN) analysis aims to identify
the regulatory relationships relevant or even causative to
phenotypic changes, which is challenging in the field of
both computational and experimental biology. Since
cancer has a nature of dysregulation mechanisms during
carcinogenesis, the DRN analysis is helpful for decipher-
ing differential regulation and differential networking

Table 4 Intersection of top ranked DRGs between every two datasets

Top10 Top20 Top30 Top40 Top50 Top100

TCGA-STAD vs GSE54129 0 CEBPA CEBPA CEBPA CEBPA CEBPA/GIF/XBP1

GSE54129 vs GSE24375 0 GATA6 GATA6 GATA6 GATA6/DPP4 GATA6/GIF/FOSB/XBP1/
DPP4/EPAS1/CCND2/MALL

TCGA-STAD vs GSE24375 0 0 GATA3/GIF GIF/GATA3/PTK7 GIF/GATA3/PTK7/XBP1 GIF/GATA3/PTK7/XBP1/
IRF1/SOX9/VILL/GALNT3/LGALS4

Across 3 datasets 0 0 0 0 0 GIF/XBP1

GSE54129, GSE24375 and TCGA-STAD collected Chinese, Korean and American gastric cancer samples respectively. The overlaps of top ranked differentially
regulated genes (DRGs) between any two datasets (Row 2nd, 3rd and 4th) and between all three datasets (Row 5th) are listed

Dai et al. BMC Systems Biology 2018, 12(Suppl 4):51 Page 23 of 166

https://icgc.org/


underlying phenotypic changes in cancer. Even if lots of
attention has been paid on traditional differential expres-
sion analysis in the past carcinogenesis studies, only in
very recent years differential regulation networking
analysis has become more and more widely applied
[22, 23, 30]. With the transcriptomic data from cancer
samples increasingly accumulated in the public domain, it
is time to investigate the common dysfunctional regula-
tion mechanisms of carcinogenesis at a broader systematic
level. We therefore created a differential networking
meta-analysis framework based on our previously devel-
oped metholologies, and applied it to three GC gene
expression datasets corresponding to Chinese, Korean and
American.
First of all, the high rank of cancer genes and drug tar-

gets in the three DRG lists (Table 2) as well as the basic

statistics of the three conditional GRN pairs (Table 1)
proved the rationality of the whole modelling strategy
and the effectiveness of DR measure as expected. Since
the DRN analysis module in the framework enables the
discovery of novel regulators or regulatory relationships
that have not yet been associated to the disease of inter-
est [30, 31, 63–65], we hoped to find out novel dysregu-
lation regulators and their related mechanisms
underlying gastric carcinogenesis across different racial
groups.
In our framework, DCGs were taken as the seed genes

for differential network construction. As shown in Fig. 1,
the DCGs between every two datasets are significantly
overlapped, indicating a basically coherent profile of
molecular interactions across Chinese, Korean, and
American; meanwhile, we also noticed a closer overlap

Fig. 3 The hypotheses of dysfunctional regulation mechanisms of gastric carcinogenesis around XBP1. Red ellipses and green rectangles are TFs
and targets obtained from our analysis respectively. The red line represents an increased positive regulation from normal to cancer, which also
includes a decreased negative regulation; the green line represents a strengthened negative regulation from normal to cancer, which includes a decreased
positive regulation as well. The dash line indicates the regulation relationship which exists in all three datasets while with differential regulation efficacy
change. The orange ellipses, the white rectangles and the bottom blue rectangles are genes, pathway and cancer related biological processes obtained
from the prior knowledge. As for the dark lines, ‘→’ indicates promoted effect; ‘—‘indicts protein-protein interaction; ‘-|’ indicates inhibited effect

Dai et al. BMC Systems Biology 2018, 12(Suppl 4):51 Page 24 of 166



between Chinese and Korean, which was supported by
previous reports [66, 67]. It is interesting that from the
viewpoint of gene regulatory network (GRN), the three
GRN pairs present significant differences from network
topologies to DRG identities (Fig. 2). Furthermore, the
consistency of highly ranked DRGs across three racial
groups is quite limited as shown in Tables 3 and 4. The
difference between racial groups could be associated
with genetics, diet habits and other environmental
factors. These observations strongly support the necessity
of integrative studies in terms of differential regulation.
In order to decipher the common carcinogenesis

across racial groups, we focus on those common DRGs
across datasets. The DRGs commonly in at least two ra-
cial groups were presented in Table 4. Four genes
(CEBPA, GATA6, GATA3 and GIF) were selected from
TOP30 DRG lists, seven genes (GIF, XBP1, CEBPA,
GATA6, DPP4, PTK7 and GATA3) were selected from
TOP50 DRG lists, and 16 genes (GIF, XBP1, CEBPA,
GATA6, DPP4, PTK7, GATA3, FOSB, EPAS1, CCND2,
MALL, IRF1, SOX9, VILL, GALNT3 and LGALS4) were
selected from TOP100 DRGs. Among the 16 cross-racial
DRGs, all are cancer related according to ICGC and
three genes (GATA3, SOX9 and CEBPA) have been
regarded as cancer driver genes [68–71]. Functional
enrichment analysis indicated that the 16 common
cross-racial DRGs were enriched in the function of tran-
scriptional regulation. We therefore propose that the
highly ranked TFs among the 16 top common DRGs, in-
cluding XBP1, FOSB, MRPL36, GATA3, GATA6, SOX9,
POU2F1, IRF2, PTK7, EPAS1 and IRF1 (Table 4) are
worthy of further investigation, especially on their roles
of gene transcriptional regulation.
We then narrowed down our attention to GIF and

XBP1 out of the 16 DRGs. Considering that GIF has been
reported to be a GC prognosis biomarker [54, 72, 73], and
GIF’s DRLs were all ranked in TOP 30 in every dataset,
we suggest that GIF and its regulation are worthy of
further investigation to elucidate its role in gastric car-
cinogenesis. The transcriptional regulation of GIF by
GATA3 and CEBPA might be related to the racial specifi-
city of GC. Although XBP1 has not been related to gastric
cancer so far, it is the only overlapping transcription factor
(TF) in the three top-100 DGR lists across Chinese,
Korean and American. By integrating our DRN analysis
results to prior knowledge, we proposed a hypothesis of
dysfunctional regulation mechanisms for gastric carcino-
genesis around XBP1 in Fig. 3. XBP1 and its DRLs seem
to play crucial roles during gastric carcinogenesis across
three racial groups.
The previous studies on the effects of racial factors on gas-

tric cancer were mainly focused on statistics of clinical phe-
notypes, such as metastasis and survival [67, 74–76], and a
few of literatures also reported genetic polymorphisms

[66, 77]. By means of differential regulation analysis,
our cross-racial meta-analysis of gastric cancer demon-
strated the complexity and diversity in terms of differential
networking, and made an insightful complement to these
previous reports. The race specific and common cross-
racial DRGs and DRLs are helpful to decipher the pheno-
typic differences among different racial GC groups from
the perspective of transcriptional regulation, and helpful
to discover universal or race specific drug targets or
biomarkers.
The current work provides a differential networking

meta-analysis framework which presents high cohesion
and low coupling. This framework is extendable and
adaptable to the studies on the regulation mechanisms
of other cancer and even other phenotypic changes.

Conclusions
Our study aimed at investigating the common dysregula-
tion mechanisms of gastric carcinogenesis across racial
groups from three Gastric Carcinoma datasets (GSE54129,
GSE24375 and TCGA-STAD) for Chinese, Korean and
American. We constructed a cross-racial integrative
analysis framework from the viewpoint of differential regu-
lation. The cross-racial meta-analysis of gastric cancer
demonstrated the complexity and diversity of gastric car-
cinogenesis, and provided useful clues for understanding
the common dysfunctional regulation mechanisms of
gastric cancer progression. In addition, the differential net-
working meta-analysis framework presented here is extend-
able and adaptable to the studies on the regulation
mechanisms of other cancer and even other phenotypic
changes.
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