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Abstract

Background: Essential proteins are necessary for the survival and development of cells. The identification of
essential proteins can help to understand the minimal requirements for cellular life and it also plays an important
role in the disease genes study and drug design. With the development of high-throughput techniques, a large
amount of protein-protein interactions data is available to predict essential proteins at the network level. Hitherto,
even though a number of essential protein discovery methods have been proposed, the prediction precision still
needs to be improved.

Methods: In this paper, we propose a new algorithm, improved Flower Pollination algorithm (FPA) for identifying
Essential proteins, named FPE. Different from other existing essential protein discovery methods, we apply FPA
which is a new intelligent algorithm imitating pollination behavior of flowering plants in nature to identify essential
proteins. Analogous to flower pollination is to find optimal reproduction from the perspective of biological
evolution, and the identification of essential proteins is to discover a candidate essential protein set by analyzing
the corresponding relationships between FPA algorithm and the prediction of essential proteins, and redefining the
positions of flowers and specific pollination process. Moreover, it has been proved that the integration of biological
and topological properties can get improved precision for identifying essential proteins. Consequently, we develop
a GSC measurement in order to judge the essentiality of proteins, which takes into account not only the Gene
expression data, Subcellular localization and protein Complexes information, but also the network topology.

Results: The experimental results show that FPE performs better than the state-of-the-art methods (DC, SC, IC, EC,
LAC, NC, PeC, WDC, UDoNC and SON) in terms of the prediction precision, precision-recall curve and jackknife curve
for identifying essential proteins and also has high stability.

Conclusions: We confirm that FPE can be used to effectively identify essential proteins by the use of nature-
inspired algorithm FPA and the combination of network topology with gene expression data, subcellular
localization and protein complexes information. The experimental results have shown the superiority of FPE for the
prediction of essential proteins.
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Background
Essential proteins are indispensable in the cellular life
for the survival or development of an organism. Even
though the deletion of only one of these proteins will
cause a lethal flaw on an organism [1]. Studies have
shown that essential proteins are related to disease genes
[2] and contribute to the prediction of drug targets [3].
Therefore, identifying essential proteins is not only con-
ducive to the understanding of minimal requirements
for cellular life, but also important for the study of dis-
ease genes [4].
The traditional methods of identifying essential pro-

teins are biological experiments, such as gene knockouts
[5], RNA interference [6] and conditional knockouts [7],
these biological experiment discovery methods are ac-
curate, but time-consuming, low efficiency and expen-
sive. Up to now, many computational methods for
predicting essential proteins have been proposed. Par-
ticularly with the rapid development of high-throughput
technologies, such as yeast two-hybrid screens [8], tan-
dem affinity purification [9] and mass spectrometric ana-
lysis [10], a large amount of protein interaction data is
detected, which provide new possibilities for the identifi-
cation of essential proteins. It is becoming increasingly
important to predict essential proteins by computational
methods based on protein interaction data.
The identification of essential proteins based on

protein-protein interaction (PPI) networks by using vari-
ous topological properties is a very hot topic. Until now,
many essential protein discovery methods have been
proposed, while most of these methods are based on
proteins with highly connected neighbors tend to be es-
sential, named the “centrality-lethality” rule [11], such as
Degree Centrality (DC) [11], Betweenness Centrality
(BC) [12, 13], Closeness Centrality (CC) [14], Subgraph
Centrality (SC) [15], Eigenvector Centrality (EC) [16],
Information Centrality (IC) [17]. Moreover, there are
also two neighborhood-based methods: Neighborhood
Centrality (NC) [18] and Local Average Connectivity-
based method (LAC) [19].
The above methods depend on the PPI networks to

identify essential proteins and have made great pro-
gresses in the essential protein discovery tasks. However,
it is still a challenge to improve the prediction precision
owing to the PPI networks obtained by high-throughput
technologies contain many false positives which may
greatly affect the precision of identification of essential
proteins [20]. Furthermore, these methods neglect the
inherent biological significance of essential proteins.
Hence, to reduce the effect of noise in the PPI networks,
the researchers have tried to achieve higher precision of
identifying essential proteins by integrating other bio-
logical information. For example, ION [21] used the
orthologous information with the PPI networks. A

method PeC [22] integrated gene expressions and PPI
networks, Peng et al. [23] proposed UDoNC by integrat-
ing domains and PPI networks. Zhong et al. [24] used a
feature selection method by collecting 26 different bio-
logical and topological features to identify essential pro-
teins, SON [25] integrated subcellular localization,
orthology and PPI networks, United complex Centrality
(UC) [26] utilized protein complexes information to pre-
dict essential proteins. Besides the methods mentioned
above, some researchers integrated topological or bio-
logical information to construct dynamic networks. For
example, Xiao et al. [27] constructed an active PPI net-
work to predict essential proteins.
Flower pollination algorithm (FPA) [28] is a nature-

inspired intelligent optimization algorithm that con-
siders the characteristics of flower pollination, which
proposed by Yang in 2012. There are two main patterns
of the pollination process viz. abiotic pollination and bi-
otic pollination. Pollinators can be biotic or abiotic de-
pending on the type of pollination. For biotic
pollination, pollinators are some animals such as insects
and birds. This type of pollination is called as global pol-
lination. About 90% of the pollination is biotic in nature.
For abiotic pollination, pollinators are natural resources
such as wind, water and soil. This type of pollination is
local pollination. The global pollination and local pollin-
ation are two main steps of FPA, these two steps are reg-
ulated by the switch probability. FPA has been applied in
various practical problems such as clustering [29], fea-
ture selection [30] and multi-objective optimization
problem [31]. Consequently, the efficiency of FPA makes
it possible for addressing the problem of predicting es-
sential proteins.
In this study, we develop a new algorithm, named FPE,

based on improved FPA to identify essential proteins by
integrating gene expression data, subcellular localization
and protein complexes information with the topological
properties of PPI networks. Different from other essen-
tial protein discovery methods that already exist, we take
advantage of the improved version of FPA to provide a
new perspective for the identification of essential pro-
teins. Also, our algorithm FPE integrates biological prop-
erties and topological properties of PPI networks to
assess the essentiality of proteins and further improve
the performance of prediction results. In order to evalu-
ate the effectiveness of the proposed algorithm FPE, we
apply it to the PPI networks and compare with ten pre-
vious essential protein discovery methods: DC [11], SC
[15], IC [17], EC [16], LAC [19], NC [18], PeC [22],
WDC [32], UDoNC [23] and SON [25]. The experimen-
tal results on the identification of yeast essential proteins
show that FPE outperforms the ten previously proposed
methods in terms of the prediction precision, as well as
the precision-recall curve and the jackknife curve. The
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modularity of proteins and the effect of the parameter p
on the prediction results is also discussed.
The rest of this paper is organized as follows. We first

introduce the basic knowledge of FPA. Then we present
how to combine FPA with the identification of essential
proteins, as well as the measurement for evaluating the
essentiality of proteins. Next, the performance of FPE is
validated by using a series of comparison experiments
and the analysis of experimental results are also de-
scribed. We conclude this study at the end.

Methods
The FPE algorithm is used to identify essential proteins
on the basis of the combination of improved flower pol-
lination algorithm with the gene expression data, subcel-
lular localization and protein complexes information.

Flower pollination algorithm (FPA)
FPA [28] is a population-based global optimization tech-
nique, which is motivated by the pollination process of
flowers. Pollination can be divided into two types, i.e.,
self-pollination and cross-pollination. Self-pollination
takes place between the flowers of the same plant spe-
cies while cross-pollination can occur from the flowers
of different plant species. Biotic pollinators such as in-
sects and birds can fly long distances causing cross-
pollination, which thus can be considered as global pol-
lination. Abiotic pollinators are the natural resources
such as wind and water that are unable to take away pol-
lens to long distances causing self-pollination, which is
local pollination. The local pollination and global pollin-
ation interchange is controlled by a parameter p ∈ [0, 1]
defined by so called switch probability. Table 1 shows
the basic knowledge of FPA.
In FPA, it is assumed that each plant only has one

flower and each flower only has one pollen gamete for
simplicity. Therefore, a flower or pollen gamete repre-
sented by a position vector that denotes as a candidate
solution of the optimization problem. Flower pollens will
be transferred in global pollination and local pollination.
In the global pollination, pollens are carried to long

distances by pollinators, such as insects, because these
pollinators can fly and move in a longer distance.

xtþ1
i ¼ xti þ F xti−gbest

� � ð1Þ

where xti is the pollen i at iteration t, and gbest is the

current best solution which is found among all solutions
at the current iteration. The parameter F is the strength
of the pollination, namely a step size, we use a Lévy
flight to represent that insects move over a long distance
with various distance steps. That is, F > 0 and follows
Lévy distribution:

F � λΓ λð Þ sin πλ=2ð Þ
π

1
s1þλ

; s≫s0 > 0ð Þ ð2Þ

where Γ(λ) is the standard gamma function, and this dis-
tribution is valid for large steps s > 0.
The local pollination occurs within a limited range

thanks to pollinators like wind or water, which can be
defined as:

xtþ1
i ¼ xti þ φ xtj−x

t
k

� �
ð3Þ

where xtj and xtk are pollen from the different flowers of
the same plant species. This substantially models the
flower constancy in a limited neighborhood. Mathemat-
ically, if xtj and xtk come from the same plant species or
select from the same population, this can be a local ran-
dom walk if φ follows the uniform distribution in [0, 1].
From the biological evolution point of view, it is a fact

that the aim of the flower pollination is achieving the
optimal reproduction of the flowering plants. The polli-
nator’s movement towards the optimal solution is repre-
sented by the global optimum found by FPA, namely,
the most suitable reproduction and pollination are
found, which is represented by gbest.
Taking the basic principle of FPA algorithm into con-

sideration, we design a new FPE algorithm, which is an
improved version of FPA algorithm to identify essential
proteins. In the FPE algorithm, the position of a pollen
is represented as a set of candidate essential proteins
contained Q proteins.

Improved flower pollination algorithm for essential
proteins identification (FPE)
In this section, we will use an improved FPA algorithm
to develop a new algorithm, named FPE. Table 2 illus-
trates the corresponding relationships between FPA al-
gorithm and the identification of essential proteins.

Pollen’s position
A PPI network is described by an undirected graph G
(V, E), where V denotes a set of nodes that are proteins
and E denotes a set of edges of PPI network.
In the basic FPA, the position of a flower is viewed as

a candidate solution for the optimization problem that
needs to be solved. Nevertheless, in our FPE algorithm,
the positions of flowers are redefined as the candidate
sets of essential proteins and each candidate set consists
of Q proteins. A pollen can be encoded as a candidate

Table 1 The basic knowledge of FPA

Local pollination Global pollination

Types Self-pollination (Abiotic) Cross-pollination (Biotic)

Flowers Same plant species Different plant species

Pollinators Wind, water Insects, birds
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essential protein set H = {h1, h2,…hQ}, where each of
these elements represents the serial number of a protein.

Pollination process
We redesign the formulas for updating the pollen’s posi-
tions considering that the basic FPA algorithm is con-
tinuous form while our proposed algorithm is discrete
form.
In the global pollination of FPA algorithm represented

by formula (1), on the one hand, pollen constantly move
to the global optimal solution, on the other hand, Lévy
distribution is used to make the pollen move in a longer
distance.
Inspired by the global pollination of basic FPA, we

consider its two aspects mentioned above in a compre-
hensive way to update the position of pollen, hence, in
the global pollination of our FPE algorithm, the position
of pollen is defined as follows:

Ltþ1
i ¼ cat dim; Lt

0
i ; RANDOM

� �
ð4Þ

where the cat operation is the function that forms the
position vector of a pollen. The value of dim is 1, which
indicates that two position vectors obtained by Lt

0
i and

RANDOM are concatenated in a column in our FPE al-
gorithm. Then the RANDOM indicates that a global
search in V is performed to update the position of
pollen. Finally, the pollen’s new position is obtained by
using cat function which can connect the position vec-
tors obtained by Lt

0
i and RANDOM to guarantee that the

pollen’s new position Ltþ1
i not only keeps moving to-

wards the global optimal solution, but also searches in a
global scope. Lt

0
i can be represented as follows:

Lt
0
i ¼ intersect Lti ;Gbest

� � ð5Þ

where the intersect function denotes that the elements
in Lti intersect with the elements in Gbest. Here, the ele-
ments in Gbest are those of a certain proportion in
Gbest. This can mimic the update of pollen’s position in
the basic FPA algorithm so that the pollen is constantly
approaching the global optimum Gbest.
In the local pollination, the pollen’s position remains

unchanged, which is represented as:

Ltþ1
i ¼ Lti ð6Þ

The overall flow of the FPE algorithm is shown in
Fig. 1.

The measurement of the essentiality of proteins (GSC)
According to the aforementioned analysis and the con-
clusions from previous studies, we have known that the
position of a flower can be viewed as a candidate solu-
tion set of essential proteins and each candidate set con-
sists of Q proteins. Then the measurement of the
proteins’ essentiality should be needed. Accordingly, we
define a new measurement to determine the essentiality
of a pollen represented by the Q candidate essential pro-
teins, called GSC, which consists of three types of infor-
mation, gene expression data, subcellular localization
and protein complexes information. GSC can be used to
assess the quality of each candidate solution, which cor-
responds to the fitness function of FPA.
The GSC is a measure of combining the centrality

measure PeC, subcellular localization SL and protein
complexes PC. Subsequently, we will introduce them in
detail.
For a candidate set H = {h1, h2,…hQ}, where each elem-

ent hi denotes a candidate essential protein, its essential-
ity is evaluated by GSC(H):

GSC Hð Þ ¼
XQ
i¼1

SL� α� PeC þ 1−αð Þ � PC½ �f g ð7Þ

where the parameter α is a constant between [0, 1],
which is used to adjust the proportions of three types of
information. When α = 0, only the information about
protein complexes and subcellular localization is consid-
ered, and when α = 1, only the information about subcel-
lular localization and gene expression data with the PPI
network is considered. To start with, we use α = 0.5 as
an initial value and then it has been certified that α = 0.6
works better for most applications from our parametric
analysis.
Next, we will introduce how to integrate gene expres-

sion data, subcellular localization and protein complexes
information with the topological properties of PPI net-
works to determine the proteins’ essentiality.

Table 2 The corresponding relationships between FPA algorithm and the identification of essential proteins

FPA algorithm The identification of essential proteins

Pollen A candidate essential protein set

Pollen’s position The serial numbers of Q candidate essential proteins

Fitness function The measurement of proteins’ essentiality

Pollination process The process of identifying essential proteins
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PeC
As we know the edge clustering coefficient (ECC) can
describe the closeness of two connected nodes in a PPI
network. The ECC is an important measure to represent
the topological properties of PPI networks and it has
been proved that ECC has a good performance in identi-
fying protein complexes and essential proteins. Further-
more, Pearson correlation coefficient (PCC) is a measure
that is used to evaluate how likely two interacting pro-
teins are co-expressed. Based on gene expression data
and protein-protein interaction data, the centrality
method PeC [22] using ECC and PCC is a very effective
essential protein discovery method.
Given a PPI network G (V, E), where a node i ∈V de-

notes a protein and an edge (i, j) ∈E connecting node i
and node j, its edge clustering coefficient ECC (i, j) can
be defined by the following formula:

ECC i; jð Þ ¼ Ni∩N j

�� ��
min di; d j

� � ð8Þ

where Ni and Nj denote the set of all neighbors of pro-
tein i and j, respectively, di and dj denote the degree of
protein i and j, respectively.
X = (x1, x2, …, xn) and Y = (y1, y2, …, yn) are two se-

quences of gene expressions, PCC is calculated by:

PCC i; jð Þ ¼
PT

i¼1 xi−μ xð Þð Þ yi−μ yð Þð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
i¼1 xi−μ xð Þð Þ2∙PT

i¼1 yi−μ yð Þð Þ2
q ð9Þ

The value of PCC is between − 1 and 1. The probabil-
ity that protein i and j are co-clustered can be calculated
as follows:

pc i; jð Þ ¼ ECC i; jð Þ � PCC i; jð Þ ð10Þ
Given a protein i, its PeC(i) is defined as follows:

PeC ið Þ ¼
X
v∈ni

pc i; vð Þ ð11Þ

where ni denotes the set of all neighbors of protein i. It
is obvious that a protein gets higher values of ECC and
PCC, it will obtain a relatively higher value of PeC and
thus tends to be an essential protein.

Subcellular localization
It is well known that subcellular localization is a signifi-
cant property of essential proteins and a protein must be
appeared in an appropriate subcellular location. The
basic idea that we use subcellular localization informa-
tion to identify essential proteins is that essential pro-
teins appear more often in certain subcellular locations
[25]. Consequently, we hypothesize that the proteins,
which are in the same subcellular location as the known
essential proteins are tend to be essential.
In order to prove our hypothesis, we analyze the rela-

tionship between the final subcellular localization data-
set R and the known essential protein dataset, the
relationship dataset is defined as S, then each of the 11
subcellular locations is called Sr, as shown in Fig. 2.
From Fig. 2 we can see that the known essential pro-

teins appear most frequently in the Nucleus and it shows
that the proteins in the Nucleus are more likely to be es-
sential proteins. However, few of the known essential
proteins appear in the Peroxisome, indicating that the
proteins appear in the Peroxisome are essential proteins
with a small probability.

Fig. 1 The overall flow of FPE algorithm
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If protein i exists in R, we calculate the frequency
where each of the 11 subcellular locations appears, the
corresponding score for each location is denoted as Fi(r)
by the following formula:

Fi rð Þ ¼
Sr

length Sð Þ ; if i∩R
0 ; otherwise

8<
: ð12Þ

where length(S) is the number of subcellular location re-
cords of the known essential proteins in the dataset R.
An efficient computational method is obtained to de-

termine the subcellular localization score of a protein
from the above-mentioned analysis. For this reason, we
use the subcellular localization information to devise
subcellular localization scores of proteins. For a given
protein i, its subcellular localization score SL(i) is de-
fined as the sum of scores of all the subcellular locations
in which it appears.

SL ið Þ ¼
X
C ið Þ

Fi rð Þ ð13Þ

where C(i) denotes the set of corresponding subcellular
locations in which protein i in the dataset R. Note that a
protein may appear in multiple subcellular locations.

Protein complexes
Proteins often bind together to constitute protein com-
plexes for carrying out their functions [33]. Based on the

observation that essentiality is more likely to be the
product of a protein complex rather than an individual
protein [34] and proteins existed in complexes are tend
to be essential compared to the proteins not appeared in
complexes [26], in this subsection, we use two different
protein complex datasets obtained from [35] that con-
tain 270 and 425 complexes, respectively. After remov-
ing the repeated protein complexes, we collect 538
known protein complexes into a dataset, named P, de-
notes as P = {P1, P2, …, Pk}.
A protein’s complex score is evaluated by the number

of times it appears in the known protein complexes. For
a given protein i, its protein complex score PC(i) is de-
fined as follows:

PC ið Þ ¼
XM
k¼1

Ti kð Þ ð14Þ

Ti kð Þ ¼ 1; if i∈Pk

0; otherwise



ð15Þ

where M is the number of the known protein complexes.
If a protein exists in the known protein complexes, the
value of its PC is the number of times it appears in the
known protein complexes. If a protein does not appear
in any protein complexes, the value of its PC is 0.
We can clearly find that for a given protein i, it ap-
pears in more protein complexes and can get a higher
value of PC.

Fig. 2 The relationship dataset. The nodes with different colors represent the distribution of the known essential proteins in different subcellular
locations. There should have been 11 subcellular locations, but the known essential proteins only appear in the 10 subcellular locations other
than the Extracellular space
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Pseudocode of FPE
Our proposed new algorithm FPE adopts the improved
version of FPA algorithm by simulating the pollination
process of flowers to identify essential proteins.

In FPE, first the Q proteins with the highest degree in
the PPI network are selected as initial position of pollen
to improve efficiency of FPE algorithm and using a per-
turbance factor that is a constant between [0, 1] to make
sure that each pollen is different. Then, the measure-
ment GSC is used to assess the quality of each candidate
set. We redefine the update rules of the pollen’ s position
and each pollen is updated by tailing the global optimal
solution in each iteration since the global optimum can
be viewed as a reliable guide for pollen to search better
solution. The pseudo code of improved flower

pollination algorithm for identifying essential proteins is
described shown in Algorithm 1.
Switch probability p can be used to switch between

global pollination and local pollination. The effect of p
on the results will be discussed in experimental section
and our experimental results demonstrate that the better
result can be obtained when the value of p is 0.3.

Results and discussion
In order to test whether our proposed algorithm FPE is
effective for identifying essential proteins, we apply it to
identify essential proteins of S. cerevisiae. First, we use
the FPE algorithm to identify essential proteins and
compare with ten other essential protein discovery
methods: DC [11], SC [15], IC [17], EC [16], LAC [19],
NC [18], PeC [22], WDC [32], UDoNC [23] and SON
[25]. Then, the performance of FPE is evaluated in terms
of the PR curve and the jackknife curve. After that, the
modularity of proteins is used to confirm the perform-
ance of FPE. Finally, the effect of parameter p on the ex-
perimental results of proposed algorithm FPE is
discussed.

Experimental data
All the experiments in this study are based on the PPI
network data of S. cerevisiae to identify essential proteins
because it is the most complete data and has widely
been used in the study of predicting essential proteins.
The PPI network dataset of S. cerevisiae is downloaded
from the DIP database [36]. The final yeast PPI network
includes 5093 proteins and 24,743 interactions after the
repeated interactions and the self-connecting interac-
tions are removed. Other types of biological information
used in this study are described as follows:
Gene expression data: The yeast gene expression data,

GSE3431, are obtained from the Gene Expression Omni-
bus (GEO) database [37]. A total of 7074 gene products
are used in our experiment.
Subcellular localization data: The protein subcellular

localization dataset of S. cerevisiae is obtained from the
subcellular localization database of COMPARTMENTS
[38]. The yeast proteins have a total of 11 subcellular lo-
calizations as follows: Cytoskeleton, Golgi apparatus,
Peroxisome, Cytosol, Endosome, Mitochondrion, Plasma
membrane, Nucleus, Extracellular space, Vacuole, Endo-
plasmic reticulum. After preprocessing, it still includes
6892 subcellular localization records.
Protein complexes data: We integrate two real protein

complex sets into one protein complex set. These two
sets from [35] contain 270 and 425 complexes, respect-
ively. The final known protein complex dataset contains
538 complexes, gathered from these two complex sets
by removing the repeated protein complexes, named P.
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Standard essential protein set: A list of the known es-
sential proteins of S. cerevisiae is collected from the fol-
lowing databases: MIPS (Mammalian Protein-Protein
Interaction Database) [39], SGD (Saccharomyces Gen-
ome Database) [40], DEG (Database of Essential Genes)
[41], and SGDP (Saccharomyces Genome Deletion Pro-
ject) [42]. There are 1285 essential proteins are collected
in this dataset.

Comparison of FPE with other essential protein discovery
methods
To compare the performance of FPE with other previous
essential protein discovery methods DC, SC, IC, EC,
LAC, NC, PeC, WDC, UDoNC and SON, we first apply
these ten methods on the yeast PPI network. Then, simi-
lar to most methods of predicting essential proteins, we
rank all the proteins in descending order in the PPI net-
work and select the top 100, top 200, top 300, top 400,
top 500, and top 600 proteins as essential candidates. Fi-
nally, according to the standard essential protein dataset,
the number of true essential proteins is detected by ten
competing methods DC, SC, IC, EC, LAC, NC, PeC,
WDC, UDoNC and SON in the yeast PPI network.
For our proposed FPE algorithm, first the global

optimum, i.e., a candidate essential protein set is ob-
tained based on the improved FPA, then we rank Q pro-
teins in descending order from the obtained candidate
set by using our redefined measurement GSC and select
the top 100, top 200, top 300, top 400, top 500, and top
600 proteins as essential candidates, finally, we achieve
the number of true essential proteins predicted by FPE.

The comparison results are shown in Fig. 3. From Fig.
3 we can see that FPE has a better performance com-
pared with the other ten essential protein discovery
methods for predicting essential proteins from the yeast
PPI networks. The number of true essential proteins
identified by FPE is consistently higher than those gener-
ated by the ten previously proposed methods: DC, SC,
IC, EC, LAC, NC, PeC, WDC, UDoNC and SON from
top 100 to top 600 proteins. By choosing top 100 pro-
teins, FPE can obtain a prediction precision of 89%. Es-
pecially compared to LAC, the improvements of FPE are
50.85, 36.67, 28.41, 27.19, 30.08 and 29.08% from top
100 to top 600 proteins, respectively.
It should be noted that the identification result of each

time in our algorithm FPE with randomness due to the
characteristics of the intelligent algorithm itself, but the
result of each time is basically maintained within a stable
range.

Validation in terms of the precision-recall curve
In this subsection, we use precision-recall (PR) curve
that is a common methodology to evaluate the perform-
ance of the proposed algorithm FPE. A comparison of
FPE with the ten methods DC, SC, IC, EC, LAC, NC,
PeC, WDC, UDoNC and SON for predicting essential
proteins from the yeast PPI networks by using the PR
curve is shown in Fig. 4.
From Fig. 4 we can see that the PR curve of FPE ob-

tains the better result compared to the PR curves of ten
other previously proposed essential protein discovery
methods: DC, SC, IC, EC, LAC, NC, PeC, WDC,

Fig. 3 Comparison of FPE with other essential protein discovery methods. The ten competing methods are DC, SC, IC, EC, LAC, NC, PeC, WDC,
UDoNC and SON. (a), (b), (c), (d), (e), and (f) show the results of these methods when select top 100, 200, 300, 400, 500, and 600 proteins as
essential candidates, respectively. Note that the number of identification presented here is the result of FPE algorithm running ten times and
then averaging the number of ten times
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UDoNC and SON. The PR curves of EC and SC are al-
most the same.
We have known our algorithm FPE with randomness,

but the result of each time remains in a stable range, the
PR curve of the FPE algorithm here is randomly select-
ing from the ten times running results.

Validation in terms of the jackknife curve
To evaluate the effectiveness of FPE more generally, we
further use the jackknife curve to illustrate the predic-
tion results of DC, SC, IC, EC, LAC, NC, PeC, WDC,
UDoNC, SON and our proposed algorithm FPE. The re-
sults are shown in Fig. 5, the x-axis represents the

number of proteins are ranked by each essential protein
discovery method and the y-axis is the cumulative count
of true essential proteins.
The areas under the curves can measure the perfor-

mances of the above-mentioned methods. As shown in
Fig. 5, the jackknife curve of FPE is better than the other
methods DC, SC, IC, EC, LAC, NC, PeC, WDC,
UDoNC and SON for identifying essential proteins from
the yeast PPI networks. It demonstrates that FPE is more
effective than other ten methods for identifying essential
proteins. The jackknife curves of EC and SC are almost
the same. The jackknife curve uses the same running re-
sults of the FPE algorithm as the PR curve.

Fig. 4 Validation in terms of the precision-recall curve. Comparison of DC, SC, IC, EC, LAC, NC, PeC, WDC, UDoNC, SON and FPE based on the val-
idation of PR curve

Fig. 5 Validation in terms of the jackknife curve. Comparison of DC, SC, IC, EC, LAC, NC, PeC, WDC, UDoNC, SON and FPE based on the validation
of jackknife method
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Evaluation of the modularity of proteins predicted by
FPE, DC and PeC
Proteins often form protein complexes or functional
modules to perform their biological functions. Therefore,
we try to use protein modularity to assess the essential
proteins predicted by FPE. To study the modularity of
the proteins, we first choose the top 100 proteins identi-
fied by FPE, DC and PeC to construct three small PPI
networks. Each small network consists of the top 100
proteins ranked by FPE, DC and PeC. Then, MCODE
[43] is used to discover protein modules from the three
small PPI networks. The results are shown in Fig. 6.
As shown in Fig. 6, the top 100 proteins ranked by

FPE include 88 essential proteins (blue nodes in Fig.
6(a)), whereas DC only identifies 46. MCODE has de-
tected eight modules in the PPI network of FPE, five
modules in the PPI network of DC and six modules in
the PPI network of PeC. From Fig. 6(b) and Fig. 6(c),
there are modules that have not been discovered by
MCODE. From the results, we can see that the essential
proteins predicted by FPE show more obvious modular-
ity than those identified by DC and PeC.

Effects of the parameter p
In this subsection, we discuss the influence of the par-
ameter p that is the switch probability on the prediction
results of FPE. With p = 0, flowers do not perform the
local pollination while with p = 1, flowers do not perform
the global pollination. For this purpose, we set the
switch probability p vary from 0.1 to 0.9. Then the FPE
algorithm is ran ten times from p = 0.1 to p = 0.9, re-
spectively, and we calculate their average. Finally, the
number of true essential proteins identified by FPE is
shown in Table 3.
According to Table 3, we can see that the differences

between the results of p < 0.6 and 0.6 ≤ p < 1.0 are obvi-
ous, when p < 0.6, the number of true essential proteins

identified by FPE is almost higher than 0.6 ≤ p < 1.0,
which implies that selecting p < 0.6 is a good choice.
Moreover, when p = 0.3, more superior results can be
obtained and further demonstrate that setting the value
of switch probability p to be 0.3 is the best choice for
predicting essential proteins of FPE. Hence, in this study,
we determine the optimal value to be p = 0.3.

Conclusions
The identification of essential proteins is very significant
to understand the minimal requirements for cellular life
and disease study. In this study, we propose a new algo-
rithm FPE based on the improved flower pollination al-
gorithm to identify essential proteins by integrating gene
expression data, subcellular localization and protein
complexes information with the topological properties of
PPI networks.
To test whether the proposed algorithm is effective,

we apply our proposed algorithm FPE on the PPI net-
work of S. cerevisiae. First, the comparisons of FPE with
ten previous proposed methods DC, SC, IC, EC, LAC,

Fig. 6 Evaluation of the modularity of proteins predicted by FPE, DC and PeC. Top 100 proteins in the yeast PPI networks identified by FPE, DC
and PeC, respectively. The blue nodes represent the essential proteins and the grey nodes represent the non-essential proteins. In (a), MCODE dis-
covers 8 functional modules. (b) shows that MCODE identifies 5 functional modules. (c) shows that MCODE detects 6 functional modules

Table 3 The number of true essential proteins identified by FPE
with different p

p Top 100 Top 200 Top 300 Top 400 Top 500 Top 600

0.1 89 163 225 287 344 393

0.2 89 163 225 289 343 393

0.3 89 164 226 290 346 395

0.4 89 164 225 289 343 390

0.5 89 163 227 289 344 391

0.6 88 163 226 288 342 387

0.7 88 163 226 288 342 385

0.8 88 163 227 291 343 384

0.9 88 163 228 289 343 384

The data in boldface represents the maximum value in each column
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NC, PeC, WDC, UDoNC and SON have been made in
terms of the number of predicted true essential proteins,
as well as the PR curve and the jackknife curve. Then,
we further analyze the modularity of proteins and the ef-
fect of the switch probability p on the identification re-
sults. Both the numerical and the graphical experiment
results show that FPE is more competitive than other
methods for the identification of essential proteins.
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