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Abstract

Background: Cardiovascular diseases (CVD) represent one of the most important causes of morbidity and mortality
worldwide. Innovative approaches to increase the understanding of the underpinnings of CVD promise to enhance
CVD risk assessment and might pave the way to tailored therapies. Within the last years, systems medicine has
emerged as a novel tool to study the genetic, molecular and physiological interactions.

Conclusion: In this review, we provide an overview of the current molecular-experimental, epidemiological and
bioinformatical tools applied in systems medicine in the cardiovascular field. We will discuss the status and
challenges in implementing interdisciplinary systems medicine approaches in CVD.

Background
Cardiovascular diseases (CVD) represent one of the
most important causes of morbidity and mortality
worldwide, with an increase in the global number of
death from CVD by 12.5% in the past decade [1]. Conse-
quently, CVD poses a major public health burden with
high socioeconomic impact. Clinical risk factors, such as
age, sex, hypertension, diabetes mellitus, hyperlipidemia,
and family history, are still the predominant indicators
for likelihood of developing coronary artery disease [2].
However, innovative approaches to increase the under-

standing of the multifactorial, complex underpinnings of
CVD promises to enhance CVD risk assessment and
might pave the way to tailored therapies.
Despite success of genome-wide association studies

[3–6] and sequencing approaches [7], the underlying
pathophysiological mechanisms of CVD remain - in
part, to be determined.
So far, diseases such as CVD are typically defined by

late-appearing disease manifestation, by the range of
clinical pathophenotypes, however, this definition ne-
glects the underlying molecular pathophysiological dis-
ease mechanisms [8]. A diseases is rarely a simple
consequence of an abnormal single effector but, rather,

is a reflection of pathobiological processes interacting in
a complex network [8].
To provide a more comprehensive picture, the system-

atic integration of multidimensional datasets evolves as
an emerging, so called systems medicine approach in-
cluding molecular findings of regulatory RNAs and
DNA, proteins, metabolites as well as knowledge from
cell biology, animal experiments and human phenotypic
and clinical data [9, 10].
One definition describes systems medicine as the imple-

mentation of systems biology approaches into medical re-
search (https://www.casym.eu, [11]). This definition refers
to research approaches intended to improve understanding
of biological mechanisms through the use of omics-based
science, systems biology, bioinformatics and network theory
and shall promote the application of medical informatics
tools to improve patient care [12–14]. This relatively new
research field relies on interdisciplinary approaches involv-
ing clinicians, bioinformaticians and mathematicians, data
management, engineers as well as epidemiologist and re-
searchers in life science such as biologists and physicists.
Therefore, collaborations across disciplinary boundar-
ies and different “scientific languages” are crucial. Sys-
tems medicine makes use of the rapidly increasing
amount of multidimensional omics and related med-
ical and biological data spanning from clinical pheno-
types and data from human studies to molecular
experimental laboratory data [9] (Fig. 1).
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In this review, we provide an overview of the current
molecular-experimental, epidemiological and bioinformatical
tools applied in systems medicine in the cardiovascular
field (Fig. 2). We will discuss the status and challenges
in implementing interdisciplinary systems medicine ap-
proaches in CVD.

Description of current tools for systems medicine
in cardiovascular disease
Experimental tools
Decades of reductionist scientific approaches aimed on
the elimination of complexity of the biological systems
under investigation, thereby separately and successively
defining the individual basic units of the entire system
[15, 16]. In the context of human diseases, understand-
ing complex and interconnected mechanisms merely by

focusing on individual genes or signaling pathways is
usually insufficient. With the entrance into the arena of
high-throughput technologies and the capability of gen-
eration of massive amounts of multifaceted “omics data”
from biological systems, systems biology has emerged as
an interdisciplinary field of research that integrates the
heterogeneous high-throughput data to manage this high
complexity quantitatively and in a modeled fashion.
Nevertheless, the prerequisite for the meaningful model-
ing is the use of the ideal model systems for “omics data
generation”. In this regard, cell-based systems and ani-
mal disease models should accurately recapitulate the
pathology observed in the patient.

Cell-based cardiac disease models
The vertebrate heart consists of different cell types such
a cardiomyocytes, cardiac fibroblasts, endothelial cells or
vascular smooth muscle cells that all significantly con-
tribute to regular heart function [17]. Nevertheless, car-
diac myocytes are the main cardiac cell population and
predominately contribute to cardiac dysfunction in hu-
man patients and cardiac disease models. Isolated pri-
mary neonatal cardiomyocytes from mice and rats are
excellent sources for the investigation of distinct gene
functions, cellular processes and molecular alterations
under physiological as well as pathophysiological condi-
tions in vitro [9]. These cells are easy to isolate and to
purify as well as to culture for up to 28 days. Addition-
ally, these cultured cells beat spontaneously, are trans-
fectable, and has been shown to be useful to study
myofibrillogenesis, myofibrillar functions, hypertrophic
responses and to model cardiac diseases [17]. In this
context, the availability of numerous genetic mouse
models of human cardiac disease allows the isolation of
primary neonatal cardiomyocytes directly from these
mouse models providing the opportunity to evaluate the
functional, structural and molecular roles of these

Fig. 1 Overview of multidimensional omics and related clinical phenotypes used in systems medicine

Fig. 2 Overview about current molecular-experimental, epidemio-
logical and analyses tools applied in systems medicine
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factors in cardiomyocytes in detail. Unfortunately, pri-
mary neonatal cardiomyocytes display a rather immature
phenotype hindering the investigation of cellular and
molecular processes solely present in adult/terminally
differentiated cardiomyocytes. By contrast, adult mam-
malian primary cardiomyocytes are terminally differen-
tiated allowing the complementary assessment of
functional, structural and molecular gene functions in a
mature cardiomyocyte context. Nevertheless, isolation of
adult primary cardiomyocytes is technically challenging
and isolated cells can only be cultured for a short period
of time, fail to beat spontaneously and are extremely dif-
ficult to transfect, significantly impeding the analyses of
specific gene functions and molecular mechanisms [17].
Furthermore, some effort has been put in the develop-
ment of cardiac cell lines by using immortalized cardio-
myocytes such as AT-1, HL-1, ANF-T-antigen and H9C2
cells. Whereas AT-1, HL-1 and ANF-T-antigen cells
were derived from mouse atrial cardiomyocyte tumors,
H9C2 cells were obtained from embryonic rat ventricu-
lar tissue [17]. Although these cardiomyocyte cell lines
are valuable tools to answer defined scientific questions,
unfortunately none of these cell lines recapitulates the
exact physiological properties of primary cardiomyocytes
therefore limiting their use in the in vitro assessment of
precise and complex gene functions.
Embryonic stem cells (ESC) have been used for decades

to generate cardiomyocytes and recent advances in cell
culture techniques significantly increased the yield of
cardiomyocytes in these cultures. Although ESC-derived
cardiomyocytes can be rapidly expanded and easily ma-
nipulated, the cells are phenotypically immature and do
not represent fully functional, terminally differentiated
cardiomyocytes [17, 18]. Induced pluripotent stem cells
(iPSCs) are reprogrammed cells that show similar features
and properties than ESCs including the capability of dif-
ferentiating into cardiomyocytes [17–19]. IPS cells can be
generated directly from somatic cells by introducing a
cocktail of transcription factors. One great advantage of
iPS cells is that these cells can easily obtained from
patients with a genetic disease thereby representing an in-
valuable tool for human disease modeling. Additionally,
similar to ES cells, iPSC-derived cardiomyocytes are easy
to manipulate and state-of-the-art differentiation proto-
cols lead to high percentages of cardiomyocytes in these
cultures. Remarkably, depending on the differentiation
time, iPSC-derived cardiomyocytes are assumed to resem-
ble an immature, embryonic phenotype (2–3 weeks after
differentiation) or a more mature “fetal” phenotype (12–
15 weeks after differentiation) allowing the investigation
of both, developmental processes as well as functional,
structural and molecular parameters solely present in
more differentiated cardiomyocytes [17]. Due to these
invaluable features iPSC-derived cardiomyocytes are

currently the best in vitro model for human cardiomyo-
cytes. Nevertheless, compared to human adult cardiomyo-
cytes, human iPSC-derived cardiomyocytes are smaller,
beat spontaneously (sign of immaturity), display less struc-
tured myofibrillar organization and lack t-tubules, just to
mention a couple of differences and shortcomings. Inter-
estingly, human iPS cells can be used to generate engi-
neered heart tissues (EHTs)/human cardiac organoids
(hCOs), three-dimensional, hydrogel-based muscle con-
structs [20–22]. EHTs start to beat 10 days after culturing
allowing the measurement of several aspects of contractile
function in vitro. Compared to 2D cardiomyocyte cul-
tures, conditions in EHTs appear more physiological,
stable and maturated, however, EHTs using the current
culturing techniques do still not reach the maturation
status of adult primary cardiomyocytes yet.

Animal models of heart disease
In addition to cell-based disease models, modern bio-
medical research requires adequate animal models to
understand the pathogenesis, progression, and pathome-
chanisms underlying human cardiovascular diseases
(CVD). The ideal animal model system should be of
low-cost and uncomplicated care, housing and breeding,
manipulations and genetic modifications should be easy
and reproducible and most importantly physiology
should be comparable to the human situation to be able
to translate experimental findings. Although various
animal models ranging from small to large animals are
frequently used in cardiovascular research, in this review
we will focus on small animals to model CVD.
In cardiovascular research, rodent models such as

mice, rats, rabbits or guinea pigs are the most frequently
used animal models [23]. Maintenance is easy and cost-
effective, they have a short generation time and genetic
manipulations are possible. Additionally, rodent models
enable the standardization of important parameters such
as genetic background, age, temperature, diet or envi-
ronment that is fundamental for the effective assessment
of the pathogenesis and pathomechanisms of complex
human cardiovascular diseases. Among all rodent
models, mice are most frequently used in cardiovascular
research although the murine cardiovascular system and
cardiac physiology significantly differs from the human
system. Their hearts are relatively smaller, heart rate is
much faster and blood volume is much lower [9]. Never-
theless, during the last 20 years, the targeted generation
of generically modified mice via embryonic stem (ES)
cell injection such as knock-out or knock-in mice as well
as the generation of transgenic mice led to the establish-
ment of numerous meaningful disease models that
mimic at least some of the characteristics of human car-
diovascular disease. Using these models, it became clear
that very similar pathways and mechanisms regulate the
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development, function and pathogenesis of the murine
and human cardiovascular system. Additionally in mice,
a large toolbox for the invasive and noninvasive manipu-
lation of the disease model exists [23]. For instance,
modeling human myocardial infarction (MI) in adult
mice by the ligation of the left anterior descending
(LAD) artery and the investigation of the cellular and
molecular processes after MI is a valuable tool to under-
stand the mechanisms of cardiac remodeling and repair.
Interestingly, in contrast to adult mice, MI modeling in
neonatal mice by LAD ligation or myocardial cryoinjury
revealed significant myocardial regeneration and func-
tional recovery due to induced cardiomyocyte prolifera-
tion, introducing the neonatal mouse as a model to
study the molecular and cellular processes of mamma-
lian heart regeneration and the mechanisms that convert
adult mammalian cardiomyocytes post-mitotic [24–26].
Furthermore, transverse aortic constriction (TAC) is an
established method to develop pressure-overload-
induced hypertrophy in mice and other small mammals.
The disease condition develops from significantly in-
creased blood pressure in the left ventricle and recapitu-
lates similar syndromes in humans that develop in
response to aortic stenosis or chronic hypertension.
Interestingly, Doxorubicin (DOX)-treatment in mice
causes clinical symptoms very similar to human heart
failure accompanied by significantly reduced left ven-
tricular (LV) fractional shortening and cardiac output
[23]. This non-invasive method of heart failure induction
is therefore a valuable tool to dissect the molecular and
mechanistic underpinnings of human heart failure.
Over the past 25 years, non-mammalian vertebrates

enter the arena of heart disease modeling. In particular,
the zebrafish (Danio rerio) has emerged as a unique
model system to study human cardiovascular disease
[27–30]. As a vertebrate and in contrast to invertebrate
models such as flies and worms, the zebrafish possesses
a closed cardiovascular system and a multi-cambered
heart. Interestingly, during the first 6–7 days post ferili-
zation zebrafish development does not depend on a
functional cardiovascular system since sufficient oxygen
is delivered by passive diffusion from the surrounding
water. Additional advantages of the zebrafish over mam-
malian models are the large number of progeny, its fast
and extra-uterine development, its transparency during
embryonic development and the ease of genetic manipu-
lation. In this context, the unique combination of for-
ward and reverse genetic approaches including genome-
editing tools makes the zebrafish a powerful organism to
generate and establish novel cardiovascular disease
models [29]. Ethylnitrosurea (ENU)-mediated chemical
as well as viral or transposon-driven insertional muta-
genesis in zebrafish have been conducted since the late
1990’s and resulted in the identification of numerous

mutant strains and the subsequent definition of novel
disease genes and pathomechanisms [28, 31]. For in-
stance, the zebrafish mutant line main squeeze was
shown to carry a mutation in the Integrin-linked kinase
(ILK) gene resulting in reduced PKB/Akt phosphoryl-
ation, defective cardiac stretch sensor function and
thereby severe cardiomyopathy in zebrafish [32]. Inter-
estingly, mutations in the human ILK gene are mean-
while described in patients suffering from dilated
cardiomyopathy (DCM) [33], verifying the usefulness of
forward genetic screens in zebrafish to define novel dis-
ease genes and mechanisms. In addition to these
hypothesis-free approaches, reverse genetics techniques
by targeted gene inactivation or overexpression (transi-
ent or transgenic) has led to the establishment of many
more in vivo models to study the genetic and molecular
underpinnings of cardiovascular diseases. Here,
Morpholino-modified antisense oligonucleotides that
interfere with regular protein translation or pre-mRNA
splicing of the target mRNA or precision genome-
editing tools such as the Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR)/Cas9 system, TAL
effector nucleases (TALENs) or Zinc-finger nucleases
(ZFNs) are well-established methods in zebrafish to
broaden our understanding of the physiological role of
the individual gene and the associated molecular signa-
ling cascades in vivo. Using a Morpholino-mediated
reverse genetics approach, the sarcomeric Z-disk protein
Nexilin was first described in zebrafish to cause con-
tractile dysfunction and cardiomyopathy when inacti-
vated [34]. Based on these findings, Nexilin mutations
were also found in DCM patients, again demonstrating
the feasibility of functional genomics approaches in zeb-
rafish to identify and characterize novel genes and path-
ways controlling the development and function of the
cardiovascular system. Interestingly and in contrast to
adult mammals, zebrafish retain the ability to fully re-
generate their hearts after injury throughout adulthood.
After acute cardiac damage, spared cardiomyocytes
de-differentiate, re-enter the cell-cycle, and proliferate to
replace the damaged myocardial tissue [35, 36], facts
that render the small animal model zebrafish an invalu-
able vertebrate system to decipher the genetic factors
and molecular mechanisms controlling heart regener-
ation. Nevertheless, similar to rodent animal models,
obvious and significant differences between zebrafish
and humans exist particularly in regard to cardiovascular
morphology and anatomy, physiology but also pathology.
In this context, large animal models of cardiovascular
disease such as dogs, pigs, sheep, goats or non-human
primates display a considerably higher cardiovascular
similarity to humans and thereby disease characteristics
more similar to human CVD [37]. Unfortunately, in con-
trast to small animal models, husbandry of large animal
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models is expensive, more complex and bulky. Addition-
ally, generation times are longer and litters usually
smaller provoking significantly increased study times to
reach adequate animal numbers and statistical power.
Particularly, the use of dogs and non-human primates in
basic biomedical research is increasingly declining due
to ethical aspects, although their cardiovascular anatomy
and physiology best resembles the human situation. The
large animal models most often used in cardiovascular
research are pigs since their cardiovascular system is
very similar to humans in regard to blood composition,
heart anatomy and size, lipid profiles and lipoprotein
metabolism [9]. Additionally, pigs exhibit spontaneous
atherosclerotic lesion development, demonstrating the
usefulness of pigs in studying the cellular and molecular
underpinnings of coronary artery disease [9, 37]. These
cardiovascular similarities between large animal models
and humans enable the effective translation of scientific
findings, however, significant challenges still exist to the
use of large animal models. Species-specific antibodies
and bioassays are rare and only few genetically manipu-
lated models such as transgenic or knock-out animals
are available to the scientific community.
Very recently, fundamental technical innovations were

made in terms of genome-editing approaches to generate
genetically modified animal models. As already men-
tioned before, Zinc-finger nucleases (ZFNs), TAL ef-
fector nucleases (TALENs) and especially the Clustered
Regularly Interspaced Short Palindromic Repeats
(CRISPR)/Cas9 system now enables scientists to pre-
cisely modify the genomes of virtually all cells, animals
and even humans [38, 39]. With these fundamental tech-
nical advancements tailored models, even large animal
models, can be generated and established that will mas-
sively enhance the field of cardiovascular research. Espe-
cially, the combination of generation of relevant and
tailored models of human cardiovascular disease and the
use of state-of-the-art “omics” technologies followed by
bioinformatic and systems biologic modeling will ultim-
ately foster effective drug discovery and the development
of targeted therapies for human cardiovascular diseases.

Cohort studies and biobanking
Epidemiological cohort studies and human biobanks
offer the basis to translate hypotheses or findings of ex-
perimental settings into humans. Cohort studies provide
the opportunity to study cardiovascular phenotypes over
time and a well-designed cohort study can provide
powerful results [40]. Prospective studies are carried out
from the present time into the future, whereas retro-
spective studies are carried out at the present time, but
look to the past to examine disease events and outcomes
[40]. One prominent example in the cardiovascular field
is the Framingham Heart Study (FHS), which was

initiated in 1948. The FHS is the longest running pro-
spective cohort study and through > 65 years of discov-
ery has contributed enormously to the understanding of
various cardiovascular risk factors and to how these
factors relate to the overall and cardiovascular-related
mortality [41, 42]. Various other epidemiological cohort
studies were implemented since then and have provided
additional information on cardiovascular disease risk
[43–47].
In the last decades, not only phenotypic data of the

study participants have been collected, also biospeci-
mens became an important resource in epidemiology.
Nowadays, large biobanks are an integral part of a
cohort’s infrastructure [48, 49] and build the basis for a
large part of the biomedical research. The main biospe-
cimens collected into these biobanks include blood sam-
ples, saliva, tonsil swaps, urine, feces, tear fluid, tissue
samples and biopsies, as well as genetic material. These
materials are suitable for modern molecular analysis and
consequently are critical for translating advances in mo-
lecular biology and technologies into improved human
health and provide new possibilities in the context of
systems medicine [49].

Public data sources, prior knowledge and data
integration
Using existing and/or newly generated data and prior
knowledge resources as a basis for further analysis is a
fundamental aspect to incrementally increase the scope
of systems medicine research and will be a major aspect
for data integration challenges in the years to come.
Many of the algorithms and approaches mentioned
below have already been proposed and/or applied in the
field of cardiovascular diseases e.g. [50–52].
Large consortia have collected and maintained cohorts

of matching clinical patient, animal model and omics
data (TCGA [53]; GEO [54], and ArrayExpress [55]) and
of cell line profiles (CCLE [56], and LINCS [57]). Avail-
able data include sequencing data for genomics and
transcriptomics, microarray mRNA and miRNA data as
well as mass spectrometry data for proteomic analyses
as well as many other “omics” data types. Table 1 lists a
number of well-known public omics data repositories.
Vast amounts of biomedical knowledge are available from

online databases. This ranges from genetic sequence infor-
mation on GenBank [58] to protein information on UniProt
[59] to various sites of knowledge on molecular interactions,
many of which are collected on the Pathguide.org website
[60], which currently lists over 600 resources related to bio-
logical pathway and interaction knowledge. The most prom-
inent pathway databases are Reactome [61], the Network
Data Exchange (NDEx) [62], the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [63], and WikiPathways [64]
as well as disease-specific databases such as the Online
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Mendelian Inheritance in Man (OMIM) resource [65]. Data-
bases focusing on molecular interactions include BioGRID
[66], IntAct [67] and STRING [68]. Further knowledge
sources include drug-target databases, which connect thera-
peutica and targeted proteins and disease-target databases,
which contain diseases known to be associated with specific
mutations. Table 2 lists a number of well-known databases
containing knowledge about molecular interactions.
Many of these databases can be integrated into the R

Framework for Statistical Computing. Examples for
software packages which offer functionality to integrate
database knowledge include the BioPAX-ontology [69],
Systems Biology Markup Language (SBML) [70], the
Human Proteome Organization (HUPO) Proteomics
Standards Initiative standard for Molecular Interactions
(HUPO PSI-MI) [71] and NDEx [72]. In combination with
mapping services, for example BioMart [73], these pack-
ages enable the integration and merging of prior know-
ledge for further analyses. Table 3 includes a number of
standards for encoding pathway knowledge and corre-
sponding software for the integration of this knowledge.

Methods for integrated data analyses
A large variety of methods for system medicine analyses
has been proposed. The aim of these methods is often to

classify data in order to provide conclusions towards a
diagnosis, treatment decisions, and patient prognosis or
towards clinical research hypotheses. The majority of the
methods in use are based on statistics and computer
science. This includes regression models (e.g. linear or
logistic regression), non-parametric statistics (e.g.
Wilcoxon-rank-sum [74] and the Kolmogorov-Smirnov
test [75] and time-to-event analyses (e.g. Cox Propor-
tional Hazard Ratio [76] from the field of statistics.
Examples for methods originating from the field of
computer-science are clustering (e.g. [77] and machine
learning algorithms (e.g. Support Vector Machines [78]
and neural networks [79]. Finally, some methods are
very much present in both fields, for example probabilis-
tic graphical models (e.g. Bayesian networks [80] and
Boolean networks [81].
While many of these basic methods for analyses and

modeling can be applied to any kind of omics analyses,
e.g. genomics, transcriptomics or proteomics, they are
often mixed and extended in order to account for the
heterogeneous data available in a clinical setting and to
integrate underlying biomedical knowledge. Integrating
multiple types of omics data, e.g. genome, epigenome,
transcriptome, proteome or metabolome for combined
analyses is often referred to as multi-level analysis.

Table 1 Overview about publicly available omic data resources

Name Description URL Reference

1000 Genomesproject The goal of the 1000 genomes project was to find
most genetic variants with frequencies of at least
1% in the populations studied

http://www.1000genomes.org

ArrayExpress Archive of functional genomics data stores data from
high-throughput functional genomics experiments

https://www.ebi.ac.uk/arrayexpress

GEO Gene
Expression Omnibus

Public functional genomics data repository supporting
MIAME-compliant data submissions. Tools are provided
to help users query and download experiments and
curated gene expression profiles

http://www.ncbi.nlm.nih.gov/geo

EBI Expression
Atlas

Gene expression patterns under different conditions.
Data sets are re-analyzed in-house to detect baseline
and differential expression patterns

https://www.ebi.ac.uk/gxa [103]

GXD The Mouse Gene
Expression Database

Collection of gene expression data in rodents. Focus
on development.

http://www.informatics.jax.org/expression.shtml [104]

TCGA – The Cancer
Genome Atlas

Aims to assess the value of large-scale multidimensional
analysis of molecular characteristics in human cancer
and to provide the data rapidly to the research
community.

https://gdc.cancer.gov/ [53]

LINCS - The Library of
Integrated Network-
Based Cellular Signatures

Aims to create a network-based holistic understanding
of biology by cataloging changes in gene expression
and other cellular processes upon perturbation.

https://clue.io/ [57]

CCLE - The Cancer Cell
Line Encyclopedia

A compilation of gene expression, chromosomal copy
number and sequencing data from 947 human cancer
cell lines with pharmacological profiles for 24 anticancer
drugs across 479 of the cell lines.

http://www.broadinstitute.org/ccle [56]

PRIDE – PRoteomics
IDEntifications

Repository for proteomics data, protein and peptide
identifications and post-translational modifications.

https://www.ebi.ac.uk/pride/archive [105]

COPaKB Proteome biology platform specifically for cardiovascular
research

http://www.heartproteome.org [106]
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Table 2 Overview of databases containing biomedical knowledge

Name Description URL Reference

Molecular Information

GenBank The NIH genetic sequence database, an
annotated collection of all publicly available
DNA sequences

http://www.ncbi.nlm.nih.gov/genbank/ [58]

UniProt Provide a comprehensive and freely accessible resource
of protein sequence and functional information.

http://www.uniprot.org/ [59]

Ensembl A genome browser for vertebrate genomes that
supports cross-species research in genomics, evolution,
sequence variation and transcriptional regulation.

http://www.ensembl.org/ [107]

Signaling Pathways

Reactome A free, open-source, curated and peer reviewed
pathway database.

http://reactome.org/ [61]

NDEx - the Network
Data Exchange

An online commons to upload, share, and publicly
distribute networks. Networks receive globally
unique accession IDs and can be stored for private
use, shared in pre-publication collaboration, or
released for public access. Includes Pathway
Interaction Database (NCI) and the Cancer Cell Maps
Initiative databases.

http://www.ndexbio.org [62]

WikiPathways A database of biological pathways maintained by and
for the scientific community using a wiki approach.

http://www.wikipathways.org [64]

Metabolic Pathways

MetaCyc Database of non-redundant, experimentally
elucidated metabolic pathways. It is curated
from the scientific experimental literature and
contains pathways involved in both primary
and secondary metabolism, as well as
associated compounds, enzymes, and genes

http://metacyc.org [108]

KEGG - Kyoto
Encyclopedia of Genes
and Genomes

KEGG includes graphical diagrams and data
of biochemical pathways including most of
the known metabolic pathways and some of
the known regulatory pathways.

[63]

Protein-Protein Interactions

IntAct – molecularinteractiondatabase Database system and analysis tools for molecular
interaction data derived from literature curation or
direct user submissions

http://www.ebi.ac.uk/intact [67]

BioGRID – biological general
repository for interaction datasets

Interaction repository with data compiled
through comprehensive curation, containing
protein and genetic interactions, chemical
associations and posttranslational modifications

http://thebiogrid.org [109]

STRING – protein–
proteininteractionnetworks

Database of known and predicted protein–
protein interactions, including direct (physical)
and indirect (functional) associations

http://string-db.org [68]

Other Interaction Knowledge

DrugBank Combines detailed drug data with comprehensive
drug target and drug action information

http://www.drugbank.ca/ [110]

PharmGKB - Pharmacogenetics
Knowledge Base

Contains genomic, phenotype and clinical
information collected from ongoing
pharmacogenetic studies

http://www.pharmgkb.org/ [111]

DiseaseConnect Comprehensive knowledge base on mechanism-based
disease connectivity

http://disease-connect.org/ [112]

Connectivity Map A resource that uses transcriptional expression
data to probe relationships between diseases,
cell physiology, and therapeutics.

https://clue.io/ [113]

OMIM - Online
MendelianInheritance
in Man

A comprehensive knowledge base of human genes
and genetic disorders compiled to support human
genetics research and education.

http://www.ncbi.nlm.nih.gov/omim/ [114]
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Furthermore, data of the same omics type across various
diseases or species can be combined as well as combin-
ing these two approaches – leading to multi-level and
cross-species or cross-disease integration and analysis.
These kind of combined analyses promise further in-
sights into a holistic understanding of the underlying
disease mechanisms. Often, the aim of these more com-
plex approaches is to enable a certain kind of validation
of a hypothesis on another omics-level or to allow a
generalization and specialization of prior findings in dif-
ferent diseases or model organisms.
A few of these approaches have already been proposed

and/or applied in the field of cardiovascular diseases, for
example by Huan and colleagues [50, 51], and Raffler et
al. [52].
A multi-level integration analyses on high blood pres-

sure (BP), one of the major cardiovascular risk factors,
had been conducted by Huan et al. [50, 51]. To identify
novel candidate genes involved in BP regulation, systems
approaches were applied by computationally combining
genetic, transcriptomic, and phenotype data. By this
analysis, 34 distinct genes were identified in relation to
BP, explaining 5–9% of BP variation. To further seek for
molecular key drivers of BP regulation, co-expression
networks were identified [50, 82], leading to different
sub-networks which have been connected by the SH2B
adaptor protein 3 (SH2B3). The role of SH2B3 in the de-
velopment of hypertension was investigated in Sh2b3−/−
mice in response to low-dose angiotensin II supplemen-
tation [83]. In untreated Sh2b3−/− mice, kidneys and
aortas of transgenic mice showed greater levels of
inflammation, oxidative stress, and glomerular injury.
After angiotensin II infusion these effects were acceler-
ated. A strong indication that the predominant effect of
SH2B3 on BP is mediated by hematopoietic cells, came
from experiments of bone marrow transplantations of

SH2b3−/− into wild-type which reproduced the hyper-
tensive phenotype. A subsequent study identified the
role of genes of the BP co-expression networks including
CRIP1 and showed that CRIP1 gene expression was
correlated to measures of cardiac hypertrophy and iden-
tified circulating CRIP1 protein levels as a potential
biomarker for increased risk for incident stroke, a sequel
of high BP [84].

Challenges and limitations in systems medicine
The investigation of complex changes and interactions
in the human body in an interdisciplinary team is one of
the main advantages of systems medicine. In parallel,
however, this is also one of the main challenges. Here,
we provide an overview of the main challenges that
needs to be considered (Fig. 3).

The translation from animal models to human
Animal models are an important resource of cardiac re-
search where a variety of cardiac processes and thera-
peutic targets can be studied. An ideal model system

Table 3 Overview of standards and tools for encoding and working with pathway knowledge

Name Description Reference Software Tools

BioPax A standard language to represent biological pathways
at the molecular and cellular level and to facilitate the
exchange of pathway data.

[69] Biopax [115]
Paxtools [116]

SBML - The Systems
Biology Markup Language

An XML-based format for representing biochemical
reaction networks. Software-independent language
for describing common models, including cell signaling
pathways, metabolic pathways, gene regulation, andothers.

[70] libSBML [117]

SBGN - The Systems
Biology Graphical Notation

A visual language to encode pathways in three different
granularities: process diagram, entity relationship diagram
and activity flow diagram.

[118] LibSBGN [119]

HUPO-PSI Molecular
Interaction format

A community standard data model for the representation
and exchange of protein interaction data. This data model
has been jointly developed by members of the Proteomics
Standards Initiative (PSI), a work group of the Human
Proteome Organization (HUPO).

[71] PSICQUIC [120]

Cytoscape Cyberinfrastructure
Network Interchange Format (CX)

A light weight REST-based aspect-oriented interchange
protocol for generic network data exchange.

[121] [122]

Fig. 3 Challenges in systems medicine
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would be inexpensive, easily manipulated, reproducible,
physiologically representative of human disease, and eth-
ically sound [23].
Nevertheless, research findings in animal models are

not always translatable into the human situation as most
animal models – in particular small animal models, are
somewhat artificial. Main reasons are that the metabol-
ism of animals differs from that in humans, that the
cardiovascular system of each animal has evolved diffe-
rently in order to meet the demands of that species and
that differences between the immune systems of animals
and humans are potential confounders of animal experi-
ments [85, 86]. Thus, depending on the cardiovascular
process being studied, the choice of animal model needs
to be considered carefully since it affects experimental
outcomes and whether findings of the study can be
reasonably translated to humans [85].
A first step to translate findings from small animal

models is the use of experimental settings in larger spe-
cies such as pigs or sheep. These large animal models
can reflect the human situation more closely [85]. None-
theless, the verification of findings in actual human
samples and tissues is the most favorable way to shed
further light onto translational applications for human
patients [85] and one of the aims in systems medicine.

Biobanks, big data management, quality and
IT-infrastructure
Epidemiological cohort studies including comprehensive
biobanks bear an enormous potential to study the under-
lying CVD pathophysiology and risk factors and thereby to
successfully translate experimental or computational hy-
pothesis into the clinical setting. In particular, the field of
biobanking has increased in the last decades, and is going
to be the largest ever library of biological materials [87].
Several challenges have evolved from the rapid rise of

biobanks. One important issue is that, so far, no
standardization of biospecimen handling, processing and
storage practices is in place. Many different protocols
and processes are used to collect, store, and analyze bio-
logical materials in biobanks. This poses a serious prob-
lem, as the quality of biospecimens and subsequently
data quality is affected. The increasing size of collected
biospecimens inevitably leads to large storage facilities
including freezers and liquid nitrogen tanks, and add-
itionally, to the need to replace manual protocols with
automation. This large amount of biospecimens comes
along with an incredible amount and complexity of data
which need to be securely-stored and managed in data
bases and subsequently, sufficiently quality-controlled.
Again, as the definition of system medicine states, hand-

ling and processing of biobanks cannot be achieved with-
out interdisciplinary collaboration and networking [87].

With the advent of high-throughput technologies, life sci-
entists need to cope with massive data sets, encountering
challenges with handling, processing, harmonizing and
moving/sharing information [88].
This challenge becomes even more prominent as omics

and other data sets, which are not easily human-
interpretable anymore, are increasingly generated in
everyday healthcare. Successfully integrating these big data
sources and developing an IT-infrastructure, which facili-
tates research as well as clinical routine, will be a major
stepping stone for systems medicine. Clinical routine will
require different levels of granularity of the information –
ranging from a short overview of the patient record in the
clinical information system up to an in-depth discussion
of potential therapies at a tumor board review [89] or to
inclusion for electronic decision support systems [90, 91].
Managing data and facilitating research will prove even
more complicated because of the added complexity based
on the integration of patient data, external omics data
repositories, external knowledge sources and software
frameworks for statistical analyses or machine learning ap-
proaches. Numerous approaches towards these challenges
are in development, including the open electronics health
records OpenEHR [91], the initiative “Informatics for Inte-
grating Biology and the Bedside” (i2b2) [92–94] including
the tranSMART software [94] and the cBioPortal for
Cancer Genomics [95].

Ethical considerations in systems medicine
Ethical considerations as well as issues of consenting
patients for systems research are subject of current
discussions worldwide. Because of the large number of
participants in epidemiological studies and the long-
term nature of these initiatives, traditional models of
consent are considered impractical. Therefore, consent
strategies have emerged that most often involve the use
of some form of broad or open consent [96] to cover the
multilevel assessment of personal, clinical and biological
data as well as the storage and use of data in the
biobanks [97].
Beside these considerations in terms of the use of data

from subjects of epidemiological cohorts and experimen-
tal origin, further issues need to be discussed when med-
ical informatics tools – e.g. electronic decision support
and medical informatics systems, in the future shall be
directly integrated and translated into clinical practice to
support patients care. [12, 98–100]. For example, is it
feasible that clinical decisions will be derived (only) from
computer algorithms? What about concerns related to
privacy, data protection and ownership of data?

Multidisciplinary and communication
In the future, many researcher will be working as part of
multidisciplinary teams [10]. This approach offers a wide
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range of perspectives and chances. Sharing expertise,
knowledge, and skills will broaden the view of each team
member and will have impact on their daily working.
Addressing a cardiovascular clinical question on an
interdisciplinary level will provide a more comprehen-
sive picture of the disease status for both, researchers
and clinicians and might guide decision-making pro-
cesses in the future, as already performed in oncological
tumor boards [101].
However, connecting experts in clinics, epidemiology,

statistics, bioinformatics, and molecular- and cell-biology
requires strategic efforts to motivate and sustain cross-
disciplinary collaborations [11] and to advance a common
“language” to better understand each other. A great and
immediate challenge is to solve issues that arise from
formal and legal requirements of data and biospecimen
collection and sharing. These challenges include the
development of new computational platforms for data
integration, data handling and flow of information, the
development of methodologies for statistical analyses of
heterogeneous data sets and the improvement of concepts
to integrate information across multiple levels (e.g. cell,
tissue, organ, body) and multiple disciplines [11, 102].
Finally, data sharing activities also implicate ethical and
legal issues related to data protection policies.

Perspectives
For an efficient and successful implementation of sys-
tems medicine in the cardiovascular field important keys
are: i) a sustained interplay and communication between
experts of multiple disciplines, ii) optimized usage of
resources and infrastructures to harmonize the environ-
mental setting and to efficiently share data, biomaterial
and knowledge, and iii) the extension of the research
beyond traditional domains of discovery and disease
etiology to accelerate translation into the clinics [10].
Major funding programs – publicly or private, need to

support several disciplines at the same time, and need to
invest in infrastructure. An integration of the industry into
the systems medicine workflow can be advantageous for
translating the knowledge into clinical trials. Additionally,
researchers needs to acknowledge and foster ethical and
data protection issues that inevitable evolve when working
interdisciplinary and in the clinical field in system medicine.
Also from an economics perspective, it will be crucial to

understand the costs and benefits of specific treatment
options or diagnostic tests such as genetic testing [97] or
by implementing electronic decision support.
What might be the next level of systems medicine in

cardiovascular research?
In one scenario we will see a disease-spanning integra-

tion of data from the cardiovascular field with data from
other chronic diseases to identify shared commonalities
of risk factors across several forms of diseases [10].
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