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Abstract

Background: Certain biological processes, such as the development of cancer and immune activation, can be
controlled by rare cellular events that are difficult to capture computationally through simulations of individual cells.
Information about such rare events can be gleaned from an attractor analysis, for which a variety of methods exist (in
particular for Boolean models). However, explicitly simulating a defined mixed population of cells in a way that tracks
even the rarest subpopulations remains an open challenge.

Results: Here we show that when cellular states are described using a Boolean network model, one can exactly
simulate the dynamics of non-interacting, highly heterogeneous populations directly, without having to model the
various subpopulations. This strategy captures even the rarest outcomes of the model with no sampling error. Our
method can incorporate heterogeneity in both cell state and, by augmenting the model, the underlying rules of the
network as well (e.g., introducing loss-of-function genetic alterations). We demonstrate our method by using it to
simulate a heterogeneous population of Boolean networks modeling the T-cell receptor, spanning ∼1020 distinct
cellular states and mutational profiles.

Conclusions: We have developed a method for using Boolean models to perform a population-level simulation, in
which the population consists of non-interacting individuals existing in different states. This approach can be used
even when there are far too many distinct subpopulations to model individually.
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Background
Computer models are widely used to predict behaviors of
biological systems, generally by simulating a number of
instances of a model and enumerating the observed out-
comes. Comprehensive simulations of single cells may be
realistic given recent progress in constructing elaborate
cellular models [1, 2], but simulation of an entire tissue is
far more difficult owing to the vast number of cells, cell
types, and their interactions.
As a step towards tissue-scale modeling of cells, we

consider the problem of simulating large and heteroge-
neous populations of non-interacting cells. That is, we
wish to model the wide variety of cellular states and
dynamics experienced by a heterogeneous population of
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cells in isolation from each other. The output of the
approach we propose will be the frequency with which
certain events happen over time in a large population.
This result could be obtained by averaging a large number
of traditional single-cell simulations spanning the entire
population, but in extremely heterogeneous populations
it becomes infeasible to simulate each distinct subpopula-
tion, in which case the traditional recourse is to estimate
the population statistics by Monte Carlo (random sam-
pling) [3]. By design, the basic random sampling proce-
dure captures typical outcomes of these simulations, and
only rarely finds atypical occurrences. Yet some biologi-
cal processes are determined by outliers [4], such as the
initiation and development of cancerous cells [5–7] or
immune cell clonal selection [8]. If something is known
about the circumstances leading to a rare outcome, one
can bias Monte Carlo to oversample that outcome and
then correct for the biased sampling (a strategy known
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as importance sampling [9]), but oversampling inevitably
introduces sampling biases.
Here we propose an alternative, exact method for simu-

lating heterogeneous populations, which takes advantage
of the observation that discrete models have a finite set
of possible states. For these models, one can write the
instantaneous state of some individual within the popu-
lation (i.e. a single instance of a Boolean network) using
a vector b(α) that has an entry for every possible state,
where we place a 1 in the position corresponding to state
α of the individual and a 0 everywhere else. Assuming
deterministic dynamics, the time evolution of this indi-
vidual can then be written as a linear (matrix) operator
Fb, so that the time evolution to a different state β occurs
via repeated matrix multiplications of the state vector:
b(β)(t) = Ft−t0

b b(α)(t0) where t0 and t are integer time
steps. This approach is always possible in principle for
discrete systems, even when it is too computationally
expensive to be feasible in practice.
The usefulness of a linear representation is that the same

equations that simulate an individual automatically gener-
alize to simulating arbitrary mixed populations of individ-
uals in different states. The basic idea, illustrated in Fig. 1,
is that a population-averaged vector 〈b〉 = ∑

α wαb(α)

evolves according to the same time evolution operator Fb
as does a vector representing an individual, owing to the
superposition property of linear systems. We will exploit
this fact when we derive a time evolution operator using
an algebra tailored for an individual, and then repurpose
that operator to simulate mixed populations.
The obvious drawback of the linear method of time evo-

lution is the typically huge number of states in a given

system, causing both the state vector b and the time
evolution operator Fb to be infeasibly large. For exam-
ple, Boolean networks are a class of simple models built
entirely from ON/OFF variables, yet even these models
have an exponential number of states (2N for N Boolean
variables in the model). A linear representation of the
dynamics is usually only feasible if one looks at a small
subspace of the full linear space – i.e. considers only a
small subset of the possible set of states of the model.
However, this strategy is incompatible with our interest in
simulating massively heterogeneous populations: a simu-
lation involving ns subpopulations necessarily involves at
least ns nonzero entries in both the state vector for the
population 〈b〉 and in the time evolution matrix opera-
tor Fb. Under this proportional scaling with heterogeneity,
a linear representation of the system offers no computa-
tional improvement over simple enumerative simulation
of each individual subpopulation.
Our proposed solution to the problem of proportional

scaling with heterogeneity is to change linear basis from
the state basis b to a new basis x in which the size of the
subspace of interest scales independently of the hetero-
geneity of the mixed population. (The full spaces of b and
x are necessarily of the same size.) Specifically, the goal of
this paper is to introduce a linear basis for Boolean vari-
ables that we term a ‘product basis’, and give a prescription
for calculating the time evolution operator in this basis.
Within the Boolean framework, the product basis method
is very general, applying to deterministic Boolean mod-
els [10], as well as probabilistic [11] and continuous-time
[12] Boolean models in the large population limit. Note
that although we assume a synchronous updating rule

Fig. 1 A population-level simulation. The plot shows how the population fractions displaying activation of variable A and variable A ∧ B evolve over
time when the individuals in the population have heterogeneous states. No information about the substructure of the population is lost in the
averaging process when one takes into account higher-order correlations (such as A ∧ B)
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for all variables in the model, this is without loss of
generality because an asynchronous network can be mod-
eled as a probabilistic network with synchronous time
steps [13].
By way of comparison, we note the significant

advances that have been made in analyzing the possi-
ble long-term outcomes, or attractors (steady states and
limit cycles), of Boolean models [10, 14–22]. Attractors
have been found using network reduction algorithms
that find simple networks encoding the long-term
behavior of more complex networks [14, 16, 23],
methods that solve steady states as zeros of a poly-
nomial equation [24], SAT methods [18, 19, 25],
and binary decision diagrams [20, 21, 26] (the introduc-
tion of [15] provides a review of these techniques). These
techniques differ from our proposed method in that they
focus on possible long-term behaviors, whereas ours gives
an explicit population-averaged simulation of a defined
starting population. While our method does have the abil-
ity to generate long-term dynamical equations that can be
used to find attractors (see Additional file 1: Appendix 2),
it differs in that it finds the attractors of a set of variables
of interest, not the attractors of the complete state.
We first derive the procedure for calculating a product

basis simulation to track transient and long term model
behaviors. Initially we consider simulations of individu-
als, defined throughout this work as single instances of
a Boolean network; then we use the same mathematics
to directly simulate mixed populations of individuals in
many different states. A toy example calculation is given
to illustrate the mathematics. Finally, we demonstrate an
application of our method by using it to simulate a large
heterogeneous population of individuals whose dynamics
is described by a published T-cell network [27].

Methods
Here we consider a Boolean network model that consists
of N variables, which updates its state at each time step
using a deterministic update rule. Initially we will focus on
individuals described by this model, whose instantaneous
state is described by Boolean values for model variables
B1,B2 . . .BN which evolve according to the rules of the
model. We index these model variables using Roman let-
ters (e.g., i, j, . . . ), and use Greek letters (e.g., α,β , . . . ) to
refer to subsets of the model variables. For each possible
subset of model variables α = {i, j, . . . }, there is a unique
state basis variable bα (which we sometimes write as bij...)
and a unique product basis variable xα = xij..., which we
formally define below. We consider the state basis vari-
ables to be the components of a vector b, and the product
basis variables to be components of vector x. There are
2N subsets of all N Boolean model variables (including
both the set θ of all model variables and the empty subset
denoted ∅), so both b and x are vectors of length 2N .

Definition 1 Consider a Boolean model composed of a
set of Boolean variables θ , where Bi represents the state of
model variable i ∈ θ ; Bi = 1 for ON and Bi = 0 for OFF.
If κ is the set of ON variables describing the instantaneous
state of some individual, then the values of the state space
and product space variables describing the state of that
individual, indexed by subset α, are defined by:

bα =
(

∏

i∈α

Bi

)

·
⎛

⎝
∏

i∈(θ\α)

(1 − Bi)

⎞

⎠ =
{
1 if α = κ

0 otherwise

xα =
∏

i∈α

Bi =
{
1 if α ⊆ κ

0 otherwise.

The empty product x∅ equals 1. The fact that each xα

is a simple product of model variables motivates the ter-
minology ‘product basis’. As shown in Additional file 1:
Appendix 1, a product basis vector x is a fully equivalent
representation of a mixed population to the state basis
vector b.

Simulations of mixed populations
We build our simulations by selecting a set of product
basis variables of interest and associating an update rule
fα with each variable xα so that xα(t + 1) = fα(x(t))
(the exception being the case of continuous-time Boolean
networks in which fα = dxα/dt, but we will treat those
separately later).We construct the simulation in two steps.
The first step is to build the single-index update rules fi
(i.e. α = {i}) over all model variables i, by enumeration
of their input states. The second step is to build certain
multi-index update rules fij... as needed until the system
of equations closes (i.e. until we have solved for each fα
corresponding to a variable xα appearing in another time
evolution equation fβ ). To begin with, we show how to
build the change-of-basis operator T that converts state
space basis vectors to product space basis vectors through
the formula x = T · b.

Algorithm 1 (Constructing a change-of-basis matrix)
Consider any set θ ′ containing n ≤ N of the model vari-
ables, for which κ and α denote subsets. Define T (n) as the
change-of-basis matrix that converts a length-2n b vector
indexed by κ to a length-2n x vector indexed by α, and let
T (n)

ακ denote the matrix element projecting bκ onto xα . We
construct T (n) by assigning a 1 to each matrix element T (n)

ακ

for which α ⊆ κ , and 0 to all other elements.

Proof Consider the state vector b(κ) whose entries are all
0 except for a 1 in the position corresponding to state κ ,
which describes an individual in state κ . The product basis
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representation x of this individual is found by multiply-
ing xα = ∑

γ⊆θ ′ T (n)
αγ bγ = T (n)

ακ ; thus x equals the column
of the change-of-basis matrix that multiplies bκ . Using
Definition 1, the value of the product basis variable xα ,
corresponding to matrix element T (n)

ακ , is 1 if α ⊆ κ and 0
otherwise.

We can now provide a procedure for calculating the sin-
gle variable update rules fi. To do so, we consider only the
relatively small subset of variable i’s inputs, rather than
the full set of model variables. We use a superscript [i] to
denote quantities pertaining to the input subset; thus we
defineN [i] as the number of inputs to model variable i, θ [i]
as the set of those input variables, b[i] = {bρ | ρ ⊆ θ [i]}
as the state space of input variables, and x[i] = {xρ |
ρ ⊆ θ [i]} as the corresponding product space. In biological
networks, N [i] is usually small enough that we can explic-
itly write the change-of-basis operator T

(
N [i]) in this space

using Algorithm 1.

Algorithm 2 (Computing fi) Define k[i] as a row vector
such that k[i]α is 1 if the pattern of Boolean inputs b[i]α pro-
duces a 1 in output variable i, and 0 otherwise. Then fi =
k[i]

(
T

(
N [i])

)−1
x[i], which is a linear equation in x[i] ⊆ x.

Proof By definition fi = k[i] · b[i], as this expression
reproduces the output rule. Using the fact that T

(
N [i])

is invertible (proved in Additional file 1: Appendix 1),
we write fi = k[i]

(
T

(
N [i])

)−1
T

(
N [i])b[i] and note that

T (N [i])b[i] = x[i], which proves the formula.

Using the set of single-index fi, one can compute the
linear time evolution function of any multi-index product
basis variable fij... using the following method.

Algorithm 3 (Computing fij...) First compute fα for α =
{i, j, . . . } as fα ← fi(x) · fj(x) · . . . (expressed in terms of
x-basis variables). Next, distribute each term inside the
product, so that fα is a weighted sum of products of x-basis
variables, and replace each nonlinear product of terms
xβ ·xγ · . . . appearing inside fα with the product basis vari-
able xμ where μ = β ∪γ ∪· · · . This gives an expression for
fα that is linear in x.

Proof First we show that fα = fij... equals the product
fi · fj · . . . :

fij...(t) = xij...(t + 1)
= xi(t + 1) · xj(t + 1) · . . .

= fi(t) · fj(t) · . . .

= fi · fj · . . .

where the last line emphasizes that there is no time depen-
dence in fij....
The second step is to show that each xβ · xγ · . . . equals

xβ∪γ∪.... Let k, l, . . . be the elements of μ = β ∪ γ ∪ . . . ;
then xβ · xγ · . . . = xpkk · xpll · . . . where pk , pl, · · · ≥ 1 are
the respective number of times k, l, . . . appear in β , γ , · · · .
Since all xi are Boolean variables, we have xpi = xi for any
p ≥ 1. Thus xβ · xγ · . . . = xk · xl · . . . = xμ.

Using Algorithms 2 and 3, we can give the full procedure
for building a simulation that time evolves any arbitrary
set of product basis variables of interest describing some
individual modeled by the Boolean rules. We denote the
set of product variables of interest as �0; note that each
element of �0 is itself a set of indices over model vari-
ables. Our algorithm constructs fα for each α ∈ �0, then
additional fβ to evolve each xβ that appears in the formula
for fα , etc. until the equations form a closed system (i.e.
there is an update rule for every product basis variable
appearing in the system of equations).

Algorithm 4 (Building a product basis simulation) First
compute the full set of single-index fi using Algorithm 2.
Next, initialize the total set of required product basis vari-
ables� ← �0, and the set of product basis variables whose
dynamics we have solved �S ← ∅. Finally, iteratively solve
fα for each α ∈ �\�S using Algorithm 3, while updating
�S ← �S ∪ {α} and � ← � ∪ {μ} for each variable xμ

appearing in the formula for fα . Iteration continues until
�S = �.

Proof We first note that � eventually converges to a
finite set owing to the fact that the number of variables
|θ | is finite, and that � ⊆ θ never loses elements of
θ at each iterative step. Since a) �S ⊆ �, b) �S accu-
mulates one term in �\�S at each iterative step, and c)
� converges, the algorithm always ends in a finite num-
ber of steps. When the algorithm terminates, the set of
solved variables �S equals the set of variables � appear-
ing in the equations, so the resulting system of equations
is closed.

Writing our final closed system of linear equations as
a square matrix F, we have a very simple update rule for
simulations using the product basis variables: x(t + 1) =
F · x(t).
Our final step is to generalize to a mixed-population

simulation.

Definition 2 Define a population-level state vector 〈x〉
as a population-weighted linear combination of the state
vectors of the subpopulations x(α):

〈x〉 (t) :=
∑

α

wαx(α)(t) (1)
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where the weighting factors wα are proportional to the
occurrence of subpopulations α in the overall mixed
population.

Note that we are free to choose the normalization con-
stant W = ∑

α wα . In all of our examples, we will choose
W = 1, leading to the interpretation that wα is the frac-
tion of the population in state α. Irrespective of the choice
of W, this representation can be used to evolve mixed
populations over time using our existing operators.

Claim 1 Each element 〈xα〉 of the vector 〈x〉 is propor-
tional to the overall occurrence of individuals having xα =
1 in the mixed population. For W = 1, 〈xα〉 is the fraction
of the population having xα = 1.

Proof Equation 1 is the definition of a weighted average
of x, whose weighting factors w are proportional to the
population fraction.

Claim 2 Our linear operator F that evolves any arbitrary
state of an individual xα over time also correctly evolves
the state of any arbitrary mixed population 〈x〉 over time.

Proof This Claim follows from the fact that F commutes
with the sum over subpopulations:

〈x〉 (t) =
∑

α

wαFt−t0x(α)(t0)

= Ft−t0
∑

α

wαx(α)(t0)

= Ft−t0 〈x〉 (t0). (2)

Thus, the time evolution operator F produced by
Algorithm 4 correctly evolves the mean occurrence of
variables 〈x〉 over time in any mixed population, despite
the fact that this operator was derived for an x that
describes an individual (notably in assuming that each xα

is Boolean).

Example 1: building equations
Consider themodel shown in Fig. 2, whose Booleanmodel
variables update according to the following rules:

A(t + 1) = B(t)
B(t + 1) = A(t) ∧ C(t)
C(t + 1) = A(t) ∨ B(t).

To build a product basis simulation, we first compute
the change-of-basis matrices that will be used to com-
pute the single-variable update rules fA, fB and fC . Variable
A takes input from the single variable B, so calculat-
ing fA requires the change-of-basis matrix T (1). Ordering

Fig. 2 A 3-node Boolean network. The network used in Example 1.
Arrows indicate the update rules for each variable: for example if
either A or B is ON at time t then C will be ON at time t + 1; otherwise
C will be OFF

the elements by the subscripts (∅,B) respectively, and
applying Algorithm 1, we obtain

T (1) =
[
1 1
0 1

]

.

Variables B and C each take input from two variables.
Ordering B’s input states (∅,A,C,AC), andC’s input states
(∅,A,B,AB), we find that both fB and fC are computed
using

T (2) =

⎡

⎢
⎢
⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤

⎥
⎥
⎦ .

Next, we build the single-index update functions. Vari-
able A takes input only from variable B, so the possible
patterns of active inputs are (∅,B)�, corresponding to the
state basis variables

(
b[A]∅ , b[A]B

)�
. The respective outputs

are (1, 0) = k[A] due to the NOT gate, from which we can
immediately calculate fA using Algorithm 2:

fA = k[A]
(
T (1)

)−1
[
x∅
xB

]

= [
1 0

]
[
1 −1
0 1

] [
x∅
xB

]

= x∅ − xB. (3)

In the same way we find that the input patterns
(
∅, b[B]A , b[B]C , b[B]AC

)�
to variable B lead to outputs k[B] =

(0, 0, 0, 1), and the input patterns
(
∅, b[C]A , b[C]B , b[C]AB

)�
to

variable C lead to outputs k[C] = (0, 1, 1, 1). Using these
together with T (2) we compute:
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fB = [
0 0 0 1

]

⎡

⎢
⎢
⎣

1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x∅
xA
xC
xAC

⎤

⎥
⎥
⎦

= xAC (4)

fC = [
0 1 1 1

]

⎡

⎢
⎢
⎣

1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x∅
xA
xB
xAB

⎤

⎥
⎥
⎦

= xA + xB − xAB.

Having built the single-index update functions, we can
now derive a linear system that tracks the time evolu-
tion of any set of product variables that we aim to follow.
Suppose we wish to follow the time evolution of vari-
able xA, corresponding to the activity (or mean activity at
the population level) of the Boolean model variable BA.
The immediate equation for this purpose is fA, which we
already derived (Eq. 3), but since it involves xB and x∅, our
simulation must also track those variables through time
using Eq. 4 along with

f∅ = x∅. (5)

Equation 4 requires that we track a new multi-index
variable xAC , requiring us to solve fAC using Algorithm 3:

fAC = (1 − xB) · (xA + xB − xAB)

= xA + xB − xAB − xAB − xB + xAB
= xA − xAB. (6)

We continue the process of identifying new variables
and solving for their update functions until the equations
form a closed system:

fAB = (1 − xB) · (xAC)

= xAC − xABC (7)
fABC = (1 − xB) · (xAC) · (xA + xB − xAB)

= xAC − xABC . (8)

Equations 3-8, together with initial values for xA, xB,
xAC , xAB and xABC , describe the time evolution of these
quantities in an individual Boolean network as a sequence
of 0s and 1s in each variable. The final step is to reinterpret
these equations as describing the dynamics of a mixed
population, formally by taking the mean of both sides of
each equation:

f〈A〉 = 〈x∅〉 − 〈xB〉 (3b)
f〈B〉 = 〈xAC〉 (4b)
f〈∅〉 = 〈x∅〉 (5b)

f〈AC〉 = 〈xA〉 − 〈xAB〉 (6b)
f〈AB〉 = 〈xAC〉 − 〈xABC〉 (7b)

f〈ABC〉 = 〈xAC〉 − 〈xABC〉 . (8b)

The angle-brackets denote an average, and we have
used the notation 〈xi(t + 1)〉 = f〈i〉. Per Claim 2, the lin-
ear equations are unaffected by the averaging process, so
the same equations used to derive the dynamics of an
individual also describe the mean values of those same
variables in a mixed population. Whereas the product
basis variables take on binary values for an individual,
the population-averaged variables are real-valued on the
interval [0, 1] (using our recommended normalization in
Claim 1). For example, we would set 〈xA〉 = 0.4 if gene A
is ON in 40% of the population.

Probabilistic and asynchronous Boolean networks
The product basis method can be applied to probabilis-
tic Boolean networks (PBNs) [11, 28], in which several
state transitions are possible at each time step with differ-
ent probabilities. As we will show, our algorithm works in
the large-population limit for which time evolution of the
average state 〈x〉 is essentially deterministic, despite the
fact that each individual PBN is stochastic.
Applying our method to PBNs requires that we reinter-

pret the meaning of the time evolution equations. For an
individual we write:

p(x(t + 1)) = F · x(t) (9)

where p(·) denotes the probability of an outcome. The
product basis method still works with this new inter-
pretation of the time evolution operator F, although we
note several changes to the logic. First, in Algorithm 2
we generalize each k[i] to be a vector of likelihoods that
each respective input pattern produces a 1 in the out-
put variable, so that fi = k[i] · b[i] as before. Second,
the multiplication rule used in Algorithm 3 still holds
if updated to read pxij... = p(xi)p(xj) . . . , owing to the
independence of outcomes p(xi), p(xj), etc. Third, we
point out that although p(x) is real-valued, the state of
an individual x is still binary, so xp≥1

α = xα as before
(Algorithm 3).
Despite the fact that our algorithm produces valid prod-

uct basis equations of the form of Eq. 9, the resulting
linear system of equations does not form a closed sys-
tem, simply because the left-hand side uses different
variables than the right (p(x) versus x). Ourmethod there-
fore cannot be used to simulate an individual instance
of a PBN. However, by averaging both sides and taking
the large-population limit so that p(x) → 〈x〉, the sys-
tem closes and reproduces Eq. 2. Thus, our system of
equations accurately tracks the deterministic dynamics
of arbitrary mixed populations of PBNs in the infinite-
population limit, despite being unable to model stochastic
individuals.
Large populations of asynchronous networks behave

identically to large populations of PBNs [13] if we define
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a uniform time step: the probabilities of the various pos-
sible updates over that time step give the state tran-
sition weights in the corresponding synchronous PBN.
If this time step is small enough, then the likelihood
of two causally-connected asynchronous updates hap-
pening in the same step is small, and in this limit the
local update rules for a PBN accurately model the asyn-
chronous network. Therefore our analysis also applies
to large populations of asynchronous networks for small
time steps.

Continuous-time Boolean networks Probabilistic net-
works give one way to incorporate rate information into
our model; another way is to work in continuous time
using differential equations [12]: fA = dxA/dt. The dif-
ferential form does require one change in our method:
the rate of change of a higher-order variable is found by
using the product rule of derivatives. Whereas under a
discrete update fABC... is the product fA · fB · fC · . . . , for the
differential case we compute:

fABC... = d
dt

(xAxBxC . . . )

= xBxC . . . fA + xAxC . . . fB + · · · . (10)

Also, under discrete updates, the trivial function is
f∅ = 1, but with differential updates it is f∅ = 0.

Results
Product basis equations recapitulate Monte Carlo
simulations We tested the product basis method using
104 randomly generated 10-node deterministic networks,
where each node took input from 1-4 randomly selected
nodes using randomly generated logic rules (∼ 25 edges
per network). For each network, we ran 100 Monte Carlo
individual simulations using a random ensemble of initial
states (equal probability for all states), and compared the
population average ofmodel variables with a product basis
simulation using the same starting population. In each
case, the product basis simulation reproduced the aver-
age of theMonte Carlo simulations. Next, we ran 104 tests
of probabilistic networks (PBNs), again using 100 Monte
Carlo runs per test. In order to generate realistic PBNs, we
augmented the original time evolution functions fi with
random rate parameters ri on the interval 0 ≤ ri ≤ 1, lead-
ing to the equations f ′

i ← (1−ri)xi+rifi for 0 ≤ ri ≤ 1. The
rate parameters control the fraction of an update taken
over a time step: a small value of ri means xi changes little
over a single time step (reflecting a slow process), whereas
ri = 1 reproduces the update rule of a deterministic net-
work. As we found with the discrete Boolean networks,
the equations of the product basis method reproduced the
results of Monte Carlo simulations, this time to within
sampling error, which is proportional to 1/√nruns.

Finally, we tested 2.5 × 103 continuous-time networks
generated using the same rule, and again found com-
plete agreement with Monte Carlo. We tested fewer
continuous-time networks because they took consider-
ably longer to run, owing to the need to integrate differen-
tial equations (for both the product basis simulations and
their Monte Carlo comparisons).

Product basis method can simulate highly heteroge-
neous populations beyond the scope of Monte Carlo
To demonstrate the product basis method on very hetero-
geneous populations, we applied it to the T-cell activation
network described in Figure 10 and Table 2 of [27], which
we have re-illustrated in Fig. 3a. The T-cell network is
a deterministic, 40-node network with multiple feedback
loops and whose attractors include both steady states and
limit cycles. For demonstration purposes, we show a tra-
ditional Monte Carlo simulation of an individualmodeled
by the T-cell network in Fig. 3b, obtained by choosing
an initial Boolean state and applying the model rules
over each successive time step. This particular simulation
shows transient (nonrepeating) behavior for the first 10
time steps, leading to a limit cycle with a repeating period
of 6 time steps.
Next, we performed a population-level simulation using

the product basis method. We opted to track the time
evolution of three downstream variables in the model:
cyclic-AMP response element (CRE) mediated gene
activation, the AP1 (Activating protein 1) transcription
factor, and their co-occurrence whose variable we label
CRE ∧ AP1. To perform this simulation, we initialized
Algorithm 4 using product basis variables representing
these quantities:

�0 = {xA, xB, xAB}.

Here we use A to denote AP1 and B to denote CRE
(boldface letters in Fig. 3a). CRE and AP1 were chosen
for demonstration purposes because they lie at the down-
stream ends of two separate branches of the network,
which taken together are influenced by 33 of the 40 vari-
ables in the model. The co-occurrence variable was not
redundant: although CRE ∧ AP1 is simply the product of
the Boolean states of CRE and AP1 in an individual, this is
not true at the population level. For example if the levels
of CRE and AP1 are both 0.5, then the level of CRE ∧ AP1
could equal 0.25 if CRE and AP1 states are uncorrelated
in the population, 0 if they are perfectly anticorrelated, 0.5
if they are perfectly correlated, or any other value on the
interval [0, 0.5].
Next, we ran the product basis method to generate

the time evolution equations. The resulting system of
equations included our three variables of interest, along
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Fig. 3 Simulation of a heterogeneous population of T-cell networks. a Boolean model of a T-cell activation, introduced in [27]. Model variables
correspond to blue nodes; red nodes are introduced to describe loss-of-function alterations of the network. Model variables used in the example
equations in the text are given boldface letters corresponding to their subscripts. b Time evolution of one individual modeled by the T-cell network,
starting from a random initial state. White/black rectangles signify OFF/ON Boolean states. c Time evolution of the population fraction having
activated CRE elements and/or expressing the transcription factor AP1 in a heterogeneous population of T-cell networks, computed using a product
basis calculation. The heterogeneous population begins at t = 0 as a uniform mixture of all possible 233 ≈ 1010 initial states of the upstream
portion of the model. d The effect of a 10−4 knock-out mutation rate per gene in the heterogeneous population. Monte Carlo, but not the product
basis calculation, required this high rate of mutations in order to detect persistent coactivation of CRE and AP1. e The co-occurrence of CRE
activation and AP1 expression in mutated networks shown on a log10 scale (dotted red line), compared with the amount of this coexpression
coincident with mutated cCbl (purple dots). The mutated fraction was computed by subtracting the time series of CRE ∧ AP1 ∧ WT-cCbl from the
time series of CRE ∧ AP1

with 1049 other variables that were added in the process
of closing the system of equations; accordingly, the full
time evolution operator was a 1052-square matrix. A
typical ‘ladder’ of time evolution equations governing a
quantity of interest, in this case the mean activity level
of CRE ∧ AP1 in the population denoted by variable xAB,
begins with the equations:

fAB = xCDE
fCDE = xFGH
fFGH = xHJK
fHJK = xKLM
fKLM = xMPQ
fMPQ = xQRS + xQSU − xQRSU

. . .
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where C,D, . . . correspond to upstream nodes Fos, Jun,
etc., as indicated in Fig. 3a. The first few equations are
quite simple in the product basis because of the simple
feedforward nature of the terminal portion of the net-
work, although they get much more complicated further
upstream. This simplification would not be possible in
the state basis, illustrating a strength of our approach.
The list of equations we show was truncated by necessity:
976 variables with their respective 976 update rules are
required to specify the time evolution of CRE ∧ AP1.
(The other 76 variables in the 1052-variable system are
involved in specifying the time evolution of CRE or AP1
individually but not their co-occurrence.)
After generating the product basis time evolution

equations, we set the model variables to an initial state
representing a mixed population, then used the time evo-
lution equations to track the population level average of
each of the three variables for 50 time steps (Fig. 3c). We
stress that this is an exact result, with no sampling error.
The starting population we considered was a uniform
mixture of all possible 240 initial states of the Boolean net-
work, but because 7 of these variables are not upstream
of either CRE or AP1 (see shaded region in Fig. 3a), we
consider our effective initial population size to be 233 ≈
1010. At this level of diversity, it would require extensive
computation to reproduce our exact result by exhaustive
enumeration over the initial states.
Next, we demonstrated the ability of the product basis

method to analyze loss-of-function genetic alterations,
encompassing copy number loss, insertions, deletions,
SNPs, etc. To allow every possible genetic alteration in
the population, we added a set of ‘wild-type’ variables to
the network, one for each original model variable, and
included the wild-type variables in the update rules using
an AND operation. For example, an update rule reading
[A ← B ∨ C] became

[
A ← (B ∨ C) ∧ AWT]

. Note that
the presence of the wild-type variables effectively doubles
the size of the network and thus vastly increases the het-
erogeneity, which is determined by both the number of
activation states of the original variables and the num-
ber of mutational profiles, in total spanning the order of
1020 different subpopulations, compared to 1010 without
genetic alterations. Enumeration over the initial states is
impossible at this level of diversity, and the traditional
solution is a sparse samplingmethod such asMonte Carlo,
which lacks the ability to resolve very rare subpopulations.
Despite the massive heterogeneity of the genetically

altered population, we were successfully able to use our
product basis method to construct the exact time evolu-
tion equations for CRE, AP1 and CRE ∧ AP1 as before.
This time we focused on CRE ∧ AP1 (i.e. �0 = {xAB})
to more clearly show the comparison with Monte Carlo.
Solving for the time evolution of CRE ∧ AP1 involved the
addition of 18,957 variables beyond xAB, requiring a much

larger time evolution operator than before (a 18, 9582
element matrix). These new time evolution equations
depend on the genetic alteration state of the system
through the presence of wild-type variable subscripts, as
we illustrate below by listing the first few equations gov-
erning the dynamics of xAB. For brevity, these equations
use a tilde to denote the wild-type variables: for example
xÃ gives the state of the wild-type variable AWT.

fAB = xCDEÃB̃
fCDEÃB̃ = xFGHÃB̃C̃D̃Ẽ

fFGHÃB̃C̃D̃Ẽ = xHJKÃB̃C̃D̃ẼF̃G̃H̃

fHJKÃB̃C̃D̃ẼF̃G̃H̃ = xKLMÃB̃C̃D̃ẼF̃G̃H̃J̃K̃

fKLMÃB̃C̃D̃ẼF̃G̃H̃J̃K̃ = xMPQÃB̃C̃D̃ẼF̃G̃H̃J̃K̃ L̃M̃

fMPQÃB̃C̃D̃ẼF̃G̃H̃J̃K̃ L̃M̃ = xQRSÃB̃C̃D̃ẼF̃G̃H̃J̃K̃ L̃M̃P̃Q̃

+ xQSUÃB̃C̃D̃ẼF̃G̃H̃J̃K̃ L̃M̃P̃Q̃

− xQRSUÃB̃C̃D̃ẼF̃G̃H̃J̃K̃ L̃M̃P̃Q̃

. . .

In order to explicitly simulate a genetically altered pop-
ulation, we chose an initial state containing each possible
combination of loss-of-function alterations at a 0.01%
mutation rate per variable (roughly the highest possible
rate of homozygous losses-of-function given a 1%-per-
gene-locus mutation rate [29]), as well as the uniform
mixture of each activation state that we considered with
the previous simulation (adjusted so that mutated genes
always began OFF). From this initial state, we again fol-
lowed the exact time course of the CRE ∧ AP1 popula-
tion fraction, and compared it to our original wild-type
result (Fig. 3d). Notably, a small fraction of the population
0.0025% reached a steady state showing both CRE acti-
vation and AP1 expression. We also validated the result
(to within statistical error) using Monte Carlo, although
as shown in Fig. 3d, Monte Carlo was only useful for
comparing the early transient behavior, not the rare sub-
populations that persisted at late time at levels as low as
0.00015%.
Finally, we examined the mutations leading to CRE ∧

AP1 coexpression. We hypothesized that this was due to
loss of cCbl in the recurrent core of this network. We
tested this hypothesis by generating the time course of
the three-way co-occurrence of CRE ∧ AP1 ∧ WT-cCbl,
whereWT denotes the respective wild-type variable. This
final time series dropped to exactly zero at steady state,
indicating that loss of cCbl is necessary for persistent CRE
∧ AP1 coexpression (see Fig. 3e), and that absolutely no
other set of loss-of-function alterations could recapitulate
this phenotype.
Our results from the T-cell network demonstrate sev-

eral important aspects of our method. First, we are able to
simulate extremely heterogeneous populations, involving
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far more subpopulations than could be analyzed indi-
vidually. Second, although our method only deals with
heterogeneity in the states of the Boolean variables, we
can still simulate a genetically-heterogeneous population
by augmenting the Boolean network with wild-type vari-
ables. Third, we can exactly model subpopulations that are
present at very low levels, which are difficult to resolve by
random sampling (see the error bars in Fig. 3d). For exam-
ple, the contribution of each triple-gene-loss was factored
in even though a given triple-gene-loss was present in
only 10−12 of the population. While one might artificially
raise the Monte Carlo mutation rate to oversample the
mutations [9], this has the disadvantage of overweighting
the effect of multiple loss-of-function genes, even though
realistic evolutionary paths take one or very few genetic
losses at a time [30]. In contrast, our exact result is domi-
nated by the evolutionarily-accessible subpopulations that
are closest to wild-type.

Code availability The MATLAB scripts used to test the
method and run the T-cell example are named
testRandomNetworks.m and tCellActivationEx.m
respectively, and are available for download at https://
github.com/CostelloLab/ProductBasis. The equation
generating process for Fig. 3c and d took ∼ 3 and ∼ 300
seconds respectively using our code (written in MATLAB
R2015b 8.6.0.267246, running on a 2.6GHZ Intel core i7
Mac with OS 10.9.5). The Monte Carlo comparison in
Fig. 3d (nruns = 104) took ∼140 seconds.

Discussion
Our product basis method allows the direct simulation of
highly heterogeneous populations, including the transient
processes that are ignored by Boolean attractor analy-
ses. This strategy can be applied to any system involving
heterogeneous populations, as long as the individuals in
a population can be modeled using Boolean logic. Our
approach can be used to follow single variables of the sys-
tem over time, as well as the correlations between these
variables that are both necessary and sufficient to fully
describe the dynamics of the population. We also showed
that our method, when applied to a network augmented
by wild-type nodes, can effectively explore heterogene-
ity in the network rules in addition to heterogeneity
in network state. Our example using the T-cell activa-
tion network explored perturbations leading to complete
loss-of-function in network nodes. We could have also
allowed gain-of-function alterations of network nodes, or
the combination of loss- or gain-of-function effects on
network edges by a adding wild-type node for each edge
and incorporating them into the update rules. In each of
our simulations, all subpopulations are exactly accounted
for in the output time series, no matter how rare.

The key to our method is to write the time evolu-
tion equations as a linear system, but in a different basis
than the usual state space basis. The product basis vari-
ables have several advantages over state space variables.
First, ordinary descriptions of mixed populations usually
correspond more closely to the product basis variables
than to individual states. For example, we might spec-
ify that half the population starts with both genes A and
B on, which translates into the condition xAB = 0.5 in
the product basis, but a much more complicated con-
dition on the state basis variables (namely that the sum
over all variables having both A and B in their indices
equals 0.5). Another advantage is that the product basis
equations often close using relatively few equations irre-
spective of the heterogeneity of the population, whereas
the number of equations required in the state space basis
increases with heterogeneity: the simulations we showed
in Fig. 3 would require all 240 state space variables. Thus
our choice of variables is better for modeling very hetero-
geneous populations. Finally, as shown in Additional file 1:
Appendix 2 the product basis allows for a variable factor-
ization scheme that can help to simplify the calculation if
we only care about the long-term behavior.
We acknowledge that our method can become

intractable for complex networks due to the fact that
construction of these simulations can be an exponential
problem, depending on the complexity of the network.
Fully connected Boolean networks with random logic
rules will always be challenging, but we believe it should
be possible to improve performance on certain network
motifs, such as downstream feedback loops, that give our
method difficulty. The product basis is only one of very
many linear bases to choose from, and while it works
well for some network topologies such as the feedforward
arms of the T-cell network, other choices of basis may
well perform better on other network motifs. Future work
will explore this possibility. Additionally, the equation
reduction method for finding attractors (Additional file 1:
Appendix 2) is more an art than a science, and our future
work will aim to improve this part of the calculation for
typical network models (although the attractor analysis is
also known to be NP-hard [31]).

Conclusions
Molecular and phenotypic heterogeneity play major roles
in such varied systems as healthy and cancerous tissues,
evolution at the organism scale, and immune activation
[32]. In all of these cases, rare and unexpected dynamics
are difficult to capture by simulations of individuals, while
pure attractor analyses may miss important aspects of the
dynamics such as the transient behavior and the size of the
attractive basins. We have demonstrated that the method-
ology outlined here can help to capture these important
but elusive events.

https://github.com/CostelloLab/ProductBasis
https://github.com/CostelloLab/ProductBasis
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