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Abstract

Background: The yeast-like fungi Pneumocystis, resides in lung alveoli and can cause a lethal infection known
as Pneumocystis pneumonia (PCP) in hosts with impaired immune systems. Current therapies for PCP, such as
trimethoprim-sulfamethoxazole (TMP-SMX), suffer from significant treatment failures and a multitude of serious
side effects. Novel therapeutic approaches (i.e. newly developed drugs or novel combinations of available
drugs) are needed to treat this potentially lethal opportunistic infection. Quantitative Systems Pharmacological
(QSP) models promise to aid in the development of novel therapies by integrating available pharmacokinetic
(PK) and pharmacodynamic (PD) knowledge to predict the effects of new treatment regimens.

Results: In this work, we constructed and independently validated PK modules of a number of drugs with available
pharmacokinetic data. Characterized by simple structures and well constrained parameters, these PK modules could
serve as a convenient tool to summarize and predict pharmacokinetic profiles. With the currently accepted hypotheses
on the life stages of Pneumocystis, we also constructed a PD module to describe the proliferation, transformation, and
death of Pneumocystis. By integrating the PK module and the PD module, the QSP model was constrained with
observed levels of asci and trophic forms following treatments with multiple drugs. Furthermore, the temporal
dynamics of the QSP model were validated with corresponding data.

Conclusions: We developed and validated a QSP model that integrates available data and promises to facilitate the
design of future therapies against PCP.

Keywords: Pneumocystis - systems biology - quantitative systems pharmacology, Infectious disease

Background
Pneumocystis is a common opportunistic infection. In
hosts with functional immune systems, the growth of
these organisms is repressed and few pathological symp-
toms are observed. On the other hand, PCP is a cause of
morbidity in HIV-positive patients as well as hosts with
other immune defects, or in patients undergoing therapy
with immunosuppressive agents [1–3]. Despite a de-
creased incidence of PCP in developed countries (due to
the introduction of Highly Active Anti-Retroviral Ther-
apy), the infection still causes death in about 15% of
HIV-infected patients [4–6].

The genus Pneumocystis is comprised of many species,
including P. carinii, P. jirovecii [7], P. wakefieldiae, P. mur-
ina [8], and P. oryctolagi [9–11]. These different species are
characterized by their ability to infect different hosts. For
example, P. jirovecii resides in the human lung alveoli.
Despite their differences in host preference, all Pneumocys-
tis species are hypothesized to have a bi-phasic life cycle: a)
an asexual phase of replication via the binary fission of the
trophic forms; b) a sexual phase in which the conjugation
of trophic forms results in formation of asci which contain
8 ascospores, that are released and either continue in the
sexual phase or enter the asexual phase [9].
Unlike mammalian cells, Pneumocystis is unable to

harvest folate from the environment and must
synthesize it de novo [12]. To take advantage of this
weakness, the primary therapy for PCP is TMP-SMX,
which inhibits dihydropteroate synthase and dihydrofo-
late reductase, the integral enzymes involved in folate
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synthesis in host cells and fungi [13–15]. Despite high
success rates in treating PCP, TMP-SMX therapy leads
to significant side effects, including neutropenia and ser-
ious allergic skin reactions that can result in death. It’s
estimated that between 25 and 50% of HIV-infected pa-
tients are unable to tolerate prolonged TMP-SMX treat-
ment due to these harsh side effects and must seek
other treatment options [16].
Currently, alternative medications include atovaquone,

clindamycin-primaquine, echinocandins, and pentamidine
isethionate. Atovaquone inhibits nucleic acid and adeno-
sine triphosphate synthesis [17], thus disrupting DNA rep-
lication, energy production, and proliferation of the fungi.
A combination of clindamycin and primaquine suppresses
fungal protein synthesis and mitochondrial function [18] i.
The echinocandin family (i.e. anidulafungin, caspofungin,
and micafungin) are β-1,3-D-glucan (BG) synthase inhibi-
tors. Since BG is an essential component of the cellular
wall that surrounds the asci of Pneumocystis, these drugs
selectively target fungi in this phase [19–21]. The targets
of the drug pentamidine isethionate remain unknown, al-
though the drug has been shown to be effective [22].
When compared to TMP-SMX, these alternative therapies
suffer from high rates of relapse and recurrence [23, 24].
Development of new drugs to treat PCP promises to de-
liver effective treatment with reduced side effects.
In comparison to other pathogens, the study of Pneumo-

cystis is particularly challenged by the fact that these fungi
cannot be reliably cultured in vitro for any significant
length of time, nor continuously passaged to identify
whether drugs are pneumocysticidal or pneumocystistatic.
Due to this limitation, preclinical drug efficacy studies are
carried out in animal models of Pneumocystis infection,
typically in mice or rats [25]. Such reliance on animal
studies significantly increases both the time and costs
associated with the development of treatments to combat
PCP. To alleviate this, it will be beneficial to integrate
currently available knowledge on the treatment of PCP
and our current knowledge of the Pneumocystis lifecycle
into a QSP model to facilitate the drug development
process. By combining traditional PK and PD analysis with
systems biology modeling, QSP can summarize available
information into a convenient framework, which can then
be used to rigorously test different hypotheses, and scan
through treatment regimens in an efficient and
cost-effective manner [26, 27]. QSP modeling has been
useful in the treatment of infectious diseases, such as Tu-
berculosis, where it has been used for dose optimization of
anti-Tuberculosis drugs [28–30]. In addition, QSP models
have shown great promise as powerful quantitative tools to
study the dosing regimens for novel compounds [31].
A QSP model for the treatment of Pneumocystis is not

yet available, and the scarcity of data from human patients
makes the development of a human model difficult. With

available data in mice, we constructed and validated a
QSP model of PCP. This model includes both a PK mod-
ule and a PD module. The PK module describes the distri-
bution and decay of an applied drug, with different drugs
characterized by their respective rate constants. This mod-
ule was parametrized using independent construction and
validation datasets. Following validation, the model was
then used to predict the temporal PK profiles of standard
dosing regimens in mice.
The PD module specifies the proliferation, transform-

ation, and death of Pneumocystis in infected mice. The PK
module and PD modules were then integrated into a
population of QSP models. The parameters of this inte-
grated model were estimated using a population of models
that recapture the steady state distributions of the trophic
forms and asci following drug treatment. The temporal
dynamics generated by these QSP models were further
validated with the observed dynamics of Pneumocystis fol-
lowing these same drug treatments.
After constructing independent PK and PD modules

with data from various literature sources, the independent
modules were then integrated to form a QSP model which
was further validated using novel data of the temporal dy-
namics of Pneumocystis infection. As result, the QSP
models developed in this work promise to serve as a solid
first step towards understanding the temporal dynamics of
Pneumocystis infection and facilitating the design of novel
therapies. In the future, this model can potentially be im-
proved and projected to a human version.

Methods
Our overall modeling strategy is illustrated in Fig. 1.
After a PK module and a PD module were constructed,
they were integrated into a comprehensive QSP model.

Construction of the PK module in mice
A three-compartment PK module was used to describe
drug dynamics (Fig. 2). Drugs can be administrated ei-
ther through intravenous (i.v.) injection, intraperitoneal
(i.p.) injection or oral (p.o.) administration. In order to
mimic i.v. injection, we elevated the initial level of the
drug in the plasma compartment. To model i.p. or p.o
treatments, drug was added to the administration com-
partment (AC) (Fig. 2). The level of the drug first in-
creases in the AC, then diffuses into the plasma
compartment. In this way, we were able to constrain the
PK module with data from sources that administrated
drugs via multiple methods.
Overall the module is comprised of the AC, a plasma

compartment and a “peripheral tissue” compartment
(combining all organs, muscles and fat etc).
Drug decay is assumed to occur in both the plasma

and “peripheral tissue” compartments. The parameters
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that govern drug distribution and decay are labeled near
the corresponding reaction arrows (Fig. 2).
The PK module was constructed with previously re-

ported pharmacokinetic profiles (references elaborated
in Table 2). Using figures from these works that plot

drug concentration against time, digital values were ex-
tracted with the publicly available software labnotes
(http://mpf.biol.vt.edu/lab_website/Labnotes.php).Three
ordinary differential equations (ODEs) with identical
structures (detailed below) were used to describe all

Fig. 1 The overall QSP modeling strategy. The constructed QSP model includes both a PK module and a PD module. The PK module describes the
distribution and decay of different drugs. The PD module specifies the proliferation, transformation, and death of the trophic forms and asci of
Pneumocystis fungi. After construction of the PK module, this module was validated with independent data that were not used for its construction. For
the PD module, all available data were used for its construction. The integrated QSP model, which includes both the PK module and the PD module,
was constructed with the distribution of asci and trophic forms following treatment and then validated with their temporal dynamics

Fig. 2 The structure of the QSP model. Left panel: A three-compartment PK module was used to describe the reported pharmacokinetic data. The first
compartment was the AC, the second compartment was plasma, and the third was ‘peripheral tissue’. Drug decay was assumed to occur in plasma and
‘peripheral tissue’ compartments. The rates of drug distribution and decay were described by the corresponding parameters. Right panel: The dynamics
of Pneumocystis were described by a two-stage model which involves both trophic forms and asci. The temporal changes of trophic forms and asci were
also controlled by the indicated parameters. The drug effects were indicated by arrows (promoting) and lines with solid circle heads (inhibiting)
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drugs, while the rate constants differ between individual
drugs. (Table 1).

The drug concentration in the administration
compartment (AC) is modeled as:

dDrugAC
dt

¼−RAP�Kabs�DrugAC

Where DrugAC represents the current level of Drug in
the Absorptive compartment, Kabs represents the ab-
sorption rate of the drug, and RAP is a non-dimensional
scaling factor. Since the drug resides in the administra-
tion compartment for only a short time, its decay is not
explicitly incorporated.
The drug concentration in the plasma compart-

ment is modeled as:

dDrugP
dt

¼Kabs�DrugAC− KPTþKdPð Þ�DrugPþKTP�DrugT

Where DrugP represents the current level of Drug in
the Plasma compartment, Kabs represents the absorption
rate of the drug, KPTthe rate at which drug moves from
the Plasma compartment to the Tissue compartment, Kd

is the degradation rate of the Drug and KTP is the rate at
which the Drug moves from the tissue compartment to
the plasma compartment.
The drug concentration in the peripheral tissue

compartment is modeled as:

dDrugT
dt

¼RTP� −KTP�DrugTþKPT�DrugPð Þ−Kd�DrugT

Where DrugT represents the current level of Drug in
the tissue compartment and RTP represents a

non-dimensional scaling factor. The values of the di-
mensionless factors RAP and RTP are estimated from
the observed data for each drug.
For the PK modules, all parameters sets and initial

conditions were derived manually using a trial and error
method to find a plausible parameter set that visually re-
captures the experimentally observed data. The initial
conditions for each drug were estimated from the litera-
ture data when available. For example, the initial level of
Anidulafungin was estimated to be 90 μg/ml for the i.p.
dosage of 10 mg/kg (34). When such data was not avail-
able, higher or lower initial levels were assumed for
higher or lower dosage of applied drug. The sum of
squared error (SSE) for each parameter set were calcu-
lated and summarized (Table 2).

Construction of the PD module in mice
The life cycle of Pneumocystis, including its proliferation,
life cycle stage transformation, and death, was simplified
into a two-stage model which included both trophic
forms and asci (Fig. 2). The simplified model was de-
scribed using a pair of ODEs and 5 control parameters.
Trophic forms of the organism were model by the fol-

lowing ODE:

dTro
dt

¼KsTro�Tro−KdTro�Tro�Tro−KTA�TroþKAT�Asci

Where Tro represents the current value of the Trophic
form of Pneumocystis, KsTro is the proliferation rate of Tro,
KdTro is the death rate of Tro, KTA is the rate at which
trophic forms are converted to asci, and KAT represents the
rate at which asci are converted to trophic forms.
Asci were described by the following ODE:

dAsci
dt

¼KTA�Tro−KAT�Asci−KdAsci�Asci

Where Asci represents the current value of the asci of
the fungi, and KdAsci represents its death rate.
Our model describes the transformation between

trophic forms and asci following a similar multistate
model of tuberculosis [32]. Following logistic growth
models, the decay of the trophic form is a second order
reaction since the trophic forms actively proliferate and
compete for space and nutrients. On the contrary, the
asci do not actively proliferate but rather result from the
transformation of trophic forms. Hence, the decay of the
asci is set to be a first order reaction.
The basal values of these control parameters were esti-

mated on the basis of relevant experimental data (Table 4).
The experimentally observed levels of Pneumocystis

(Figs. 3 & 4) are distributed over a broad range. To re-
capture these experimentally observed distributions, we
constructed a population of PD models with parameter
values selected from a uniform distribution that covers

Table 1 The equations and parameters of the PK module

Absorptive Compartment

dDrugAC
dt ¼ −RAP � Kabs � DrugAC

Plasma Compartment

dDrugP
dt ¼ Kabs � DrugAC−ðKPT þ KdPÞ � DrugP þ KTP � DrugT

Peripheral Tissue Compartment

dDrugT
dt ¼ RTP � ð−KTP � DrugT þ KPT � DrugPÞ−Kd � DrugT

PK parameters for each drug

anidulafungin caspofungin micafungin TMP/
SMX

KdP (hr
− 1) 0.035 0.18 0.06 0.2

KPT (hr
−1) 1.5 5 0.6 0.17

KTP (hr
−1) 5 2 1.8 5

RTP(dimensionless) 0.2 1 0.4 0.01

KdT (hr
−1) 0.035 0.18 0.06 0.2

RAP(dimensionless) 3 0.1 1 3

Kabs (hr
−1) 5 5 0.75 5
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70–130% of the basal values (Table 4). For Fig. 3b, the
experimental results are reported as a total nuclei count
of both trophic forms and asci that is on a different scale
than the PD model. To recapture this dataset, the model
results were converted into a nuclei count and rescaled
to the maximum.

Integration of the PK module and the PD modules into
QSP models
Various drugs target Pneumocystis via diverse mecha-
nisms, which were incorporated into the QSP models.
TMP-SMX represses folate synthesis which is essential
for genome replication in the organism [13]. Therefore,
in our simplified model, TMP-SMX was assumed to in-
hibit the proliferation rate of the trophic forms and in-
crease the death rates of both the trophic forms and
asci. Echinocandins on the other hand, block the con-
struction of the cellular wall of the asci. Therefore, this
family of drugs were assumed to reduce the level of asci

by promoting their death as well as inhibiting their for-
mation (Fig. 2 and Table 5).
The EC50 and maximal effect of each drug were es-

timated from the levels of asci and trophic forms fol-
lowing treatment with different drugs. Since the ratio
of TMP-SMX was fixed to be 1:5 in the data con-
straining our QSP model, we simplified the model by
using the level of SMX as a reasonable proxy for this
drug combination.
To account for the drug effects on pneumocystis in

the QSP models, we replaced the constant parameters of
the PD modules (ks, kdTro, kdAsci and kTA) with corre-
sponding functions of the levels of drugs (vsTro, vdTro,
vdAsci, and vTA,Table 5) .
In the presence of SMX, the death rates of both the

trophic forms and asci are enhanced and descried with
the following equation:

vdTro ¼ kdTro � 1þMETro � SMXn
eff

SMXn
eff þ Ec50nSMX

� �

Table 2 The experimental data for the construction and validation of PK modules

Drug anidulafungin caspofungin micafungin TMP/ SMX

Construction data Gumbo et al... [35] Andes et al. [40] Andes et al. [40] Misiek et al. [41]

Validation data Andes et al [42] Andes et al. [40]; Hajdu et al. [43] Andes et al. [40]; Misiek et al. [41]

Goodness of fit (SSE) 459.26 2602.56 202.14 131.15

a b

c d

Fig. 3 The PD modules were consistent with experimental data from diverse sources. a. Temporal simulations for the dynamic changes of trophic
form (black curves) and asci (red curves) starting from an initial state with a high level of trophic forms and a low level of asci. b. Temporal
simulations (black curves) of the normalized total number of Pneumocystis were compared to the normalized nuclei count from Pneumocystis
infected mice (red dots, error bars represent SEM, n = 2 or 3 for each time point). c and d. Histograms showing the distributions of the numbers
of the trophic form and asci simulated by the PD module
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where kdTro, represents the basal death rate of the trophic
form, METro is the maximal effect by SMX, SMXeff is the
effective level of SMX, EC50SMX is the half maximal ef-
fective concentration of SMX, and n is the hill coefficient .
A similar equation is used to calculate, vdAsci, the death
rate of the asci when exposed to SMX.
The presence of SMX also leads to repression of tro

proliferation, which is described with the following
equation:

vsTro ¼ ks � 1−
SMXn

eff

SMXn
eff þ Ec50nSMX

� �

Where ks represents the basal proliferation rate of the
trophic form.
The presence of echinocandins inhibits the asci specif-

ically. To incorporate its effect, we assume that the
transformation of trophic forms to asci is inhibited and
that the death rate of the asci is enhanced. The en-
hanced death of asci is modeled with a similar equation
as replaced above. The inhibition of asci formation is de-
scribed with the following equation:

vTA ¼ kTA � 1−
Echinpla

Echinpla þ Ec50nEchi

 !

Where kTA represents the normal rate of asci forma-
tion, while Echipla is the current plasma level of
echinocandin.

Software
The ordinary differential equations were simulated
with the mathematical software XPPAUT, which is
freely available at http://www.math.pitt.edu/~bard/
xpp/xpp.html. The experimental and simulated data
were then visualized using MATLAB from Math-
works (https://www.mathworks.com).

Experimental methods
Measuring pneumocystis numbers in mice
The Pneumocystis number is commonly estimated in
two ways: reverse Transcriptase quantitative PCR
(RT-qPCR) or microscopic quantification.

a b

c d

Fig. 4 The simulations of the QSP models were consistent to relevant data. a and b. Bar plots of average simulated log10 levels: of asci (a) and
trophic forms (b) at day 56 post-treatment of Pneumocystis from: untreated mice (Control), mice treated with varying doses of anidulafungin,
caspofungin and micafungin; as well as mice treated with TMP-SMX. Corresponding experimental data are represented as dot plots with standard
error. c. The simulated dynamic changes of the trophic forms (black curves) and asci (red curves), on a log10 scale were consistent to the
corresponding experimental data (black and red dots) following anidulafungin treatment. d. The simulated dynamic changes of trophic forms
(black curves) and asci (red curves) were consistent to the corresponding data (black dots and red dots) following TMP-SMX treatment
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For all mouse studies, 6 week old male, C3H/HeN
mice were used. These came from the animal supply
company Charles River (https://www.criver.com).
For RT-qPCR, Pneumocystis-infected mice were eutha-

nized by CO2 exposure until cessation of breathing at
regular intervals and the lungs flash frozen, followed by
RNA extraction and cDNA synthesis. Pneumocystis
mitochondrial large subunit ribosomal RNA, was then
quantified by TaqMan assay. The threshold cycle for
each sample was identified as the point at which the
fluorescence generated by degradation of the TaqMan
probe increased significantly above the baseline. To con-
vert the threshold cycle to Pneumocystis nuclei number,
a standard curve was generated using cDNA made from
RNA isolated from 107 Pneumocystis nuclei. The level of
infection for each sample was estimated using the stand-
ard curve [33].
Although accurate, this technique cannot distinguish

between the trophic forms and asci of Pneumocystis.
For microscopic quantification with a use a Nikon

Eclipse E600, lungs from Pneumocystis-infected mice
were isolated and stained with a dye that selectively
binds to the asci of the fungi, cresyl echt violet. A rapid
version of the Wright-Giemsa stain was used to enumer-
ate the nuclei of all life cycle stages [34]. In contrast to
RT-qPCR, microscopic quantification allows for the
distinction between the trophic forms and asci.
Though these methods rely on different techniques, the

time scale characterizing Pneumocystis is independent of
the method used. This common time scale facilitated the
construction of the current PD modules with both litera-
ture reported numbers of trophic forms and asci and
novel experimental results using the RT-qPCR method.

Results
The constructed PK module was validated against
independent data
The equations and parameter values of the constructed PK
modules were reported in Table 1, with each drug charac-
terized by a different set of parameter values. These param-
eter values were estimated using data reported in the
literature (Table 2). For example, Gumbo et al. measured
the plasma concentration of anidulafungin following a sin-
gle 10 mg/kg i.p. injection [35], which we used to estimate
the PK parameters for a three compartment pharmacoki-
netic model of anidulafungin. (Fig. 5a). After estimating the
PK parameters, they were used to simulate further experi-
mental scenarios with either i.p. or i.v. administration of
anidulafungin and compared to their respective data sets
(Fig. 5a). Because these additional data sources were not
used for the initial parameter estimation, the consistency
between the model simulation and these additional data
sources served as a validation of the estimated parameters
for the anidulafungin PK model.

In a similar fashion, the parameters for PK models of
caspofungin, micafungin, and SMX were estimated and
validated with different literature sources (Fig. 5b-d).

The PK modules predict novel PK profiles
Once constructed and validated, our PK modules may
serve as convenient tools to predict the plasma level of
each drug following more than a single dose. To illus-
trate this potential, we used the PK modules to predict
the plasma levels of four different drugs following the
reported treatment regimens [33].
Here, three drugs from the echinocandin family (anidula-

fungin, caspofungin and micafungin) were administrated
through i.p. injection and a fourth drug, TMP-SMX, was
administered orally [33]. Given the reported dosage of each
treatment, we estimated the expected increases of each
drug in the administration compartment, which served as
the in silico drug dosage (Table 3). Following the experi-
mental dosing regimen reported by Cushion et al., each
drug was elevated three times a week for 3 weeks [33]. The
simulated plasma levels of echinocandins within one week
and SMX within three weeks were shown in Fig. 6.
Compared with traditional pharmacokinetic indexes such

as area under the curve, the temporal predictions from the
PK modules elaborated temporal dynamics of applied
drugs that might play a significant role in determining drug
effectiveness [36]. When additional PK data are available,
these data can be used to further refine the PK modules
and reduce the need of repeating PK measurements.

The constructed PD modules were consistent with
multiple experimental observations
After the PD wiring diagram (Fig. 2) was converted into
ODEs (details in methods), the parameters of the module
were estimated with currently available data (Table 4). In
order to check whether the estimated parameters are rea-
sonable, the temporal simulations of the PD module were
compared to these experimental observations.
By specifically targeting the asci of the fungi, ad-

ministration of the anti-fungal drug anidulafungin can
result in a state with a low level of asci and a high
level of trophic forms. Starting from this initial state,
and in the absence of any drug treatment, it takes
several weeks for asci to repopulate [33]. The time
range of this recovery was consistent to a number of
temporal simulations of the PD module (Fig. 3a) with
initial conditions that mimicked this experimental
scenario. The consistency between time frames sug-
gests that the estimated rates characterizing the trans-
formation from the trophic form to asci (KTA) fall
within a biologically reasonable scale.
In addition to literature reported data, we have also

experimentally determined the total number of P. mur-
ina nuclei within infected and immunosuppressed mice
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(red dots, Fig. 3b). The initial growth of the organism
was very slow within the first two weeks, however, start-
ing from the third week, an exponential growth of
Pneumocystis was observed which peaked at the end of
the fifth week. The experimentally determined nuclei
count was then compared with a population of simu-
lated temporal curves of Pneumocystis accumulation
(Fig. 3b). The model simulations recaptured the slow ini-
tial accumulation of the Pneumocystis, the rapid, expo-
nential growth of the organism, and the steady state
level following the exponential peak. The consistency be-
tween this experimental data and the temporal simula-
tions suggests that the model assumption of rapid
Pneumocystis growth is indeed reasonable.

The level of Pneumocystis begins to decrease near the
end of the experiment (red outlier, Fig. 3b). This is likely
due to depletion of nutrients or overcrowding. Since
these mechanisms have not been incorporated into the
current model, it is not surprising that the model simu-
lations fail to recapture the observed decrease.
Furthermore, the simulated distributions of the trophic

forms (Fig. 3c) and asci (Fig. 3d) are consistent to the
observed levels of the fungi (7.62 ± 0.17 for trophic
forms and 7.79 ± 0.13 for asci) [33]. The agreement be-
tween the experimentally determined pneumocystis level
and those simulated with the model, suggests that the
assumed ratios between proliferation and decay (ratio
between KsTro andKdTro) and transformation (ratio

a b

c d

Fig. 5 The temporal simulations of the PK modules were consistent with diverse experimental data. The temporal simulations of the plasma
concentrations of anidulafungin (a), caspofungin (b), micafungin (c) and smx (d) were compared to relevant experimental data. The black dots
and black solid curves represent the construction data and corresponding model simulations; the colored dots and colored dashed curves
represent the validation data and corresponding simulations. The data sources were elaborated in Table 2. The colors in each panel were used to
indicate different administration methods and dosages. In a, blue, i.v. of 1 mg/kg; magenta, green and red, i.p. of 80 mg/kg, 20 mg/kg and 5 mg/
kg respectively. In b, blue and magenta, i.v. of 0.5 mg/kg and 5 mg; red, cyan and green, i.p. of 1 mg/kg, 5 mg/kg and 80 mg/kg; In c, blue, red
and green, i.v. of 0.32 mg/kg, 1 mg/kg and 3.2 mg/kg; cyan and magenta, i.p. of 5 mg/kg and 80 mg/kg; In d, blue, oral of 50 mg/kg

Table 3 Estimated Initial AC concentrations of echinocandins and SMX for model prediction

Applied dosage (mg/
kg)

Initial Anidulafungin concentration (μg/
ml)

Initial Caspofungin concentration (μg/
ml)

Initial Micafungin concentration (μg/
ml)

10 90 based on Data in [35] 12 25

5 30 based on Data in [42] 10 based on Data in [40] 15 based on the Data in [40]

2.5 15 8 10

1 10 2.5 5

0.5 5 1.5 3

0.1 1 0.8 1

* For SMX, 500 and 550 (μg/ml) were used for applied dosages of 200 and 250 (mg/kg) respectively

Liu et al. BMC Systems Biology  (2018) 12:77 Page 8 of 12



between KTAand KAT) are reasonable. In order to in-
corporate variability, all model parameters are changed
independently.

Quantitative systems pharmacology model construction
and validation
By integrating the PK modules and the PD module, the
QSP model can describe the changes of asci and trophic
forms following treatment for a population of models.
Modules were integrated by adjusting the parameters
that control: the growth and death of the cyst form (for
the echinocandin family of drugs, Fig. 2), or the death
rates of the trophic and cyst forms along with the

growth of the trophic form (for TMP/SMX treatment,
Fig. 2). Details of the integration procedure can be found
in the Methods. Following the experimental setting as
reported by Cushion et al., each drug in the model was
administrated 3 times per week for 3 weeks [33]. The sim-
ulated levels of asci at day 56 were then compared to the
experimental observations from Cushion et al. (Fig. 4a).
At a dose of 1 mg/kg, treatment with all three echinocan-
dins (anidulafungin, caspofungin and micafungin) consid-
erably reduced asci burdens. At lower doses (0.5 and
0.1 mg/kg), anidulafungin and caspofungin still decreased
the number of asci, while micafungin caused no notable
decrease in the levels of asci (Fig. 4a). In contrast to the
dramatic reductions in asci, the simulated trophic forms
were not meaningfully altered following treatment with
any of the echinocandins (Fig. 4b). The model showed
a marked decrease in both asci and trophic forms in
response to TMP/SMX treatment (Fig. 4a & b). These
simulated results were consistent with the experimental
observations [33], indicating that our integrated QSP
models are reasonable in describing the therapeutic
effects of the echinocandin family of drugs and those
of TMP/SMX.
With the constructed QSP models, we then simulated

the temporal changes of asci and trophic forms prior to
and after anidulafungin treatment (Fig. 4c). Prior to drug
administration, the simulated accumulation of both
trophic forms and asci are consistent to experimental
data collected in the absence of drugs, as elaborated in
the description of the PD modules above. At about
35 days, the levels of both trophic forms and asci

a b

c d

Fig. 6 The temporal drug profiles predicted by the PK modules. a, b, c and d show the predicted plasma levels of anidulafungin, caspofungin,
micafungin and SMX when administrated 3 times/week. The different dosages of anidulafungin, caspofungin, micafungin (in mg/kg) are labelled
in each panel, the SMX dosage is 200 mg/kg

Table 4 The equations and parameters of the PD modules

trophic Form

dTro
dt ¼ KsTro � Tro−KdTro � Tro � Tro−KTA � Troþ KAT � Asci

asci

dAsci
dt ¼ KTA � Tro−KAT � Asci−KdAsci � Asci

Basal Parameter Values

Parameter Value
(unit)

Constraining data

KsTro 1 day − 1 The observed accumulation of total
Pneumocystis constrained the time scale,
The steady state values of trophic form
constrained the KsTro : KdTro ratio.

KdTro 1 × 10−7

day − 1

KAT 0.1 day − 1 The KTA : KAT ratio was constrained with
experimental observations [33]

KTA 0.1 day − 1

KdAsci 2 × 10− 12

day − 1
Degradation rate of the asci is assumed to be
small [44].
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reached a steady state of about 107, in agreement to the
experimental data (Fig. 4c). Following anidulafungin treat-
ment (starting at day 35), the level of asci decreased dra-
matically while the level of trophic form remained
constant. These simulated responses to anidulafungin
were consistent with the corresponding experimental data
from our lab (Fig. 4c).
When compared to anidulafungin, treatment with

TMP-SMX decreased the levels of both asci and trophic
forms. However, in comparison with the rapid antifungal ef-
fect of anidulafungin, the experimental evidence suggests
that the effect of TMP-SMX was delayed. This time delay
was incorporated into our QSP model (Table 5), and the
simulated responses of trophic and asci levels (Fig. 4d) were
consistent to corresponding experimental data (Fig. 4d). In
summary, the QSP models serve as a reasonable tool to de-
scribe the temporal dynamics of Pneumocystis upon treat-
ment with either the echinocandin class of antifungals or
TMP/SMX.

Discussion
In this work, we developed a QSP model to simulate
how the numbers of Pneumocystis are altered by com-
mercially available echinocandins and TMP-SMX. In
addition to describing the temporal dynamics of these
drugs, this novel QSP model also incorporated two dif-
ferent life cycle stages of the infecting fungi. Since the
different life stages are presumably conserved in a broad
range of hosts, the QSP model would be useful for
studying Pneumocystis infections in a number of hosts
including humans.
QSP modeling, which integrates knowledge from

pharmacology and systems biology, is emerging as a power-
ful approach in pharmaceutical development [37, 38]. To
the encouragement of the QSP community, QSP modeling
aided in studying the dosing regimens of a new biologic,
NATPARA, in the regulatory domain [31]. Particularly,
QSP modeling has been useful in aiding the treatment of
infectious diseases, such as tuberculosis, where it has been
used for dose optimization of anti-Tuberculosis drugs [28–
30]. Moreover, QSP models have shown great promise as
powerful quantitative tools to study the dosing regimen for
novel pharmaceutical compounds [31]. Thus, it is worth-
while to carefully evaluate the power as well as limitations
of QSP modeling.
The benefits of QSP modelling originate from its abil-

ity to integrate all available knowledge and data to pre-
dict the effect of novel treatment regimens. In this way,
the modeling provides some guidance for choosing
effective strategies and avoiding plans that might have
little chance for success. In this way, QSP combines
traditional PK/PD modeling with systems biological
modeling and provides a more comprehensive picture
than single indices such as steady state AUC [39]. In

order to generate faithful predictions, both the PK and
PD portions of the QSP models must be carefully con-
structed and independently validated. For the current
QSP model, the PK module has been well constrained
with the abundant data available in the literature, how-
ever the PD module needs to be further validated with
additional dynamic data of the asci and trophic forms
following treatment with different drugs as well as
dynamic data of the growth of the organism prior to
treatment. These additional data sources will either
validate the model’s current parameter settings or allow
for further refinement of the parameters.
The complexity and scope of the current model aim to

achieve a balance between incorporation of mechanistic
details and constraint by currently available data. When
additional details become available, the current PD mod-
ule can be expanded to include a more detailed descrip-
tion of the Pneumocystis life stages, while the PK
module can be expanded to incorporate additional com-
partments, such as a lung compartment. Furthermore,
the model can be tailored to investigate additional drugs
such as atovaquone or clindamycin-primaquine.
The current model, constrained with data collected in

mice, promises to serve as a useful framework to under-
stand and predict the growth, death and drug response

Table 5 Integrating the PK modules and PD modules into QSP
models

Echinocandin effect on asci death

vdAsci ¼ kdAsci þMEEchi � Echinpla
EchinplaþEc50nEchi

Echinocandin effect on asci Formation

vTA¼kTA�ð1− Echinpla
EchinplaþEc50nEchi

Þ

Parameters

Echinocandin family member Ec50 ME n

Anidulafungin 0.039 μg ∗ml−1 0.42 1

Caspofungin 0.0007 μg ∗ml−1 0.45 1

Micafungin 0.04 μg ∗ml−1 0.1 1

TMP/SMX effect on asci death

vdAsci ¼ kdAsci þMEAsci � SMXn
eff

SMXn
effþEc50nSMX

TMP/SMX effect on trophic proliferation

vsTro ¼ ks � ð1− SMXn
eff

SMXn
effþEc50nSMX

Þ
TMP/SMX effect on trophic death

vdTro ¼ kdTro � ð1þMETro � SMXn
eff

SMXn
effþEc50nSMX

Þ
Delay in SMX effect

SMXn
eff= SMXn

plaðt−τÞ
Parameters

Ec50nSMX MEAsci METro n τ

0.2 μg ∗ml−1 0.75 650 2 7 days
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of Pneumocystis in human patients, assuming the con-
servation of Pneumocystis life stages between species.
Such predictions of Pneuomocystis levels in human, be-
ing orthogonal to the observed symptoms, will provide
valuable insight for the clinicians to understand the pro-
gression of the infection as well as its response to
treatment.

Conclusions
We developed and validated a QSP model that integrates
available data and promises to facilitate the design of fu-
ture therapies against PCP.
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