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Module-detection approaches for the
integration of multilevel omics data
highlight the comprehensive response of
Aspergillus fumigatus to caspofungin
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Abstract

Background: Omics data provide deep insights into overall biological processes of organisms. However, integration
of data from different molecular levels such as transcriptomics and proteomics, still remains challenging. Analyzing
lists of differentially abundant molecules from diverse molecular levels often results in a small overlap mainly due to
different regulatory mechanisms, temporal scales, and/or inherent properties of measurement methods. Module-
detecting algorithms identifying sets of closely related proteins from protein-protein interaction networks (PPINs)
are promising approaches for a better data integration.

Results: Here, we made use of transcriptome, proteome and secretome data from the human pathogenic fungus
Aspergillus fumigatus challenged with the antifungal drug caspofungin. Caspofungin targets the fungal cell wall
which leads to a compensatory stress response. We analyzed the omics data using two different approaches: First,
we applied a simple, classical approach by comparing lists of differentially expressed genes (DEGs), differentially
synthesized proteins (DSyPs) and differentially secreted proteins (DSePs); second, we used a recently published
module-detecting approach, ModuleDiscoverer, to identify regulatory modules from PPINs in conjunction with the
experimental data. Our results demonstrate that regulatory modules show a notably higher overlap between the
different molecular levels and time points than the classical approach. The additional structural information
provided by regulatory modules allows for topological analyses. As a result, we detected a significant association of
omics data with distinct biological processes such as regulation of kinase activity, transport mechanisms or amino
acid metabolism. We also found a previously unreported increased production of the secondary metabolite
fumagillin by A. fumigatus upon exposure to caspofungin. Furthermore, a topology-based analysis of potential key
factors contributing to drug-caused side effects identified the highly conserved protein polyubiquitin as a central
regulator. Interestingly, polyubiquitin UbiD neither belonged to the groups of DEGs, DSyPs nor DSePs but most
likely strongly influenced their levels.

Conclusion: Module-detecting approaches support the effective integration of multilevel omics data and provide a
deep insight into complex biological relationships connecting these levels. They facilitate the identification of
potential key players in the organism’s stress response which cannot be detected by commonly used approaches
comparing lists of differentially abundant molecules.
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Background
The permanent growth in the development and im-
provement of new measurement techniques have led to
a wealth of data from heterogeneous sources. The inte-
gration of all available data obtained from diverse studies
has the potential to provide a more comprehensive and
deeper understanding of the studied subject [1–3]. One
example is the investigation of an organism’s response to
an external stimulus at different molecular levels.
Large-scale studies at molecular levels like transcripto-
mics, proteomics, lipidomics or metabolomics can be
summarized by the term ‘omics levels’. These omics
levels are linked to each other and are considered in
their entirety. They describe the overall biological pro-
cesses which occur in the analyzed organism. Potential
links can be characterized by level-shared (‘overlapping’)
components (such as genes or proteins) or the participa-
tion of components of different molecular levels in
level-shared pathways.
As widely reported, the integration and analysis of data

from multiple levels measured with diverse techniques
at different time points are challenging. In an intuitive
and commonly used approach (‘simple approach’), the
analysis of several sets of omics data is based on the
comparison of lists of differentially expressed genes
(DEGs) and differentially synthesized proteins (DSyPs)
identified in experimental datasets. However, the use of
only DEGs and DSyPs is threshold-dependent and
usually incomplete due to experimental limitations. For
example, the use of liquid chromatography-mass
spectrometry (LC-MS/MS)-based shotgun proteomics
analysis for the identification of DSyPs is usually limited
in the quantification of low abundant proteins due to
the large dynamic range of protein abundances that
needs to be covered [4, 5]. Other approaches, including
diverse pathway enrichment analyses, assign both differ-
entially and non-differentially expressed genes or their
synthesized proteins to specific pathways which are part
of biological processes. The level of activity of such
pathways can be estimated by taking into account mea-
surements of changes in gene expression or protein syn-
thesis. However, as these approaches are based on
pre-defined lists of pathways, they exclude unknown
pathways which may also have important functions [6].
Over the last decades, the analysis of protein-protein
interaction networks (PPINs) has become a useful ap-
proach [7]. By identifying direct (physical) contacts and
indirect interactions (e.g., via regulatory cascades) be-
tween two or more proteins, PPINs point to structural
and functional relationships between their nodes [8].
Several de novo network enrichment approaches were
developed to extract connected sub-networks from larger
interaction networks. Such sub-networks containing sets
of closely related proteins are defined as modules [9].

There are many examples in the literature demonstrating
the usefulness of modules in research data interpretation.
For instance, Stuart et al. analyzed genetic modules to de-
tect co-expressed genes that are involved in similar bio-
logical processes [10], while Trevino et al. [11] have shown
the usefulness of investigating inter-module connectivity
to identify molecular cross-talk between normal prostate
epithelial and prostate carcinoma cells.
Another very interesting application of modules is the

identification of prognostic or drug response biomarkers
[12]. In this context, modules also show their potential
for the characterization of drug-caused side effects oc-
curring in addition to effects on the intended primary
drug target. Wang et al. [13] demonstrated that major
contributing factors of such side effects can be investi-
gated by considering the primary drug target and its
local network structure.
Several categories of modules have been described

until now (Fig. 1). Examples are topological modules
composed of proteins showing a high degree of
inner-connectiveness or functional modules that contain
proteins associated to specific biological functions [14,
15]. So-called regulatory modules are defined as sets of
co-expressed genes which share a common function
[16]. Popular methods for the detection of regulatory
modules are: DEGAS [17], MATISSE [15], KeyPathway-
Miner [18] and ModuleDiscoverer [19]. Among them,
the recently published ModuleDiscoverer (MD) includes
a heuristic that approximates the PPIN’s underlying
community structure based on maximal cliques. While a
community defines a group of proteins featuring a
higher within-edge density in comparison to the edge
density connecting them, a clique represents a set of
proteins with edges between each pair of them. A clique
is maximal if no node (e.g., protein) exists which extends
that clique. MD was shown to be very efficient in the de-
tection of regulatory modules for gene expression data
in the context of animal models of non-alcoholic fatty
liver disease [19].
In this study, we applied the simple approach (SA), the re-

cently published module-detection approach MD as well as
KeyPathwayMiner to experimental data of different molecu-
lar levels, measurement techniques and time points. As a
case study, we analyzed the molecular response of the hu-
man pathogenic fungus Aspergillus fumigatus to the antifun-
gal drug caspofungin. A. fumigatus causes local and systemic
infections in immunocompromised individuals [20]. One
therapeutic approach is the use of the lipopeptide caspofun-
gin of the group of echinocandins. Caspofungin specifically
targets the fungal cell wall by inhibiting the synthesis of the
polysaccharide β-(1,3)-D-glucan [21]. Fungal cells respond to
caspofungin by the adaption of gene expression and, conse-
quently, protein biosynthesis and secretion of molecules [22].
Therefore, we analyzed the transcriptomic, proteomic and
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secretomic response of A. fumigatus to caspofungin at sev-
eral time points to gain a deeper understanding of the overall
molecular response of this fungus to this drug.
We demonstrated the so far untested capacity of MD

to integrate multilevel omics data and showed that this
level of integration is not achievable using SA. Moreover,
module-detecting approaches facilitate the identification
of potential key players in the organism’s stress response
which are not detectable by commonly used approaches
comparing lists of differentially abundant molecules.

Methods
Omics data and data processing
Data analyses were performed in R version 3.4.1 using
packages provided by Bioconductor [23].

Strain and culture conditions
Mycelia of the Aspergillus fumigatus strain CEA17 ΔakuB
[24] were pre-cultured for 16 h in Aspergillus minimal
medium (AMM, [25]) containing 50 mM glucose and
70 mM NaNO3 and then stressed with a sub-inhibitory
concentration of caspofungin (100 ng/ml) as described in
Altwasser et al. [26]. Liquid cultures were inoculated with
1 × 106 conidia/ml and cultivated at 37 °C with shaking at
200 rpm. Samples for analyzing the transcriptomic, prote-
omic and secretomic response of the fungus were taken at
the indicated time points after treatment. Secreted pro-
teins were precipitated overnight from culture superna-
tants as described below.

Transcriptome data
RNA extraction, cDNA library construction and RNA-Seq
analysis by Illumina next-generation sequencing of samples
taken at 0 h, 0.5 h, 1 h, 4 h and 8 h after caspofungin treat-
ment were performed as described in [26]. Likewise, data

were pre-processed as described in [26]. Genes were anno-
tated by identifiers provided by the Aspergillus Genome
Database (AspGD, as of September 2015 [27]). In addition,
identifiers provided by the Central Aspergillus Data Reposi-
tory (CADRE) [28] were obtained using the package bio-
maRt [29] provided by Bioconductor as of February 2017.
For each time point, expression values were compared to
the control sample taken at 0 h. Only those genes with an
absolute log2 Fold Change (log2FC) value greater 1 and a
False Discovery Rate (FDR) corrected p-value below 0.05
were considered to be differentially expressed.

Proteome and secretome data
Samples for proteome analysis were taken at 0 h, 4 h
and 8 h after treatment. The mycelium was collected by
filtering through Miracloth (Merck Millipore), subse-
quently washed with water and snap frozen with liquid
nitrogen. Sample preparation of the mycelium for the
proteome analysis was performed as previously de-
scribed [30]. Samples for secretome analysis were taken
at 0 h and 8 h after treatment and prepared as follows:
Cell free-filtered supernatant of AMM medium from A.
fumigatus cultures was precipitated by trichloroacetic
acid (TCA) at 15% (w/v) final concentration (4 °C, over-
night). Precipitates were washed with acetone and reso-
lubilized in trifluoroethanol (TFE) mixed 1:1 with
100 mM triethylammonium bicarbonate (TEAB). Sam-
ples containing 100 μg of total protein (in 100 μl) were
reduced with 50 mM tris(2-carboxyethyl)phosphine
(TCEP) for 1 h at 55 °C and subsequently cysteine thiols
were alkylated with 12.5 mM iodoacetamide for 30 min
at room temperature. Proteins were digested at 37 °C for
18 h with trypsin+LysC mix (Promega) at 1:25 protease:-
protein ratio. Proteome samples were labeled with tan-
dem mass tags (TMT) 6plex and secretome samples

Fig. 1 Module categories. Exemplarily selected categories of modules within protein-protein interaction networks. Proteins are represented by
circles, interactions by edges
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were labeled with isobaric tags for relative and absolute
quantification (iTRAQ) 4plex according to the manufac-
turer’s protocols.
LC-MS/MS analysis was performed as previously de-

scribed [30] with the following modifications: Eluents A
(0.1% v/v formic acid in H2O) and B (0.1% v/v formic
acid in 90/10 ACN/H2O v/v) were mixed for 10 h gradi-
ent elution: 0–4 min at 4% B, 15 min at 5.5% B, 30 min
at 6.5%, 220 min at 12.5% B, 300 min at 17% B, 400 min
at 26% B, 450 min at 35% B, 475 min at 42% B, 490 min
at 51% B, 500 min at 60% B, 515–529 min at 96% B,
530–600 min at 4% B. Precursor ions were monitored at
m/z 300–1500, R = 140 k (FWHM), 3e6 AGC (automatic
gain control) target, and 120 maximum injection time
(maxIT). Top ten precursor ions (0.8 Da isolation width;
z = 2–5) underwent data-dependent higher-energy colli-
sional dissociation (HCD) fragmentation at normalized
collision energy (NCE) 36% using N2 gas. Dynamic ex-
clusion was set to 40 s. MS2 spectra were monitored at
R = 17.5 k (FWHM), 2e5 AGC target, and 120 maxIT.
The fixed first mass was set to m/z 110 to match the
iTRAQ reporter ions (m/z 114–117).
Database searches were performed by Proteome Discoverer

(PD) 1.4 (Thermo Fisher Scientific, Dreieich, Germany)
using the AspGD protein database of A. fumigatus
Af293 [31] and the algorithms of MASCOT 2.4.1
(Matrix Science, UK), SEQUEST HT (integral search
engine of PD 1.4), and MS Amanda 1.0. Two missed
cleavages were allowed for tryptic digestion. The pre-
cursor mass tolerance and the integration tolerance
(most confident centroid) were set to 5 ppm and the
MS2 tolerance to 0.02 Da. Static modifications were
carbamidomethylation of cysteine and either TMT6plex
(proteome) or iTRAQ4plex (secretome) at lysine
residues and the peptide N-terminus. Dynamic modifi-
cations were oxidation of methionine and either
TMT6plex of threonine or iTRAQ4plex of tyrosine.
Percolator and a reverse decoy database were used for
q-value validation of the spectral matches (Δcn < 0.05).
At least two peptides per protein and a strict target
FDR < 1% were required for confident protein hits. The
significance threshold for differential protein abun-
dances for TMT and iTRAQ experiments was set to
factor 1.5.
With the aid of the biomaRt package, proteins were

annotated using identifiers provided by AspGD as of
September 2015 and CADRE as of February 2017.

Chemical analysis of secondary metabolites
For quantification of fumagillin, fungal cultures were ex-
tracted and run on a LC-MS system consisting of an
HPLC, UltiMate 3000 binary RSLC with photo diode array
detector (Thermo Fisher Scientific, Dreieich, Germany)
and the mass spectrometer (LTQ XL Linear Ion Trap

from Thermo Fisher Scientific, Dreieich, Germany) with
an electrospray ion source as described in Jöhnk et al.
[32]. Data were obtained from three biological replicates
and three technical replicates. A standard curve (1000,
500, 250, 125 and 62.5 μg/mL) using an authentic fumagil-
lin standard (Abcam, United Kingdom) was calculated.
The Xcalibur Quan Browser software (Thermo Fisher
Scientific, Dreieich, Germany) was used to calculate the
amounts of fumagillin.

Application of module-detecting approaches
A high-confidence (score > 0.7) PPIN of A. fumigatus
strain A1163 was downloaded from STRING version 10
[33]. Both the PPIN and the pre-processed omics data
were taken as input for the module-detecting ap-
proaches. Thereby, protein identifier annotations pro-
vided by CADRE were used.

ModuleDiscoverer
In order to apply MD for transcriptome data, the back-
ground contains all known A. fumigatus proteins de-
scribed in AspGD. Analyzing proteome and secretome
data, all proteins detected via LC-MS/MS were taken as
background. The single-seed MD algorithm was applied
to the input data as described by Vlaic et al. [19]. In brief,
maximal cliques were identified using only one seed node
in the PPIN. Cliques were tested for their enrichment with
DEGs/DSyPs/DSePs using a permutation-based test as de-
scribed in Vlaic et al. [19]. Cliques with a p-value < 0.01
were considered significantly enriched. Based on the
union of these significantly enriched cliques, the regula-
tory module was assembled.
For the integration of different omics datasets, all regula-

tory modules were merged by forming the union of all
nodes and edges. The resulting union regulatory module is
defined as ‘overall regulatory module’ (ORM). Sub-modules
with a number of nodes < 10 were not considered. Cytos-
cape version 3.2.1 [34] was used to visualize and analyze
regulatory modules, for example, regarding their nodes’ de-
gree and betweenness centrality.

KeyPathwayMiner
KeyPathwayMiner (KPM) detects maximal connected
sub-networks. In these sub-networks, all but a specific
number K components are DEGs, DSyPs or DSePs in all
but at most a specific number L cases [18]. In this study,
cases are defined as the available time points. In a first
analysis (I), KPM was applied to each single experimen-
tal dataset to receive one module for each time point of
the respective molecular level. In the single-level analysis
(II), the modules for each molecular level over all time
points were identified. A third analysis (III) directly
combined all of the experimental datasets to get the
overall regulatory module. For the KPM input, one
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matrix for each time point (I) or molecular level ((II)
and (III)) were generated consisting of information about
the components’ regulation at the respective time points.
For (II) and (III), only those components were consid-
ered that were DEGs/DSyPs/DSePs in at least one of the
time points of the respective molecular level. With these
matrices, the A. fumigatus PPIN and with the aid of
KeyPathwayMiner Cytoscape App [18], sub-networks
were computed using following settings: Ant colony
optimization meta heuristic (ACO) as search algorithm,
individual node exceptions (INEs) as search strategy,
maximum of exception nodes K = 2. For (I) and (II), the
maximal case exception parameter was set to L = 0. For
the multilevel omics analysis (III), the logical connector
of the different levels was set to the logical ‘OR’ and L
was set to L1 = 3 (transcriptome data), L2 = 1 (proteome
data) and L3 = 0 (secretome data). These L values were
based on the number of time points of the respective mo-
lecular level. The assumption was that the considered
component is a DEG/DSyP/DSeP in at least one measured
time point. For instance, as four measured transcriptome
time points were available, a gene was allowed to be not
differentially expressed in maximal three out of four time
points. The top ten best-scoring sub-networks were
selected for further analysis. A KPM regulatory module
describes the union of these top ten sub-networks of the
respectively considered datasets.

Comparison of the simple approach and a module-
detecting approach
Overlap of components
The overlap (percentage value) is defined as fraction of
the intersection of the respective datasets from the
union of the datasets. For the simple approach (SA), the
overlap of different molecular levels was analyzed by
comparing lists of DEGs, DSyPs and DSePs at the con-
sidered time points. For the module-detecting approach,
the overlap of all components of the respective regula-
tory modules was considered.
In addition to the comparison of percentage values

of overlapping components, a more objective meas-
urement based on a permutation-based test was con-
sidered. Considering all known A. fumigatus proteins
(N) described in AspGD, D ∈ N is a set of compo-
nents (DEGs, DSyPs or DSePs) for each of the mo-
lecular levels. In I = 100,000 iterations, datasets B
were created where each set consists of |D| compo-
nents sampled from N. In every iteration, the overlap
P of the molecular levels was calculated based on the
generated datasets for transcriptome, proteome and
secretome. The p-value was calculated by dividing the
number of iterations in which P ≥O, where O repre-
sents the overlap received by SA or MD, and the
total number of iterations I.

Correlation of the components’ regulation
All components detected in at least one of the transcrip-
tomic and one of the proteomic time points were consid-
ered for correlation analyses. The distance between results
obtained for different molecular levels and time points was
estimated based on the correlation of ranked lists of the
components’ absolute gene expression or protein synthesis
regulation values (absolute log2FCs). Lists of ordered, abso-
lute regulation values were rank-transformed. Indices corre-
sponding to ties (equal values) were randomly ordered.
Spearman’s rank correlation coefficient r was calculated.
The ranking was repeated 1000 times. Over all repeats, the
final correlation between the regulation lists was averaged.
The distance d is defined as d = 1 - r.

Generalized topological overlap
The ORM was clustered via the generalized topological
overlap measure (GTOM) as described in [35]. Matrix

T ½m� ¼ ½t½m�
ij � is called the m-th order GTOM matrix and

includes the overlap of nodes reachable from the nodes i
and j within m steps:

t m½ �
ij ¼ Nm ið Þ∩Nm jð Þj j þ aij þ Ii¼ j

min Nm ið Þj j; Nm jð Þj jf g þ 1−aij

A = [aij] is defined as adjacency matrix, Nm(i) as the
set of neighbors of i, the Identity matrix Ii = jequals 1 if i = j
and zero else, |·| denotes the number of elements (cardin-
ality) in its argument j. The clustering was performed for
second-order connections. With the aid of the hclust func-
tion (method = average), a dendrogram based on all dis-
tances between proteins were generated. A cutoff of 0.65
was chosen to receive the clusters. R packages Rcolor-
Brewer [36] and WGCNA [37] were applied for coloring
the single clusters.

Enrichment analysis (functional annotation of biological
processes)
Gene Ontology (GO) terms were applied for functional
annotation concerning biological processes. Gene (gene
product) terms of A. fumigatus were retrieved from
AspGD as of October 2017. In particular, GO informa-
tion about the Af293 strain was extracted and imported
into R and was transformed into custom annotation ob-
jects by packages AnnotationDbi [38] and GSEABase
[39] (each of version 1.38.2 as part of Bioconductor
package collection version 3.5). In addition, the packages
GO.db [40], GOstats [41] as well as the helper function
GSEAGOHyperGParams of package Category [42] were
applied for the enrichment analysis. For SA, all A. fumi-
gatus proteins described in AspGD were taken as back-
ground. For the MD approach, all proteins which are
part of the PPIN downloaded from STRING, were taken
as background. GO terms composed of at least two
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members, associated with at least two components and
leading to p-values below 0.05 were considered as sig-
nificantly enriched.

Results
Data overview
We used experimental omics data of a A. fumigatus study
that investigated the stress response to the antifungal drug
caspofungin at different molecular levels (transcriptome,
proteome, secretome) including different time points. Fig-
ure 2a provides an overview of the available datasets includ-
ing all genes and proteins detected by RNA-Seq and
LC-MS/MS. Over all considered time points, 9881 genes
were measured for the transcriptomic response, 3858 pro-
teins for the proteomic response and 1110 proteins for the
secretome. Filtering the data for DEGs, DSyPs and DSePs
resulted in 1058 DEGs (498 upregulated (↑), 560 downregu-
lated (↓)) at 0.5 h, 1237 DEGs (876 ↑, 361 ↓) at 1 h, 1322
DEGs (784 ↑, 538 ↓) at 4 h and 1068 DEGs (600 ↑, 468 ↓)
at 8 h after caspofungin treatment. In the proteome, 230
DSyPs (88 ↑, 142 ↓) were identified at 4 h after treatment,
and 204 DSyPs (114 ↑, 90 ↓) at the 8 h time point.
136 DSePs (118 ↑, 18 ↓) were detected for the secretome at
8 h after treatment (Fig. 2b). Complete lists of DEGs, DSyPs
and DSePs are provided in the Additional file 1.

Overlap of datasets of the different molecular levels
We started to analyze the molecular level overlap by com-
paring all measured genes or proteins (hereafter called
‘components’) independently of their differential regula-
tion and time points. This comparison showed that the
overlap of all three molecular levels amounted to 10.5%
(Fig. 2a). Applying SA and MD to the experimental data
(Fig. 3), this level overlap accounted for 0.5% (SA) and
6.1% (MD). Considering only two out of three molecular
levels (including data of all considered time points, re-
spectively), both approaches resulted in the highest over-
lap for the proteome/secretome comparison (11.2% SA,

21.4% MD). This observation was not surprising as the se-
creted proteins are also included in the global proteome.
We found that MD provided an up to 12-fold higher over-
lap than SA.
A further analysis of overlapping components considered a

more objective measurement based on a permutation-based
test. In 100,000 iterations, random datasets for transcrip-
tome, proteome and secretome were generated and the over-
lap of all three datasets was calculated. The median-value of
all 100,000 random overlaps equaled 3. Thus, the level over-
lap accounted for 0.1%. For the SA-obtained overlap (11
components or 0.5% as presented in Fig. 3), we calculated a
p-value = 2.8 × 10− 4 which is statistically significant in com-
parison to random overlaps. In contrast, the MD-received
overlap (58 components or 6.1% as presented in Fig. 3) re-
sulted in the smaller p-value = 1.0 × 10− 5. Comparing the
overlap percentage values, SA produced 5-fold and MD even
61-fold higher overlap values than random overlaps. The
comparison of the SA- and MD-received overlap values re-
sulted in the above-mentioned 12-fold higher values for MD.

Estimation of the best match of transcriptomic and
proteomic time points
The selection of measured time points was based on the
following assumption: The expression of a gene and the
synthesis of its corresponding protein do not occur at the
same time since they are consecutive processes. Thus,
changes in the transcriptional regulation are also reflected
in the differential synthesis of proteins at the proteomic
level but most likely at a later time point. Therefore, dif-
ferent time points at the transcriptomic and proteomic
level were selected to consider the delay between tran-
scription and translation during the fungal response.
Hence, we analyzed our results regarding best matches of
level- and time point-dependent sub-responses.
We tested two approaches for estimating the best

transcriptome-proteome time point match: Comparison
of components, and correlation of the components’

(A) (B)

Fig. 2 Overview of the available datasets. a Number and overlap of all measured genes and proteins. b Number of differentially expressed genes
(DEGs), differentially synthesized proteins (DSyPs) and differentially secreted proteins (DSePs) in all available experimental datasets
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regulation. The first estimation approach aimed at ana-
lyzing overlapping components in the transcriptome and
proteome which can be observed, for instance, as tran-
scripts and their synthesized proteins. For the second es-
timation approach, the correlation of the components’
regulation was calculated based on absolute gene expres-
sion or protein synthesis regulation values. This ap-
proach represents the regulation of response pathways

which not necessarily contain overlapping components
but also other genes or proteins contributing to these
pathways. Therefore, in this approach not only the
overlapping components were analyzed but also com-
ponents which are part from at least one of the re-
spectively compared transcriptome and proteome time
points. This leads to a higher number of considered
components.
Starting with the comparison of components (Fig. 4a),

both SA and MD demonstrated the best match for the
transcriptomic response 1 h and the proteomic response
4 h after caspofungin treatment (5.3% SA, 16.5% MD).
While SA resulted in the best match of transcriptome at
8 h with proteome at 8 h (7.3%), MD showed the best
match with transcriptome at 4 h (16.8%). Consequently,
for both time point comparisons, MD-produced results
indicated a delay of 3–4 h between the different
sub-responses. Taking into account also the correlation
of components’ regulation, Fig. 4b shows that similar to
the previous analyses MD provided a better, i.e., here
lower, distance for MD values than for SA. Oppositely to
SA, the MD results confirmed the best time point match
of transcriptome at earlier time point (1 h) and prote-
ome at the later one (8 h) (Fig. 4b), similarly to the
aforementioned comparison of components (Fig. 4a).

Fig. 3 Overlap of molecular levels. Overlap of transcriptome (T),
proteome (P) and secretome (S) regarding their components (genes
or proteins)

(A)

(B)

Fig. 4 Transcriptome-proteome time point match. Estimation of the best time point match for transcriptome (T) and proteome (P) time points
regarding a comparison of components and b correlation of the components’ regulation. Distance is defined as 1 minus correlation coefficient

Conrad et al. BMC Systems Biology           (2018) 12:88 Page 7 of 18



The lowest distances were observed for the proteome at
8 h and transcriptome at 1 h (Fig. 4b, highlighted in dark
green), followed by the proteome at 4 h and transcrip-
tome at 1 h (Fig. 4b, dark green). These findings were
also in agreement with the highest and second highest
overlap values in Fig. 4a. Together with the observation
that both approaches showed very high distance values
(yellow and light yellow) between the same transcrip-
tome and proteome time points, our results support the
assumption of a time delay between level-dependent
sub-responses (transcription and translation). Tenden-
cies in the coherence of time points and an estimation
of the resulting time delay between molecular levels may
be helpful for further wet-lab studies regarding time-
and cost-saving by focusing on the most relevant time
points.
Another observation can be made by comparing the re-

spective results of the two estimation approaches: There is
a tendency that the correlation-based approach resulted in
best matches for earlier transcriptome time points than the
overlap-based approach. This observation may be based on
the activation of stress response pathways induced by the
fungus shortly after the caspofungin treatment. As such re-
sponse pathways could involve components from both mo-
lecular levels transcriptome and proteome, we assume that
the actual regulation of response pathways represented by
the correlation-based approach already starts before the
main translation process of potentially involved compo-
nents occurs (represented by the overlap-based approach).

Integration of multilevel omics data
Analysis of the overall fungal response to caspofungin
All regulatory modules of each molecular level and time
point identified by MD (Table 1 and Additional file 2:
Table S1) can be considered to be part of the overall fun-
gal response to caspofungin. Forming the union of them,
the resulting overall regulatory module (ORM) was com-
posed of five sub-modules including 894 components

(Fig. 5). For a focused enrichment analysis based on the
ORM’s underlying topology, we performed a generalized
topological overlap measurement regarding the main
sub-module 1. Figure 5 represents the ORM with its five
sub-modules and the 15 clusters of sub-module 1, where
the cluster membership of each protein is color-coded. An
overview of all components of the ORM including
sub-modules and clusters is available in Additional file 2:
Table S2). GO term enrichment analyses showed that the
clusters were significantly enriched with distinct biological
functions (see Additional file 2: Tables S3–21) for a list of
all significantly associated biological processes of each cluster
and the remaining sub-modules). Examples of such
processes are protein phosphorylation and response to oxi-
dative stress (cluster 2, Additional file 2: Table S4), actin
filament-based process (cluster 3, Additional file 2: Table S5),
regulation of kinase activity (cluster 5, Additional file 2:
Table S7), amino acid metabolic processes (cluster 6,
Additional file 2: Table S8 and cluster 9, Additional file 2:
Table S11), (1,3)-alpha-D-glucan biosynthesis (cluster 7,
Additional file 2: Table S9), secondary and lipid metabolic
process (cluster 12, Additional file 2: Table S14 and cluster
13, Additional file 2: Table S15) or transport mechanisms
(cluster 15, Additional file 2: Table S17 and sub-module 5,
Additional file 2: Table S21).

Polyubiquitin and CBF/NF-Y family transcription factor as
potential key factors contributing to the caspofungin-
induced response
To investigate potential key factors in the fungal re-
sponse contributing to, e.g., caspofungin-caused side ef-
fects, we analyzed the underlying topological network
structure of the ORM. We took into account the net-
work node-associated degree (number of edges con-
nected to the node) and betweenness centrality (number
of shortest paths that go through each node) [13]. We
identified the node representing polyubiquitin UbiD with
the fifth highest degree (Table 2) and the third highest
betweenness centrality (Table 3). It was furthermore the
only node that could be found in the top ten lists of
both measures. Ubiquitin is a highly conserved 76-residue
protein which can be found in all eukaryotic organisms [43].
In Saccharomyces cerevisiae, the orthologous gene UBI4, one
out of four ubiquitin genes in yeast, was shown to be essen-
tial for resistance to different stresses including high temper-
atures and starvation [44].
In addition to this topology-based approach, we also

applied an approach focused on transcription factors.
Transcription factors play an important role in regulating
the compensatory stress response to drugs. However, in
many cases, it is difficult to measure transcription factors’ ac-
tivity since they are often constitutively expressed and/or ac-
tivated posttranscriptionally. Therefore, we scanned the
ORM for transcription factors connected to DEG-associated

Table 1 Regulatory modules generated by ModuleDiscoverer

Underlying experimental dataset Number of nodes
(components)

Number of edges
(interactions)

Transcriptome 0.5 h 511 2967

Transcriptome 1 h 256 1336

Transcriptome 4 h 313 1604

Transcriptome 8 h 256 1208

Proteome 4 h 147 845

Proteome 8 h 124 520

Secretome 8 h 293 2413

Overall regulatory module 894 6111

Number of nodes (representing gene or protein components) and edges
(representing interactions between the components) of the regulatory
modules received by ModuleDiscoverer
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proteins, DSyPs or DSePs (Table 4). Among them, we de-
tected the CBF/NF-Y family transcription factor. It shows
similarities to DNA polymerase epsilon subunit DPB4 of S.
cerevisiae and Schizosaccharomyces pombe.
Both polyubiquitin and the CBF/NF-Y family transcrip-

tion factor were detected in all transcriptome and, in case
of the CBF/NF-Y family transcription factor, proteome
time points but neither as DEG nor as DSyP. Figure 6 rep-
resents these two nodes and their respective first neigh-
bors (including DEGs, DSyPs or DSePs) within the ORM.
The investigation of potential key factors in the

drug-induced response, like polyubiquitin and CBF/
NF-Y family transcription factor, may help to better
understand the position and dynamics of drug targets
and associated proteins in the interaction network and
can potentially contribute to increase the safety of drugs.

Caspofungin induces increased production of the
secondary metabolite fumagillin
As described above, the ORM contained two clusters,
cluster 12 and 13, which included several enzymes that
are involved in the biosynthesis of secondary metabo-
lites. In particular, transcripts and their corresponding
proteins of the antimicrobial agent fumagillin biosyn-
thesis gene cluster (11 out of 15 cluster genes) showed

increased levels after exposure of A. fumigatus to caspo-
fungin. To verify whether caspofungin triggers the pro-
duction of this meroterpenoid, we extracted A.
fumigatus cultures exposed for 8 h to caspofungin
(100 ng/ml) and control cultures with ethyl acetate and
determined the fumagillin concentration by LC-MS. In
cultures without caspofungin the concentration of fuma-
gillin was 67.3 ± 21.7 μg/ml, while in cultures with cas-
pofungin the concentration increased by 3-fold to 208.1
± 63.8 μg/ml (Fig. 7). The level of other secondary me-
tabolites such as pseurotin A stayed almost unchanged
(Additional file 3).

Comparison of ModuleDiscoverer- and KeyPathwayMiner-
generated regulatory modules
To estimate the comprehensiveness of MD-generated regula-
tory modules, we applied another available module-detecting
approach, KeyPathwayMiner (KPM), to our experi-
mental datasets and compared the identified regula-
tory modules with those identified by MD (Table 5).
Table 5 shows the numbers of components of the

KPM-produced regulatory modules for each time point and
the overall regulatory module in comparison with those
based on MD. Exemplarily, the comparison showed that the
ORM received by MD contains a 1.5-fold higher number of

Fig. 5 Overall regulatory module representing the response of A. fumigatus to caspofungin. The overall regulatory module identified by
ModuleDiscoverer is composed of five sub-modules including 894 components (see Additional file 2: Table S2). Clusters with exemplarily selected
significantly enriched biological processes are color-coded
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Fig. 6 Potential key factors within the overall regulatory module contributing to the caspofungin-caused fungal response. a Polyubiquitin and b
CBF/NF-Y family transcription factor (centrally arranged, respectively) and their first neighbors in the overall regulatory module. DEG-associated
proteins, DSyPs and DSePs are highlighted with a yellow border

Fig. 7 Caspofungin-induced increased production of the secondary metabolite fumagillin. LC-ESI-ITMS extracted ion chromatograms (EIC) at m/z
459.0–459.4 amu (left), HPLC-UV/PDA chromatograms (center) and UV/PDA spectra at RT = 13.67 min (right) of 250 μg/ml fumagillin reference
standard (top) and crude extract of A. fumigatus without (center) and with caspofungin treatment (bottom)
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components by covering more than 60% of KPM module
components. Considering the modules of the single time
point datasets, e.g. secretome at 8 h, we found an up to
6.5-fold higher component number by covering up to 93%
of KPM components. Hence, we focused on the results re-
ceived by MD. Nevertheless, additional KPM analyses re-
garding the overlap of molecular levels and the estimation
of the best match of transcriptomic and proteomic time
points are shown in Additional file 2: Figures S1 and S2
and Additional file 4.

Discussion
In this study, we focused on the integration of omics data
derived from heterogeneous sources. Therefore, we used
experimental data of an A. fumigatus study investigating
the stress response to the antifungal drug caspofungin at
different molecular levels and time points. For the ana-
lyses, we applied SA considering only DEGs/DSyPs/DSePs
and the regulatory module-detecting single-seed MD ap-
proach considering DEGs/DSyPs/DSePs, non-DEGs/
DSyPs/DSePs as well as structural PPIN information. We
focused on the single-seed approach instead of the also
available multi-seed MD approach since the single-seed
approach is comparable with other well-established max-
imal clique enumeration problem-based algorithms (e.g.,
Barrenäs et al. [45] or Gustafsson et al. [46]). In addition,
Vlaic et al. showed that the multi-seed-identified modules
can be essentially considered as an extension of the
single-seed modules. However, we also applied the
multi-seed approach to our experimental data set. In sum-
mary, the multi-seed MD approach allows for effectively
integrating multilevel omics data. Multi-seed-generated
results contain the regulatory modules received by the
single-seed approach and are even more comprehensive.
The overall regulatory module generated by the

multi-seed approach confirms the already observed key
players and significantly associated processes. Details on
the analyses can be found in the Additional files 2 and 5.

Relation of transcriptomic, proteomic and secretomic
data
The comparison of all three molecular levels regarding
all measured, SA- or MD-considered components re-
sulted in only small overlap values. This observation is
in agreement with other integrative transcriptomic and
proteomic studies reporting that there is no or only a
weak correlation between different molecular levels [47–
49]. Potential explanations are biological (e.g., transla-
tional regulation or differences in protein and mRNA
half-lives in vivo) or methodological origins (e.g., detec-
tion limits of the techniques or the choice of measured
time points) [48, 49]. Figures 2a and 3 show an appar-
ently contradictory outcome regarding the overlap of
datasets of different molecular levels: Fig. 2a shows the
highest overlap percentage value for transcriptome and
proteome, Fig. 3 for proteome and secretome. This can
be explained by the fact that Figs. 2a and 3 are based on
analyses that considered diverse datasets. For Fig. 2a, all
detected genes and proteins were analyzed. In contrast,
Fig. 3 comprises only a fraction of these components be-
cause of a further filtering step to only compare DEGs/
DSyPs/DSePs (SA) or regulatory module components
(DEGs/DSyPs/DSePs and associated background pro-
teins, MD). Actually, in Fig. 3, both approaches MD and
SA showed the highest overlap between proteome and
secretome. On the one hand, this highest overlap per-
centage reflects the same underlying measurement tech-
nique. In this study, the transcriptome was measured by
RNA-Seq, the proteome and secretome by LC-MS/MS.
As the techniques themselves are very different, also dif-
ferences in their respective outcome can be expected.
Therefore, as the intracellular proteome and secretome
are based on the same measurement technique, they are
more similar to each other than, for instance, transcrip-
tome and proteome. On the other hand, the highest
overlap also demonstrates the biological similarity in
terms of immediately consecutive protein-based levels.
Thus, both levels consist of proteins which differ only in
the secretion step via classical (i.e., N-terminal secretory
signal peptide triggered) or non-classical (i.e., without
involvement of N-terminal signal peptides) secretory
pathways [50]. Hence, proteome and secretome can be
considered as immediately consecutive levels which can
both be measured by LC-MS/MS.
By a general comparison of MD- and SA-received re-

sults, we determined up to 12-fold higher overlap values
provided by MD than those calculated by SA. This is
reasonable as SA focuses on the comparison of lists of
DEGs, DSyPs and DSePs, exclusively. Hence, non-DEGs/

Table 5 Comparison of ModuleDiscoverer- and
KeyPathwayMiner-detected regulatory modules

Underlying
experimental dataset

Component
number of MD
modules

Overlap
(percentage
value regarding
KPM module)

Component
number of
KPM modules

Transcriptome 0.5 h 511 134 (75.7%) 177

Transcriptome 1 h 256 62 (63.9%) 97

Transcriptome 4 h 313 123 (74.1%) 166

Transcriptome 8 h 256 89 (65.0%) 137

Proteome 4 h 147 36 (75.0%) 48

Proteome 8 h 124 30 (63.8%) 47

Secretome 8 h 293 42 (93.3%) 45

Overall regulatory
module

894 343 (59.6%) 576

Comparison of ModuleDiscoverer (MD) and KeyPathwayMiner (KPM) regarding
their number of module components. The overlap is defined as fraction of the
intersection of the respective datasets from the KPM datasets
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DSyPs/DSePs measured in the experimental background
were not considered which results in a high loss of data
for the analyses. In contrast, the additional information
considered by MD led to a much higher number of
(overlapping) components.

Analysis of the overall fungal response and potential key
factors
With the aid of the ORM, we analyzed the A. fumigatus re-
sponse to caspofungin over all molecular levels and time
points. We found that ORM clusters are significantly
enriched with biological functions like (1,3)-alpha-D-glucan
biosynthesis and carbohydrate metabolic processes, actin
filament-based processes, activation of protein kinase activity
and response to oxidative stress. These results are in agree-
ment with a genome-wide expression profiling study of
Aspergillus niger in response to caspofungin [51]. Here, many
of the upregulated genes were predicted or confirmed to
function in cell wall assembly and remodeling, cytoskeletal
organization, signaling and oxidative stress response. Also,
genes and proteins of the electron transport chain were spe-
cifically enriched which supports the hypothesis that caspo-
fungin acts as an effector of mitochondrial oxidative
phosphorylation [52]. This is consistent with results from
Cagas et al. [47] who analyzed the proteomic response of A.
fumigatus to caspofungin and identified the largest change in
a mitochondrial protein that has a role in mitochondrial re-
spiratory chain complex IV assembly. The significant enrich-
ment of genes and proteins of the amino acid metabolic
process is best explained by the growth inhibitory activity of
caspofungin that leads to the downregulation of the primary
metabolisms including amino acid biosynthesis [53].
The cluster 5 represents (gene-associated) proteins in-

volved in the activation of protein kinase activity.
Mitogen-activated kinases (MAPK) are important regula-
tors in the fungal response to stress that is induced by en-
vironmental changes or the disruption of cell wall integrity
([54], and references therein) which are both consequences
of the caspofungin treatment. Also cellular transport mech-
anisms were influenced by this antifungal drug leading to
osmotic stress as already reported in Altwasser et al. [26].
In addition, we observed the association of ORM cluster
components with the (1,3)-alpha-D-glucan biosynthesis as
well as carbohydrate metabolic processes. Consistently, cas-
pofungin inhibits the synthesis of β-(1,3)-glucan which is
the principal component of the fungal cell wall [55]. As a
compensatory response, the production of other cell wall
polymers was stimulated. Another interesting finding was
the increased production of the secondary metabolite fuma-
gillin upon exposure of A. fumigatus to caspofungin. So far,
only the release of the secondary metabolite gliotoxin has
been reported for cultures of A. fumigatus in the presence
of caspofungin [56]. Fumagillin has anti-angiogenic activity
[57] and induces cell death in erythrocytes [58]. It is

therefore possible that administration of caspofungin in-
duces the production of secondary metabolites that have
adverse effects on host cells during the infection. Another
interesting aspect of our finding is that the induction of
fumagillin production upon caspofungin exposure may rep-
resent a form of ‘microbial communication’ between fungi,
in particular taking into account that echinocandins like
caspofungin are produced by a diverse set of fungi [59].
As Wang et al. [13] reported, studying key factors of a

drug-induced response by analyzing the underlying net-
work structure may help to better understand the position
and dynamics of drug targets and associated proteins po-
tentially involved in drug-caused side effects. Here, in
addition to the main target β-(1,3)-D-glucan synthase, we
detected polyubiquitin UbiD among the top five nodes of
the ORM ranked by both node degree and betweenness
centrality. Polyubiquitin is known to encode multiple
ubiquitin units in tandem, each of these transcribed as a
single transcript. It is involved in several metabolic path-
ways and plays an important role in the regulation of the
proteasome-based protein degradation processes [43, 60].
Some recent studies have already reported the importance
of polyubiquitin in the fungal stress response. In the patho-
genic yeast Candida albicans, Leach et al. [61] have shown
that polyubiquitin is required for the adaption to sudden
stress induced, e.g., by heat or caspofungin and is critical
for the fungus’ pathogenicity. In another study in S. cerevi-
siae, Lesage et al. [62] described ubiquitin-related protein
degradation as an important process in the compensation
for defects in glucan biosynthesis. We hypothesize that
polyubiquitin is an important player in the compensatory
response of A. fumigatus to caspofungin. In line, the corre-
sponding gene ubi4 was shown to be induced upon
heat-shock in A. nidulans [43].
Exemplarily, CBF/NF-Y family transcription factor was

detected among the list of TFs. Its C. albicans ortholog
DPB4 represents a putative DNA polymerase epsilon
subunit D and was shown to be involved in filamentous
growth and maintenance of the mitochondrial DNA
genome [63]. This role in mitochondrial processes in
conjunction with caspofungin treatment is in agreement
with the in previous studies shown importance of mito-
chondrial functions for drug tolerance and virulence of
fungal pathogens ([47], and references therein). Also for
C. albicans, Khamooshi et al. [64] have reported that de-
letion of DPB4 results in a decreased resistance to cas-
pofungin in drop plate assays. These facts could indicate
an involvement of CBF/NF-Y family transcription factor
in the resistance of A. fumigatus to caspofungin.
Interestingly, in our study, both the polyubiquitin and

the CBF/NF-Y family transcription factor were detected
in all transcriptome and, in case of CBF/NF-Y family
transcription factor, proteome time points but neither as
DEG nor as DSyP. However, their location within the
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ORM had shown that they are closely related to DEGs,
DSyPs or DSePs. Consequently, by considering DEGs,
DSyPs or DSePs for data analyses by SA, these proteins
would not have been taken into account as factors in the
fungal response despite the fact that they likely have a
strong influence on DEGs, DSyPs or DSePs as shown in
the ORM. To our knowledge, the role of both the polyu-
biquitin and the CBF/NF-Y family transcription factor
has not been examined yet in the context of
caspofungin-induced stress in A. fumigatus. Hence, our
analyses offer novel hypotheses which have to be verified
in future studies.

The module-detecting approach KeyPathwayMiner
In addition to MD, also other approaches identifying regu-
latory modules are available, for instance, KPM. Similar to
MD, KPM can be used for the analyses of both,
single-level and multilevel omics data. However, it does
not make assumptions about community structures. KPM
combines DEGs, DSyPs or DSePs with non-DEG/DSyP/
DSeP exception nodes acting as ‘bridges’ to detect max-
imal connected sub-networks [15]. The comparison of
MD- and KPM-generated regulatory modules showed that
MD generates modules with a significant higher number
of components than KPM. Additionally, these MD module
components cover most of the KPM components. As
these findings indicate that MD-generated modules are
more comprehensive than modules derived by KPM, we
focused on the results obtained by MD.

PPIN information as limiting factor
The basis of module-detecting approaches like MD or
KPM is information from underlying organism-specific
PPINs. Hence, the quality of results provided by these
approaches also depends on the comprehensiveness of
the underlying PPIN itself. Only those components of
the experimental data which do also occur in the PPIN
are considered for the regulatory module. For example,
the PPIN of A. fumigatus strain A1163 downloaded from
STRING consists of 4123 proteins. But according to
current information provided by CADRE, the fungus it-
self is known to comprise 9916 protein-coding genes.
Hence, more than half of the known fungal components
cannot be considered for analyses based on this PPIN.
Consequently, the available PPIN information can be
considered as limiting factor in the data analyses. Thus,
while our results highlight the benefits and potential
provided by the regulatory module detection-based ana-
lysis of multilevel omics data, future studies will have to
focus on the expansion of organism-specific PPINs.

Conclusion
PPINs enable the consideration of both structural and func-
tional relationships between network proteins. Thus, they

facilitate a focused view on closely related components in
terms of modules. In this study, we demonstrated so far un-
tested capacity of the module-detecting MD approach to
integrate omics data coming from different molecular levels
and time points. Moreover, we showed that this level of in-
tegration is not achievable using a simple approach of com-
paring lists of DEGs/DSyPs/DSePs. The integration of these
data in one ORM can provide an overview of the overall or-
ganism’s response to an external stimulus. We presented
several approaches for analyzing this response and potential
key factors contributing to, e.g., drug-caused side effects in
more detail. With the aid of the regulatory module-detect-
ing approach, it is possible to identify potential response
key factors which cannot be detected in commonly used
approaches comparing DEGs, DSyPs and DSePs,
exclusively.
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