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Abstract

about 3.1 to 6.7 times.

Background: Microbe plays a crucial role in the functional mechanism of an ecosystem. Identification of the
interactions among microbes is an important step towards understand the structure and function of microbial
communities, as well as of the impact of microbes on human health and disease. Despite the importance of it,
there is not a gold-standard dataset of microbial interactions currently. Traditional approaches such as growth and
co-culture analysis need to be performed in the laboratory, which are time-consuming and costly. By providing
predicted candidate interactions to experimental verification, computational methods are able to alleviate this
problem. Mining microbial interactions from mass medical texts is one type of computational methods.
Identification of the named entity of bacteria and related entities from the text is the basis for microbial relation
extraction. In the previous work, a system of bacteria named entities recognition based on the dictionary and
conditional random field was proposed. However, it is inefficient when dealing with large-scale text.

Results: We implemented bacteria named entity recognition on Spark platform and designed experiments for
comparison to verify the correctness and validity of the proposed system. The experimental results show that it can
achieve higher F-Measure on the comparison of correctness. Moreover, the predicting speed is much faster than
the previous version in large-scale biomedical datasets, and the computational efficiency is improved remarkably by

Conclusions: The system for bacteria named entity recognition solves the inefficiency of the previous proposed
system on large-scale datasets. The proposed system has good performance in accuracy and scalability.

Keywords: Spark, Named entity recognition, Text mining, Microbial interactions

Background

Microbes are almost everywhere in the global environ-
ment. Soils, plant, water and animals are the environ-
ment of one or more microbial communities. A variety
of microbial communities formed by the aggregation of
different proportions microorganisms are commonly re-
ferred to as the microbiome. Microbes in the micro-
biome frequently interact with other members of the
community, and these interactions reflect the overall
structure and function of the microbial community [1].
Microbes are closely related to host health. Unbalance in
microbial communities will lead to a variety of diseases.
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For example, the microbiome affects the host by making
it susceptible to central nervous system autoimmune
diseases [2]. Studying the relationships between mi-
crobes and diseases provides a new potential to cure a
number of diseases. For instance, gastrointestinal micro-
flora can affect fat storage, and thus recovering gut
microflora to a healthy state which is helpful for solving
the obesity-related problems [3]. In the past 10 years or
so, researchers have developed a variety of computa-
tional methods for mining a large number of microbial
interactions from metagenome abundance data. For ex-
ample, using the Fisher’s exact test to infer whether spe-
cies co-occur or co-exclusion from spatial metagenomic
survey data [4], using the Spearman, Pearson and other
correlation coefficients to identify the correlation
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between microbial species, or using the LSA algorithm
to infer directional interactions from temporal meta-
genomic data [5]. On the other hand, a large number
of microbial interactions validated by many biological
experiments are reported in mass biomedical litera-
ture and which are often overlooked. Mining these in-
teractions and collating them into a database will
create a valuable resource for current research. As
one of the main ways to show results and exchange
academic results, biomedical literatures accumulate
rapidly and its scale is far exceeding those of other
disciplines. In particular, there are over 2 million arti-
cles related to bacteria studies. How to effectively use
these massive data to quickly and accurately discover
valuable information are becoming an important part
of current research. There are still few studies on
how to find out the interactions between microbes
from mass biomedical literature. Freilich et al. [6]
studied the interactions between microbes based on
the co-occurrence of species in the text and con-
structed an approximate model of the bacterial eco-
system. Lim et al. [7] wused support vector
machine(SVM) to classify and determine whether
there is positive or negative interaction between the
given microbial species, which greatly reduces the
manual annotation workload, but cannot determine
the mode or direction of interactions.

One of the basic tasks of text mining is named entity
recognition, which aims to automatically identify the
proper nouns. The identification of microbial named en-
tities remains a challenging task, due to the lack of
standard corpus, the emergence of new named entities,
the existence of phenomena that one entity with differ-
ent writings and long entities nesting short entities.
Named entity recognition (NER) approaches mainly in-
clude rule-based methods, dictionary-based methods,
and machine learning-based methods. The current
mainstream method for NER is machine learning, and of
them conditional random field (CRF) is an excellent al-
gorithm among them. In our previous work [8], we
manually annotated datasets and proposed a bacteria
named entity recognition system with good performance
based on the dictionary and CRF. However, for the
massive biomedical literature that needs to be identified,
the system will encounter a series of challenges in big
data processing, including huge computational time and
space requirements.

Transferring large-scale computing tasks to the dis-
tributed cluster platform has become an effective way to
solve the above problems. Spark is a memory-based par-
allel framework, which will cache the data that will be
used repeatedly to the memory to reduce the data load-
ing time. In addition, for the given task, Spark will build
a Directed Acyclic Graph (DAG) which tightly arranges
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calculations and calculations. Hence the framework is
able to automatically optimizes tasks according to the
logical relationship between operators. The same itera-
tive machine learning algorithm runs faster in Spark
than Hadoop by 10~ 100 times. [9]. Therefore, the exe-
cution efficiency of the Spark framework is relatively su-
perior. Literature [10] proposes a parallel ant colony
optimization (ACO) algorithm based on Spark for com-
binatorial optimization in the era of big data, which is
more than 10 times faster than that based on MapRe-
duce. Literature [11] achieves parallelized frequent item
sets mining algorithm based on Spark, and compared it
with the algorithm implemented based on MapReduce
on a number of benchmark experiments. The experi-
mental results show that the former has an average
speed of 18 times faster than the later.

Based on the previous results [8], we proposed a paral-
lel bacteria named entity recognition system based on
Spark platform and CRF. The experiment shows that the
speed of the Spark version has been greatly improved,
with higher time efficiency and good scalability. This lays
a foundation for the extraction of bacteria interactions
from medical literature.

Materials and methods

Experimental environment and data sets

The experimental environment is as follows: Debian,
3.16.0—4-amd64, Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz processors, 256GB RAM, Apache Spark 2.2.1,
Scala-2.11.8 and JDK1.8.0_71. We built a Spark applica-
tion with a Stand-alone cluster task scheduling mode on
a 48-core server. The CRF algorithm used in the experi-
ments is an open source CRF algorithm in Spark [12].
They use Adam and AdaGrad optimizer based on Spark,
so it will get better performance compared with other
methods [13, 14].

The datasets used are the corpus (IOB2 format) that
are manually annotated in our previous work [8] for bac-
teria named entity recognition and the 50,000 unanno-
tated biomedical abstracts downloaded on PubMed with
the keyword “human”, “oral”, “bacteria”.

Methods

In this paper, we mainly study the computing platform
for bacteria named entity recognition based on the con-
ditional random field and Spark. To begin with, we ex-
tracted 34 features such as word features, affix features,
etc. We trained the CRF model on a training sets in
Spark, and then evaluated the model’s performance on a
test set. Finally, we compared the Spark version and
CRF++ on single node under the same conditions to ver-
ify the efficiency of the system, and tried to apply them
to large-scale unannotated corpus to compare the pre-
diction speed of them.
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Spark computing framework

Representative batch systems include MapReduce [15],
Spark [9], Pregel [16] and Trinity [17], etc. Among them,
Spark is implemented in Scala language and compatible
with Hadoop’s original ecosystem while overcoming the
shortcomings of MapReduce in iterative computing and
interactive data analysis. In addition, it has the advan-
tages of scalability, high reliability and load balancing,
and has a huge community support, so it has become
the most active and efficient general computing platform
for large data. Resilient Distributed Dataset (RDD) [18]
is the core data structure of Spark, the scheduling order
of Spark is formed by the dependency of RDD, and en-
tire Spark program is formed by the operation of RDD.
With such memory calculation mode, Spark supports
machine learning and other iterative computing well and
has better computational efficiency than MapReduce.

Conditional random field
The conditional random field was first proposed by Laff-
erty et al. in 2001 [19], which is a discriminant undirected
graph model that models the conditional probabilities ac-
cording to the given observation sequence of variables. In
the field of biomedicine, linear chain CRFs are generally
used to process sequence labeling tasks such as named en-
tity recognition and part-of-speech tagging and so on.
Assuming X and Y are random variables, P(Y| X) is
the conditional probability distribution of Y given X. If
the random variable Y constitutes a Markov random
field represented by an undirected graph G = (V,E),

P(Y,|X, Yy, w=v) = P(Yy|X, Yy, w ~ V) (1)

that is, Eq. (1) holds for any node v, then the conditional
probability distribution P(Y|X) is called a conditional
random field.

In Eq. (1), w~v denotes all nodes w that have edges
connected to node v in the graph G = (V, E), w = v repre-
sents all nodes other than the node v, and Yy. Y, Y.,
are random variables corresponding to node v. u. w.

Assume that X = (X}, Xy, ..., Xp)and Y = (Y1, Yy, ..., Yp)
are all random variable sequences represented by linear
chains. If given a random variable sequence X, the con-
ditional probability distribution P(Y|X) of the random
variable sequence Y constitute a conditional random
field, which means Markov Property is satisfied:

P(Y1|X7 Yl,"'aYi—laYi+la ey Yn)
=P(YilX,Yi1,, Yis1) (2)

where i=1, 2, ..., n (Only one side is considered when i
=1 and n).

Then P(Y| X) is a linear chain conditional random field.
In the labeling problem, X represents the input observa-
tion sequence, Y represents the corresponding output
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sequence or state sequence. Under the condition that ran-
dom variable X is x, Y is y, the parametric form of the
conditional probability is as follows:

DY) = o expd 3 Metilyiye i) + 3w (v, 1)
Z(x) K i
(3)

Z() =) exp{z Ntk (Yo ¥ X, 1) + ) wsi(yp, x, i)}
Yy ik il
(4)

Where t, and s; are eigenfunctions, their value is 1
when the feature is satisfied, 0 otherwise. A\ and ware
the corresponding weights. Z(x)is a normalization factor,
summation is done on all possible output sequences.
The conditional random field is completely determined
by the eigenfunction and corresponding weights. The
main tasks of training are feature selection and param-
eter estimation. The purpose of feature selection is to
choose a feature set that can express this random
process, and the parameter estimation is to estimate the
weights for each feature selected. The training process
can be essentially attributed to the process of estimating
the weight parameters of the eigenfunctions based on
the principle of maximum likelihood function. When the
model training is completed, the maximum likelihood
distribution and model parameters are obtained. For the
new observation sequence X, the most likely output se-
quence Y is predicted based on training model. The con-
ditional random fields can make full use of contextual
label information to achieve good labeling results.

The computational scale of the conditional random field
in training is related to the size of training set, templates
and the number of output tags. The sequence of input
sentences in biological texts is generally very long, so there
exists the problems of long time excution of optimization
and large memory occupation when training on
large-scale data. Research on the efficiency of CRF in
handling massive data has become one of the most popu-
lar hotspots in biomedical named entity recognition. Lit-
erature [20] implements CRFs training on large-scale
parallel processing systems based on multi-core and can
process large data sets with hundreds of thousands of se-
quences and millions of features, which significantly re-
duces the computation time. At the same time, using a
second-order Markov-dependent in the training process,
the model has achieved higher accuracy; Literature [21]
deals with complex computing tasks by decomposing the
learning process into smaller and simpler sub-problems. It
developed a core approach to learn CRF structure and pa-
rameters and speeded up the regression by using more
and more parallel platforms. Literature [22] controls the
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Fig. 1 The Bacteria named entity recognition system flow chart

number of non-zero coefficients by introducing penalties
in the CRFs model. Ignoring execution time, it imple-
ments CRF’s training task on processing hundreds of out-
put tags and up to several billion features; In literature
[23], CRE-RNN, a new neural network is proposed based
on mean-field approximation and Gaussian potential
functions for CRFs. And they obtained the best result of
the challenging Pascal VOC 2012 segmentation bench-
mark when applying the proposed method to the semantic
image segmentation problem. Literature [24] achieves the
MapReduce-based parallel training of CRFs and can en-
sure the correctness of the training results. Meanwhile, it
greatly reduces the training time and improves the per-
formance. Although this MapReduce-based implementa-
tion can handle large-scale training sets and feature sets,
the execution efficiency is not high enough. Literature
[25] converts all data into RDDs and stores them in the
memory of the cluster nodes. It implements SparkCRE, a
distributed CRFs running in a cluster environment. Exper-
iments show that SparkCRF has high computing perform-
ance and good expansibility, and it has the same accuracy
level as the traditional single-node CRF++.

Design and implementation of the system

The proposed system is written in Scala. Firstly, we ex-
tracted the features from the data sets on the Spark plat-
form. The features used are the optimal 34 sub-features
selected by the single optimal combination method in
our previous work [8], and a feature matrix was gener-
ated in the next step. The training and predicting steps
were executed using the Open Source Toolkit of CRF
based on Spark(We call it “Spark-CRF”). The flow chart
of the bacteria named entity recognition system is shown
in Fig. 1.

The system includes two stages in the workflow: train-
ing and prediction. Spark-CRF creates RDDs in nodes
and the user-defined Transformation and Action are
used for preprocessing, feature extraction, model train-
ing and prediction.

Evaluation metrics

Precision (P), Recall (R) and F-Measure (F) are generally
used to evaluate the performance of NER system. They
are defined as follows, respectively.

Table 1 The performance of models trained on different scale training sets

Training set (The CRF++ on single node

Spark version

number of sentences)

Precision Recall F-Measure Precision Recall F-Measure
1000 84.679% 73.429% 78.654% 86.715% 80.566% 83.527%
2000 85.442% 76.391% 80.664% 88.031% 80.880% 84.304%
3000 86.287% 78.232% 82.062% 88.623% 81.463% 84.892%
4000 85.707% 78.591% 81.995% 88.389% 82.002% 85.076%
5000 86.447% 78.725% 82.405% 88.699% 81.373% 84.878%
6000 87.831% 80.341% 83.919% 89.492% 82.944% 86.094%
7000 88.456% 80.476% 84.277% 89.981% 83.438% 86.586%
8000 87.745% 80.341% 83.880% 90.398% 83.662% 86.900%
9000 88.345% 80.969% 84.496% 90.847% 84.201% 87.398%
10,000 88.873% 81.373% 84.958% 90.944% 83.842% 87.249%
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Table 2 The average prediction time of CRF++ on single node vs Spark version

Data sets (The (s) Spark version (different numbers of processor cores) (s)
number of abstracts) D 2 6 18
2000 362411 118479 83.758 75223 72375
10,000 1716.569 533486 325471 286.723 268614
20,000 3081.027 964.063 612.743 525.29 517477
30,000 5207.298 1406.216 883.148 793.282 734974
40,000 6141.149 1858.607 1168.061 1020.059 966.032
50,000 7956.735 2154.872 1465.193 1243.926 1191.362
TP accordingly. While the former has many difficulties in
P= TP + FP (5) dealing with a large amount of data. For different data-
sets, the prediction time curves of the Stand-alone ver-
R= 1P (6) sion and the Spark version (with a 48-cores processor)
TP+ EN are shown in Fig. 2. From which we are able to find out
2% P xR that the Spark version runs faster than the CRF++ on
F ="PiR (7)  single node on the same dataset. With the increasing

Here, TP is the number of bacteria named entities that
are correctly identified by the model, FP is the number
of bacteria named entities which are incorrectly identi-
fied by the model, EN is the number of non-bacteria
named entities that are incorrectly identified by the
model. P represents the precision, R represents the recall
rate, and F-Measure is the average of P and R.

Results and discussion
This article mainly carried out the following two
experiments:

In order to verify the classification performance of the
proposed Spark version, we choose to compare the pro-
posed system to CRF++ on single node [8] in terms of
the P, R and F-Measure on the same datasets. Taking the
first 1000, 2000, 3000, ..., and 10,000 sentences of the
manual annotated training set [8] to form 10 training
sets for model training. The Spark version performs bet-
ter than the previous results (Table 1). We can also see
that with the increasing scale of the training data, the
F-Measure increases for both systems on the whole.

We investigated the effectiveness and scalability of the
Spark version by adjusting the scale of application data-
sets and the number of processor cores. We randomly
selected 2000 abstracts, 10,000 abstracts, 20,000 ab-
stracts, 30,000 abstracts, 40,000 abstracts, and 50,000 ab-
stracts respectively in the unannotated texts to form 6
datasets. The number of processor cores is gradually in-
creased from 12 to 48 each time. Each experiment was
conducted 5 times repeatedly and the average execution
time was recorded.

Table 2 demonstrates that with the increasing scale of
the datasets, the average prediction time of both the
CRF++ on single node and Spark version is increased

scale of the datasets, the difference of execution time be-
tween the two systems is getting larger and larger and
the speed enhancing performance of the Spark version
increased significantly. Comparing the prediction time of
the stand-alone version and Spark version on the unan-
notated datasets, it turns out that the speed of the Spark
version has been increased by about 3.1 to 6.7 times.

The relationship between the prediction time and the
number of processor cores on 6 datasets is shown in
Fig. 3, which shows that the larger the dataset, the lon-
ger the running time under the same number of proces-
sor cores; the larger the number of processor cores, the
lesser the execution time under the same dataset. This
indicates that our proposed Spark version has good
scalability.

8000
1
o

——&— Stand-alone version
—&— Spark version

d

6000
1

TIME
4000
]

2000

a

A
/ A
A
a A—""""""
o - AT
T T T T T T
0 10000 20000 30000 40000 50000
DATASET SCALE

Fig. 2 The prediction time and dataset scale curves of CRF++ on

single node vs Spark version (48-cores processor)
- J




Wang et al. BMC Systems Biology 2018, 12(Suppl 6):106

Page 44 of 128

== 2000 T~
o |—= 10000 ‘H\H —
w @ -{—= 20000 ~_ % .
- 30000 A g
2 J-a- 40000 g A A
== 50000 TT—
bt - ~ O————n o
w — - —
o X X X X
T T I T T
0 10 20 30 40
THE NUMBER OF CORES
Fig. 3 The prediction time and the number of processor cores curves on 6 data sets
A

Conclusions

This paper provides a computational system of bacteria
named entity recognition based on the dictionary and
conditional random fields on the Spark platform. The
system includes the procedure of text preprocessing, fea-
ture extraction, model training and prediction. We also
designed experiments to verify the classification accur-
acy and time efficiency. Under the large-scale dataset,
the proposed system is more effective than the previous
Stand-alone version (CRF++ on single node). And its ef-
ficiency can be further improved with the expansion of
cluster computing ability, which shows good scalability.
The training sets and test sets used are limited in scale,
however, we haven’t verified whether datasets with larger
scales would lead to the decrease of accuracy.

Acknowledgements
XJ. thank Mengwen Liu for helpful discussions.

Funding

The research was supported by the National Key Research and Development
Program of China (2017YFC0909502), the National Natural Science
Foundation of China (61532008, 61872157), and the Self-determined Re-
search Funds of CCNU from the Colleges’ Basic Research and Operation of
MOE (No. CCNU16KFY04).

Availability of data and materials

Our datasets mainly consist of unannotated corpus and manually annotated
corpus: 50000 unannotated abstracts is retrieved on PubMed with "human’,
“oral”, and “bacteria” as the key words, which are mainly used to compare
the prediction time of CRF++ on single node and Spark version on large
corpus; 1344 annotated abstracts that was manually annotated in our
previous work [8] is used for model training and evaluation (https.//
github.com/bluelilywxy/BacNER-V1.0.git).

About this supplement

This article has been published as part of BMC Systems Biology Volume 12
Supplement 6, 2018: Selected articles from the IEEE BIBM International
Conference on Bioinformatics & Biomedicine (BIBM) 2017: systems biology.
The full contents of the supplement are available online at https://
bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-
supplement-6.

Authors’ contributions

XJ and XW designed the bacteria named entity recognition under Spark big
data platform. XW and YL implemented the system and designed
experiment to comparasion and analysis results. XJ and XW contributed to
writing the manuscript. TH and XH supervised and helped conceive the
study. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests

The authors declare that they have no competing interests. The publication
costs are funded by the National Key Research and Development Program of
China (2017YFC0909502).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'School of Computer, Central China Normal University, Wuhan, Hubei, China.
“College of Computing and Informatics, Drexel University, Philadelphia, PA,
USA.

Published: 22 November 2018

References

1. Li G Lim KMK, Chng KR, Nagarajan N. Predicting microbial interactions
through computational approaches. Methods. 2016;102:12-9.

2. Wang Y, Kasper LH. The role of microbiome in central nervous system
disorders. Brain Behavior Immunity. 2014;38(5):1.

3. Ley RE, Cohen M. Obesity and the human microbiome. Curr Opin
Gastroenterol. 2010;26(1):5.

4. Chaffron S, Rehrauer H, Pernthaler J, Von MC. A global network of
coexisting microbes from environmental and whole-genome sequence
data. Genome Res. 2010;20(7):947-59.

5. Ruan Q, Dutta D, Schwalbach MS, Steele JA, Fuhrman JA, Sun F. Local
similarity analysis reveals unique associations among marine
bacterioplankton species and environmental factors. Bioinformatics. 2006;
22(20):2532-8.

6. Shiri F, Anat K Isacc M, Uri G, Roded S, Eytan R. The large-scale organization
of the bacterial network of ecological co-occurrence interactions. Nucleic
Acids Res. 2010;38(12):3857-68.

7. Lim KMK, Li C, Chng KR, Nagarajan N. @MInter: automated text-mining of
microbial interactions. Bioinformatics. 2016;32(19):2981.

8. Wang X, Jiang X, Liu M, He T, Hu X. Bacterial named entity recognition
based on dictionary and conditional random field. IEEE Int Conf Bioinform
Biomed. 2017:439-44.

9. Zaharia M, Chowdhury NMM, Franklin M, Shenker S, Stoica |, Zaharia M,
Chowdhury M, Franklin MJ, Shenker S, Stoica I: SAP, VMware, and Yahoo!.
Spark: Cluster Computing with Working Sets. 2010.

10. Zhaoyuan W, Hongjie W, Huanlai X, Tianrui L. Ant colony optimization
algorithm based on spark. J Comp Applic. 2015.

11, QiuH, Gu R, Yuan C, Huang Y. YAFIM: a parallel frequent Itemset mining
algorithm with spark. In: Parallel and Distributed Processing Symposium
Workshops; 2014. p. 1664-71.


https://github.com/bluelilywxy/BacNER-V1.0.git
https://github.com/bluelilywxy/BacNER-V1.0.git
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-6
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-6
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-6

Wang et al. BMC Systems Biology 2018, 12(Suppl 6):106 Page 45 of 128

12. Haqzizania M, Vinceshieh, Chenghao-Intel, Ynxiang imllib-spark [DB/OL] 2017.
https://github.com/Intel-bigdata/imllib-spark.

13. Kingma DP, Ba J. Adam: A method for stochastic optimization[J]. arXiv
preprint arXiv:1412.6980, 2014.

14.  Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online
learning and stochastic optimization. J Mach Learn Res. 2011;12(7):257-69.

15. Dean J, Ghemawat S. MapReduce: simplified data processing on large
clusters. ACM. 2008.

16. Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn |, Leiser N,
Czajkowski G. Pregel: a system for large-scale graph processing.
Abstract. 2010;18(18):135-46.

17. Shao B, Wang H, Li Y. Trinity: a distributed graph engine on a memory
cloud. In: ACM SIGMOD International Conference on Management of Data;
2013. p. 505-16.

18.  Zaharia M, Chowdhury M, Das T, Dave A, Ma J, Mccauley M, Franklin MJ,
Shenker S, Stoica I. Resilient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing. In: Usenix conference on networked
systems design and implementation; 2012. p. 2-2.

19. Lafferty JD, Mccallum A, Pereira FCN. Conditional random fields: probabilistic
models for segmenting and labeling sequence data. In: Eighteenth
International Conference on Machine Learning; 2001. p. 282-9.

20. Phan HX, Nguyen ML, Horiguchi S, Inoguchi Y, Ho BT: Parallel training of
CRFs: a practical approach to build large-scale prediction models for
sequence data. 2013.

21. Bradley JK. Learning large-scale conditional random fields (Doctoral
dissertation): Carnegie Mellon University; 2013. Retrieved from http://
reports-archive.adm.cs.cmu.edu/anon/mi2013/CMU-ML-13-100.pdf.

22. Lavergne T, Cappé O, Yvon F: Practical Very Large Scale CRFs 2010:504-513.

23. Zheng S, Jayasumana S, Romeraparedes B, Vineet V, Su Z, Du D, Huang C,
Torr PHS. Conditional random fields as recurrent neural networks,
Proceedings of the IEEE international conference on computer vision. 2015.
p 1529-1537.

24. Tao L, Lin L, Luo C. A Parallel Training Research of Chinese part-of-speech
tagging CRF model based on MapReduce. Acta Sci Nat Univ Pekin. 2013;
49(1):147-52.

25. Zhu J, Jia Y, Xu J, Qiao J, Wang Y, Cheng X. SparkCRF: a parallel
implementation of CRFs algorithm with spark. J Comp Res Dev. 2016;53(8):
1819-28.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC



https://github.com/Intel-bigdata/imllib-spark
http://reports-archive.adm.cs.cmu.edu/anon/ml2013/CMU-ML-13-100.pdf
http://reports-archive.adm.cs.cmu.edu/anon/ml2013/CMU-ML-13-100.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Materials and methods
	Experimental environment and data sets
	Methods
	Spark computing framework
	Conditional random field
	Design and implementation of the system
	Evaluation metrics

	Results and discussion
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

