
RESEARCH Open Access

MICRAT: a novel algorithm for inferring
gene regulatory networks using time series
gene expression data
Bei Yang1,2*, Yaohui Xu1, Andrew Maxwell3, Wonryull Koh3, Ping Gong4 and Chaoyang Zhang3*

Abstract

Background: Reconstruction of gene regulatory networks (GRNs), also known as reverse engineering of GRNs, aims to infer
the potential regulation relationships between genes. With the development of biotechnology, such as gene chip microarray
and RNA-sequencing, the high-throughput data generated provide us with more opportunities to infer the gene-gene
interaction relationships using gene expression data and hence understand the underlying mechanism of biological
processes. Gene regulatory networks are known to exhibit a multiplicity of interaction mechanisms which include functional
and non-functional, and linear and non-linear relationships. Meanwhile, the regulatory interactions between genes and gene
products are not spontaneous since various processes involved in producing fully functional and measurable concentrations
of transcriptional factors/proteins lead to a delay in gene regulation. Many different approaches for reconstructing GRNs have
been proposed, but the existing GRN inference approaches such as probabilistic Boolean networks and dynamic Bayesian
networks have various limitations and relatively low accuracy. Inferring GRNs from time series microarray data or RNA-
sequencing data remains a very challenging inverse problem due to its nonlinearity, high dimensionality, sparse and noisy
data, and significant computational cost, which motivates us to develop more effective inference methods.

Results:We developed a novel algorithm, MICRAT (Maximal Information coefficient with Conditional Relative Average
entropy and Time-series mutual information), for inferring GRNs from time series gene expression data. Maximal information
coefficient (MIC) is an effective measure of dependence for two-variable relationships. It captures a wide range of
associations, both functional and non-functional, and thus has good performance on measuring the dependence
between two genes. Our approach mainly includes two procedures. Firstly, it employs maximal information coefficient for
constructing an undirected graph to represent the underlying relationships between genes. Secondly, it directs the edges
in the undirected graph for inferring regulators and their targets. In this procedure, the conditional relative average
entropies of each pair of nodes (or genes) are employed to indicate the directions of edges. Since the time delay might
exist in the expression of regulators and target genes, time series mutual information is combined to cooperatively direct
the edges for inferring the potential regulators and their targets. We evaluated the performance of MICRAT by applying it
to synthetic datasets as well as real gene expression data and compare with other GRN inference methods. We inferred five
10-gene and five 100-gene networks from the DREAM4 challenge that were generated using the gene expression
simulator GeneNetWeaver (GNW). MICRAT was also used to reconstruct GRNs on real gene expression data including part
of the DNA-damaged response pathway (SOS DNA repair network) and experimental dataset in E. Coli. The results showed
that MICRAT significantly improved the inference accuracy, compared to other inference methods, such as TDBN, etc.
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Conclusion: In this work, a novel algorithm, MICRAT, for inferring GRNs from time series gene expression data was
proposed by taking into account dependence and time delay of expressions of a regulator and its target genes. This
approach employed maximal information coefficients for reconstructing an undirected graph to represent the underlying
relationships between genes. The edges were directed by combining conditional relative average entropy with time course
mutual information of pairs of genes. The proposed algorithm was evaluated on the benchmark GRNs provided by the
DREAM4 challenge and part of the real SOS DNA repair network in E. Coli. The experimental study showed that our
approach was comparable to other methods on 10-gene datasets and outperformed other methods on 100-gene datasets
in GRN inference from time series datasets.

Keywords: Gene regulatory networks, Maximal information coefficient, Conditional relative average entropy, Time-series
mutual information

Background
Reconstruction of gene regulatory networks (GRNs), also
known as reverse engineering [1] of GRNs, aims to infer
the potential relationship between genes using gene
expression data. Sometimes the expression of a gene is
affected by others (named as its regulators) and meanwhile
regulates its downstream target genes. Reconstruction of
gene regulatory networks can help people understand the
mechanism of gene interactions in the cell and reveal the
mystery of life. The discovering of the regulation
relationship between genes was initially achieved by bio-
logical experiments [2]. However, this approach was costly
and progressed slowly in research, thus becoming a bottle-
neck that restricted the development of biological systems.
With the development of biotechnology, such as gene chip
microarray, the high-throughput data generated provides
us with more opportunities to understand the potential
regulatory relationships of genes. In recent years, develop-
ing machine learning and data mining algorithms and ap-
plying them to reconstruction of gene regulatory networks
has become an active research topic in bioinformatics.
Different computational methods have been proposed

to tackle the gene regulatory networks identification prob-
lems. The typical methods include regression models [3, 4],
Bayesian networks [5–10], state space models [11–14] and
information theory models [15–20], etc.
Several existing methods formulate gene regulatory

networks as regression problems which are based on the
assumption that all regulatory interactions are linear,
meaning that the gene expression level of a target gene
is a combination of the expression levels of its transcrip-
tional factors. However, biological networks are known
to exhibit multiple regulation mechanisms including
non-linear interactions.
The Bayesian network model employed the joint prob-

ability distribution of gene expression data to construct a
directed acyclic graph to represent the relationship between
genes. A relative change ratio (RCR) method was proposed
by Li et al. to preprocess the null-mutants steady state data
in order to find the key genes and build GRNs, in which

these selected key genes have a higher potential than other
genes to play very critical roles [10]. The LBN algo-
rithm (local Bayesian network) [21] was designed by Liu et
al. to improve the accuracy of GRN inference from gene ex-
pression data by exploring advantages of Bayesian network
(BN) and conditional mutual information (CMI) methods.
The LBN algorithm first uses CMI to construct an initial
network or GRN. Then, the BN method is employed to
generate a series of local BNs by selecting the k-nearest
neighbors of each gene as its candidate regulatory genes.
Integrating these local BNs forms a tentative network by
performing CMI. The final network, or GRN, can be ob-
tained by iteratively performing CMI and local BN on the
tentative network. TDBN [7] was used to infer GRNs from
time series trajectory data which were combined with the
previous knowledge gained in the above step. Wang et al.
developed the pLasso [22] method from a Bayesian per-
spective for the reconstruction of gene networks. This
method assigns different prior distributions to different
edge subsets according to a modified Bayesian information
criterion that incorporates prior knowledge on both the
network structure and the pathway information. It used in-
formation from the Pathway Commons (PC) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) as prior in-
formation for the network reconstruction. However, in real-
ity there is no prior knowledge while inferring the
interaction relationship between genes. Moreover, signaling
pathways are dynamic events that take place over a given
period of time. In order to identify these pathways, expres-
sion data over time is required. Dynamic Bayesian network
(DBN) is an important and widely used approach for pre-
dicting the GRNs from time series expression data but has
high computational costs and may not be able to infer a
large GRN.
Furthermore, other methods for inferring GRNs have

been proposed. Patrilia et al. proposed a new algorithm,
namely iRafNet [23], which integrated different data
types under a unified random forest framework. The key
idea of iRafNet is to introduce a weighted sampling
scheme within random forest to incorporate information
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from other sources of data. Specifically, the model con-
siders the expression of each gene as a function of the ex-
pression of other genes. In literature [24], a fast method
was developed for inferring gene regulatory relationships
from just knockdown data. It used a simple linear regres-
sion model focusing on single regulator-target gene pairs
based on knockdown data, and allowed the incorporation
of prior knowledge about the relationships and generates
posterior probabilities.
Mutual information (MI) is another measurement of the

dependence of two variables and is often used to assess the
relationship between genes. Margolin [16] and Sales [17]
employed MI between two genes to measure their associa-
tions in order to reconstruct gene regulatory networks. But
they could not tackle the problem that one gene is regu-
lated by multiple genes. PCA_CMI [18] was proposed by
Zhang et al. for inferring GRNs from gene expression data
considering the non-linear dependence and topological
structure of GRNs by employing path consistency algo-
rithm based on conditional mutual information (CMI). It
discovered the associations between related genes without
identifying the regulators and their targets.
Reshef et al. presented a measure of dependence for

two-variable relationships, named the maximal information
coefficient (MIC) [25], which captures a wide range of func-
tional and nonfunctional associations. MIC has better per-
formance on measuring the dependence of two-variable
relationships in comparison with other methods. Thus, we
concentrate our effort on identifying the interactions be-
tween genes based on this method.
In this paper, we developed a novel algorithm, MICRAT

(Maximal Information coefficient with Conditional Rela-
tive Average entropy and Time series mutual informa-
tion), for inferring GRNs from time series gene expression
data. This approach employed MIC as measurement for
assessing the correlation between each pair of genes while
constructing an undirected graph to represent the under-
lying relationship between genes. It subsequently com-
bined conditional relative average entropy with time series
mutual information to determine the potential regulator
and its target genes.

Methods
Information theory has been used to reconstruct GRNs
from gene expression data. Mutual information is gener-
ally used as a useful criterion for measuring the depend-
ence between variables (genes) X and Y [18]. For gene
expression data, variable X is a vector, in which the
element x denotes gene expression value in different
conditions (samples/time points). In this section, we in-
troduced several basic concepts of information theory
and graph theory which will be used in the proposed
method.

Mutual information and conditional mutual information
For two random variables (genes) X and Y, the mutual
information of X and Y is defined as:

I X;Yð Þ ¼ H Xð Þ þ H Yð Þ−H X;Yð Þ ð1Þ
where H(X) and H(Y) are the entropy of the random var-
iables X and Y, respectively; H(X,Y) is the joint entropy
of X and Y.
For a discrete variable X, the entropy H(X) measures the

average uncertainty of variable X, and can be computed by

H Xð Þ ¼ −
X

x∈X
p xð Þ logp xð Þ ð2Þ

where p(x) is the probability that the variable X takes x;
The joint entropy of X and Y is denoted by

H X;Yð Þ ¼ −
X

x∈X;y∈Y
p x; yð Þ logp x; yð Þ ð3Þ

where p(x, y) is the joint probability of X and Y.
The mutual information of X and Y is calculated by

I X;Yð Þ ¼
X

x∈X;y∈Y
p x; yð Þ log p x; yð Þ

p xð Þp yð Þ ð4Þ

The conditional mutual information [16] of X and Y
given Z, I(X, Y| Z) is defined as

I X;Y jZð Þ ¼
X

x∈X;y∈Y ;z∈Z
p x; y; zð Þ log p x; yjzð Þ

p xjzð Þp yjzð Þ
ð5Þ

where p(x, y, z) is the joint probability of variables X, Y
and Z; p(x| z) is the conditional probability that the vari-
able x holds under the condition that the variable z is
established; similarly, p(x, y| z) is the conditional prob-
ability that the variable x and the variable y are estab-
lished under the condition that the variable z is satisfied.
In this paper, the probability of a variable (gene) is

estimated with the Gaussian kernel probability density
estimator [26] as follows [18].

P Xið Þ ¼ 1
n

Xn

j¼1

1

2πð Þm=2 Cj jm=2
exp −

1
2

X j−Xi
� �T

C−1 X j−Xi
� �� �

ð6Þ
where C is the covariance matrix of variable X, ∣C∣ is
the determinant of matrix C, n is the number of samples
(time points), and m is the number of variables (genes).
Then the entropy of variable X can be computed by

using (2) and (6).

H Xð Þ ¼ log 2πeð Þm2 Cj j12
h i

¼ 1
2

log 2πeð Þm j C j ð7Þ

With formulas (1) and (7), the mutual information of
variables X and Y can be obtained as given in Eq. (8).
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I X;Yð Þ ¼ 1
2

log
j C Xð Þ j ∙ j C Yð Þ j

j C X;Yð Þ j ð8Þ

Similarly, the conditional mutual information of variables
X and Y given variable Z can be calculated by Eq. (9).

I X;Y jZð Þ ¼ 1
2

log
j C X;Zð Þ j ∙ j C Y ;Zð Þ j
j C Zð Þ j ∙ j C X;Y ;Zð Þ j ð9Þ

MI can be used for measuring the dependence of two
variables (genes) and CMI can help determine the depend-
ence between two variables given another variable. Gener-
ally speaking, a higher MI (or CMI) indicates closer
relationship between variables.

Maximal information coefficient
The maximal information coefficient (MIC) is an effective
measurement of interesting relationship between pairs of
variables. MIC captures a wide range of functional and
nonfunctional associations, and has two heuristic proper-
ties: generality and equitability. The generality ensures
that with sufficient sample size MIC captures a wide range
of interesting relationships, not limited to specific function
types, or even to all functional relationships; and the
equitability means that MIC gives similar scores to equally
noisy relationships of different types. These two heuristic
properties of MIC indicate that it is suitable to infer vari-
ous underlying relationships.
The Maximal Information Coefficient of a set D of

two-variable data with sample size n and grid size less
than B(n) is given by literature [25].

MIC Dð Þ ¼ maxXY<B nð ÞM Dð ÞX;Y ¼ maxXY<B nð Þ
I� D;X;Yð Þ

log min X;Yð Þð Þ
ð10Þ

where the dataset D is composed of the pairs of values
<x, y>, and x ∈ X, y ∈ Y; M(D)X, Y is the characteristic
matrix of dataset D of variable X and Y with entries

M Dð Þx;y ¼
I� D; x; yð Þ

log min x; yð Þð Þ ð11Þ

where I∗(D, x, y) is the maximum mutual information
achieved by x and y; n is size of D; log( min(x, y)) is used
to normalize the maximum mutual information; B(n) is
the grid size, and B(n) = n0.6, which was found to work
well in practice [25].

Conditional relative average entropy
The conditional relative average entropy (CRAE) [27] is
defined as:

CRAE X→Yð Þ ¼ H Y jXð Þ
H Yð Þ∙ j Y j ð12Þ

where ∣Y∣ is the number of values of variable Y, and

H(Y) is the entropy of the variable Y; H(Y| X) is the con-
ditional entropy of the variable Y under the condition of
the given variable X.

Time series mutual information
In most cases, there is a time delay during the gene reg-
ulations or at least the gene expressions change simul-
taneously for regulatory and target genes. Thus the time
series mutual information could contribute to the orien-
tation of the regulation.
Suppose that we have T time points and the expres-

sion levels of N genes are measured at each time point.
The time series gene expression data can be summarized
as a T ×N matrix X = (x1, x2,…, xT)

T whose ith row vector
xi = (xi1, xi2,…xiN)

Tcorresponds to a gene expression level
vector measured at timepoint i.
For given genes X and Y, the time series mutual infor-

mation from X to Y during time points 1 to T is defined
as

IT X→Yð Þ ¼ I X1→ T−tdelayð Þ;Y 1þtdelay→T
� � ð13Þ

where tdelay(0 ≤ tdelay ≤ T) represents the time delay
for gene X regulating gene Y; X1→ (T − tdelay) is a vector
representing the gene expression level of X from time-
point 1 to timepoint (T − tdelay). Similarly, Y1 + tdelay→ T

represents the gene expression level of Y from timepoint
1 + tdelay to timepoint T. In this paper, we set the time
delay to 1 since from the observation of our experiments
there is no significant improvement to the accuracy with
different settings.

Gene regulatory networks
In this work, a gene regulatory network is described by a
directed graph (digraph). A graph G is defined by the
pair (V(G), E(G)), where V(G) denotes the set of vertices
(nodes) and E(G) ⊆ V(G) ×V(G) denotes the set of edges.
In a digraph, an edge is defined by an ordered pair of
vertices (x, y) denoting the edge direction, from vertex x
pointing to vertex y. Here, the nodes represent genes
while the edges describe the gene regulatory interac-
tions. A directed edge (x, y) indicates that gene x regu-
lates gene y, while an undirected edge (x, y) only
indicates that there is an association between gene x and
gene y.

Algorithm of MICRAT
We propose a novel algorithm called MICRAT for
reconstructing gene regulatory networks using time
series gene expression profiles. The algorithm mainly
consists of two procedures: First, an undirected graph is
generated representing the associations between genes
based on the maximal information coefficient (MIC)
of each pair of genes. Then, the conditional relative
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average entropy combining with time series mutual
information is used to determine the directions of the
edge in the undirected graph. The flowchart of the
method for reconstructing GRN is shown in Fig. 1,
and more details are described in the following
subsections.

Generating an undirected gene interaction graph
The types of relationship between genes vary diversely.
It is difficult, even impossible to identify the gene associ-
ations with only one function. The maximal information
coefficient could capture a wide range of dependence of
two variables, both functional and nonfunctional. Thus
it is suitable for measuring the associations between
genes.
We refer to two gene expression data GX and GY as

variables X and Y, respectively. The association between
them is measured by

ID X;Yð Þ ¼ MIC X;Yð Þ ð14Þ

where MIC(X,Y) denotes the maximal information coef-
ficient of X and Y. A higher value of ID(X,Y) indicates a
closer relationship between X and Y, vice versa. The
edges in the undirected graph are added based on a
given a threshold θ of ID(X,Y).
The generation of an undirected gene interaction

graph includes the following five steps:

(1) Initialize the gene regulatory network, GD, as an
undirected graph with no vertices and no edges.
There are n genes in the dataset D.

(2) For a given time series gene expression dataset D,
calculate ID(X, Y) for each pair of genes (x, y).

(3) Rank the pairs of genes by descending order of
ID(X, Y) obtained by step (2) to a list called RLI.

(4) From the top of RLI, check each pair of genes (x, y),
add an undirected edge between vertices x and y if
ID(X, Y) ≥ θ where θ is a threshold and will be
discussed in the experiment section.

(5) Delete redundant edges. There might be some
redundant edges in the undirected graph especially
when there are triangle cycles. Conditional mutual
information of genes is used to determine whether
to delete edges or not. For example, there is a
triangle cycle including three genes X, Y and Z in
the graph since ID(X, Y), ID(X, Z) and ID(Y, Z) are
not lower than θ and three edges between X, Y and
Z are included. We calculated three conditional
mutual information values of I(X, Y| Z), I(X, Z| Y)
and I(Y,Z|X), and deleted edge (Y,Z) if I(Y, Z|X) = 0,
which indicates that gene Y has no relationship with
gene Z.

Data discretization and edge-orientation
In our algorithm, the edges in the undirected graph are
oriented by combining the conditional relative average
entropy with time series mutual information of each pair
of nodes. From the observation of our experiments, better
performance was obtained on discretized data. Therefore,
the gene expression data were discretized before being
used for edge orientation.
The gene expression data are first normalized by

standard fraction Z-Score and then discretized according
to a given threshold. The standard fraction Z _ score of
the gene X at the time point tj is defined as:

Zx; j ¼ j x j−μ j
σ

ð15Þ

where μ denotes the mean value of the gene expression
data at all time points of gene X, σ is the standard devi-
ation, and xj denotes the expression value of the gene X
at the time point tj. Given a threshold k, if Zx, j ≥ k, then
the gene expression data at time tj is denoted as 1;
otherwise the gene expression data is denoted as 0.
All edges in the undirected graph are oriented by the

following procedure: Given two vertices X and Y of an
edge in the undirected graph, if CRAE(X→ Y) + IT(X→
Y) >CRAE(Y→ X) + IT(Y→ X), then the orientation is
X→ Y, indicating that gene X regulates gene Y; While if
CRAE(X→ Y) + IT(X→ Y) <CRAE(Y→ X) + IT(Y→ X),
then the orientation is Y→ X, which means gene Y regu-
lates gene X. In the case of CRAE(X→ Y) + IT(X→ Y) =
CRAE(Y→ X) + IT(Y→ X), the higher value of IT(X→ Y)
(or IT(Y→ X)) indicates X→ Y (or Y→ X). The pseudo
code of algorithm MICRAT is given in Fig. 2.

Fig. 1 Reconstruction of GRN flowchart
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Results and discussion
In this section, we evaluate the performance of algorithm
MICRAT by applying it to synthetic datasets as well as a
real gene expression dataset for inferring GRNs. Several
experiments were carried out to demonstrate the perform-
ance of our approach by comparison with other related
methods.
For synthetic datasets, five 10-genes and five 100-genes

time series expression datasets from the DREAM4 chal-
lenge were used, respectively [28]. The real life gene expres-
sion dataset involves an eight-gene subnetwork, part of a
DNA-damage response pathway (SOS pathway) in the
bacteria E. Coli.
Generally, there are several measurements for evaluating

the performance of GRN inference methods, including
Precision, Recall, Accuracy (ACC), F _ score, Matthews
correlation coefficient (MCC), etc. They are defined as
follows:

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

F score ¼ 2� Precision � Recall
Precisionþ Recall

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

where TP, FP, TN, FN are the numbers of true positives,
false positives, true negatives and false negatives, re-
spectively. In this study, true positives indicate correctly

inferred edges which exist in golden standard networks,
while false positives denote wrongly inferred edges
which do not exist in golden standard networks, and so
on for true negatives and false negatives, respectively.
Usually, there exists an inverse relationship between pre-
cision and recall. It is possible to increase one at the cost
of reducing the other. Therefore, Accuracy, F _ score and
Matthews correlation coefficient are widely used as bal-
anced evaluation measures. Here we use ACC, F _ score
and MCC as measurements for evaluating the perform-
ance of our method.
In order to set the best value of θ, the threshold of

MIC of two gene expression data while measuring the
independence between genes, we test MICRAT by vary-
ing θ from 0 to 1 with interval of 0.01 on both 10-gene
expression datasets and 100-gene expression datasets.
Empirical results showed that with the increase of θ, the
precision of the model becomes higher while the recall
goes down. According to the experimental results, the
comparatively good performance of MICRAT could be
obtained while the thresholds were set to 0.43 for 10-gene
datasets and 0.15 for 100-gene datasets, respectively.

Experiments on simulation datasets
We first evaluated MICRAT on simulation datasets which
were generated based on benchmarking networks. Many
tools have been developed for assessing the effectiveness
of GRN inference methods. The DREAM4 challenge in-
troduced a critical performance assessment framework of
methods for GRN inference and presented an in silico
benchmark suite as a blinded, community-wide challenge
within the context of the DREAM project. In this chal-
lenge, the gene expression datasets with noise and their
golden standard (benchmark) networks were given. The
golden standard networks were selected from source

Fig. 2 Pseudo code of algorithm MICRAT
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networks of real species [28]. They are widely used as a
benchmark for the evaluation of GRN inference methods.
Here, we tested our algorithm on the DREAM4 challenge
time series gene expression data in networks of size 10
and 100 genes, respectively.
As mentioned above, MICRAT found the associations

between pairs of genes in the beginning. Then the condi-
tional relative average entropy in cooperation with time
series mutual information was used to orient the edges
in the undirected graph and obtain the GRN. For evalu-
ating the performance of our approach, we compared
our algorithm with TDBN [7, 10] and NARROMI [19].
TDBN is a typical method with significant impact on in-
ferring GRNs from time series gene expression data.
NARROMI is quite related to our method and it signifi-
cantly outperformed other methods, such as LP [29],
LASSO [30, 31], ARACNE [16] and GENIE3 [32]. This
procedure was tested on DREAM4 time series gene ex-
pression datasets with 10-gene networks and 100-gene
networks, respectively. Experimental results were given
in Table 1. First, we carried out MICRAT on five

10-gene datasets. There are 21 × 5 = 105 time points in
each of the datasets. We computed ACC, F _ score and
MCC on each of the five datasets as evaluation measures
for the compared methods. Here, we chose 0.43 as the
threshold value of MIC to determine the dependence be-
tween genes in the inferred network for our method,
and the threshold of Z _ score was set to k = 1.2 for
discretization of gene expression data when the edge is
oriented. For NARROMI, the threshold is set to 0.05
which is the default value given in literature [19].
For TDBN, all the parameters were chosen as default in
their literature. The accuracy of our approach is higher
than those of the other methods in four datasets and
slightly lower than that of NARROMI for dataset 5. The
left part of Fig. 3 shows the average accuracies on five
10-gene datasets for three methods. It can be observed
that MICRAT performed better than the others. For the
F _ score measurement, MICRAT has the best perform-
ance on two datasets, but the worst performance on one
dataset. Figure 4 shows that the average F _ scores on five
10-gene datasets is somewhat inferior to NARROMI but

Table 1 Experimental results for three methods on both 10-gene datasets and 100-gene datasets

Dataset Accuracy F_score MCC

TDBN NARROMI MICRAT TDBN NARROMI MICRAT TDBN NARROMI MICRAT

10-gene-1 0.59 0.81 0.88 0.27 0.30 0.40 0.06 0.19 0.42

10-gene-2 0.54 0.76 0.83 0.33 0.29 0.19 0.12 0.15 0.15

10-gene-3 0.57 0.81 0.88 0.24 0.34 0.33 0.00 0.23 0.42

10-gene-4 0.51 0.82 0.88 0.24 0.40 0.25 0.03 0.30 0.28

10-gene-5 0.52 0.88 0.87 0.25 0.40 0.43 0.07 0.34 0.36

100-gene-1 0.52 0.92 0.93 0.05 0.09 0.16 0.04 0.08 0.17

100-gene-2 0.57 0.91 0.93 0.06 0.06 0.12 0.04 0.03 0.10

100-gene-3 0.48 0.91 0.94 0.04 0.10 0.19 0.01 0.09 0.18

100-gene-4 0.57 0.92 0.94 0.03 0.09 0.16 −0.03 0.07 0.15

100-gene-5 0.56 0.91 0.94 0.04 0.09 0.16 0.01 0.08 0.16

Fig. 3 Comparison of three methods for average ACC on 10-gene and 100-gene datasets

Yang et al. BMC Systems Biology 2018, 12(Suppl 7):115 Page 25 of 85



superior to TDBN. From Table 1 it can be observed that
MICRAT is only slightly inferior to NARROMI on one
dataset but has better performance on others for MCC.
Figure 5 gives the average Matthews correlation coeffi-
cients of the three methods on five 10-gene datasets and
five 100-gene datasets, respectively. We can see that
MICRAT is superior to NARROMI and significantly out-
performs TDBN.
We also applied our algorithm to the five DREAM4

100-gene datasets. Each dataset has 21 × 10 = 210 time
points. We also computed ACC, F _ score and MCC on
each of the five datasets as evaluation measures for
MICRAT and the other two methods. Experimental
results were showed in Table 1 and the right part of
Figs. 3, 4 and 5. In these experiments, we chose 0.15
as the threshold of MIC to determine the regulation
relationship between genes in the inferred network.
For NARROMI, the threshold is also set to 0.05, the
same value as in literature [19]. As shown in Table 1
and the right part of Figs. 3, 4 and 5, all the three

measures of ACC, F _ score and MCC in our method
are superior to NARROMI and TDBN on each of the
five 100-gene time series dataset. The results show
that our approach has better performance than other
methods on the 100-gene datasets. Thus MICRAT has the
potential to infer large GRNs using time series expression
data with a large number of genes.

Experiments on real gene expression dataset
To validate our method on a real biological gene regula-
tory network, we analyzed the well-known SOS DNA re-
pair network in E. Coli. This GRN is well known for its
responsibility of repairing the DNA if it gets damaged. It
is the largest, most complex and best understood DNA
damage-inducible network to be characterized to date
[33]. We applied our MICRAT algorithm to an eight-
gene network, part of the SOS DNA repair network in
the bacteria E. coli [34–36]. The expression data sets of
the network were obtained from Uri Aron Lab [36].
These data are kinetics of 8 genes namely uvrD, lexA,

Fig. 4 Comparison of three methods for average F_score on 10-gene and 100-gene datasets

Fig. 5 Comparison of three methods for average MCC on 10-gene and 100-gene datasets
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umuD, recA, uvrA, uvrY, ruvA and polB. Four experi-
ments were done at various UV light intensities (Exp.1
and 2: 5Jm− 2, Exp. 3 and 4: 20Jm− 2). In each experiment,
the 8 genes were monitored at 50 instants which are
evenly spaced by 6 min intervals. In order to assess the
effectiveness of our algorithm, we compared the inferred
network with the known interactions between these
eight genes. In our experiment, the threshold of MIC
was set to θ=0.1 for measuring the dependence of the
pair of genes, and the threshold of Z _ score was also set
to k = 1.2 for discretization of gene expression data while
the edge is oriented. Figure 6 gives the real SOS DNA
repair network. Figure 7 shows part of inferred GRN in-
ferred by our approach. In this Figure, one can see that
our method finds 6 out of the 9 edges in the target
network and identifies lexA as the ‘hub’ gene for this

network. The exact ground truth for this network is not
precisely known, hence it is not possible to calculate
well-known performance measures [33]. By using the
known interactions obtained from literature [33, 37, 38],
Table 2 showed the comparison of our algorithm with
other methods such as Perrin [39], BANJO [40], Global-
MIT [41] and Morshed [33] for correct predictions on the
regulatory relationships between these eight genes. From
Table 2, it could be observed that our method identified
most interactions except lexA→ruvA, lexA→lexA and
recA→lexA, where the latter two are not inferred since
our method does not consider the double regulation be-
tween two genes and the gene that is self-regulated. That
is the limitation of our method, which motivates us to
continue further study for improvement.

Conclusions
In this work, a novel algorithm, MICRAT, for inferring
GRNs from time series gene expression data was pro-
posed by taking into account dependence and time delay
of expressions of a regulator and its target genes. This
approach employed maximal information coefficients for
reconstructing an undirected graph to represent the

Fig. 6 The target SOS DNA repair network

Fig. 7 Reconstruction of SOS DNA repair network by MICRAT

Table 2 Comparison of interactions inferred by MICRAT with
other methods on SOS DNA dataset

Regulators Target
genes

MICRAT Perrin
[39]

BANJO
[40]

GlobalMIT
[41]

Morshed
[33]

lexA recA correct correct correct correct

lexA correct

umuD correct correct correct

uvrD correct correct

uvrA correct correct correct correct correct

polB correct correct

uvrY correct correct

ruvA

recA lexA correct correct
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underlying relationships between genes. The edges were
directed by combining conditional relative average en-
tropy with time course mutual information of pairs of
genes. The performance of our proposed algorithm was
evaluated using synthetic datasets from benchmark GRNs
provided by the DREAM4 challenge and the real, experi-
mental dataset SOS DNA repair network in E. Coli. Experi-
mental study showed that our approach was comparable to
other methods on 10-gene datasets and outperformed other
methods on 100-gene datasets in GRN inference from time
series datasets. In the follow-up study, we plan to test the
algorithm on large-scale datasets, including time
course mRNA-Seq, human gene expression data, etc.
and compare our approach with more recently pro-
posed algorithms so as to evaluate its robustness and
improve its performance.
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