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Abstract

Background: Chromatin interactions medicated by genomic elements located throughout the genome play
important roles in gene regulation and can be identified with the technologies such as high-throughput
chromosome conformation capture (Hi-C), followed by next-generation sequencing. These techniques were
wildly used to reveal the relative spatial disposition of chromatins in human, mouse and yeast. Unlike metazoan
where CTCF plays major roles in mediating chromatin interactions, in yeast, the transcription factors (TFs) involved
in this biological process are poorly known.

Results: Here, we presented two computational approaches to estimate the TFs enriched in the chromatin physical
inter-chromosomal interactions in yeast. Through the Chi-square method, we found TFs whose binding data are
differentially distributed in different interaction groups, including Cin5, Stp1 and Sut1, whose binding data are
negatively correlated with the chromosome spatial distance. A multivariate linear regression model was
employed to estimate the potential contribution of different transcription factors against the physical distance
of chromosomes. Rlr1, Set12 and Dig1 were found to be top positively participated in these chromosomal
interactions. Ste12 was highlighted to be involved in gene reposition. Overall, we found 10 TFs enriched from
both computational approaches, potentially to be involved in inter-chromosomal interactions.

Conclusions: No transcription factor (TF) in our study was found to have a dominant impact on the inter-
chromosomal interaction as CTCF did in human or other metazoan, suggesting species without CTCF might
have different regulatory systems in mediating inter-chromosomal interactions. In summary, we presented a
systematic examination of TFs involved in chromatin interaction in yeast and the results provide candidate
TFs for future studies.
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Background
The existence of eukaryotic nucleus is an important
distinction between eukaryotic and prokaryotic nu-
cleus. Nucleus is a spatial organization with critical
functional importance for gene expression, repression,
RNA processing, and genomic replication [1]. The
chromosome conformation capture technology utilizes
restriction enzyme to digest DNA followed by ligation
and paired-end sequencing. The results from Hi-C
presented large scale paired-end reads which are
interpreted as evidence supporting the spatial inter-
action between pairs of genomic segments. Since its
invention, the Hi-C technology has been utilized in
studying three-dimensional organization of genomes
and provided novel insights into the genome architec-
ture which are not possible using linear genome data.
In higher eukaryotes, genomes are organized into
topologically associating domains (TADs) which are
associated with a fractal globule model of polymer
folding and are considered to have a scaling relation-
ship between genomic distance and contact frequency
[2, 3]. In addition, a zinc finger protein, CCCT
C-binding factor (CTCF), is responsible higher-order
chromatin structure, like loop. In human nucleus,
CTCF binding sites displayed a relationship with
chromosomal interaction [4]. Interestingly, CTCF is
conserved from fly to human. However, chromatin in-
teractions in yeast remain complicated. Whereas
TADs are conserved in drosophila, mouse, and hu-
man, they were not observed in yeast until recently.
Two recent studies reported TADs in 200-kb scale
and self-associated domains with 2~ 10 kb in size in
budding yeast [5, 6], which provided evidence for
genomic distance and contact frequency in yeast. Be-
sides regional TADs, inter-chromosomal interaction is
also considered not a random activity but is likely
regulated by many transcription factors, which control
gene expression by binding regulatory region of
relevant genes [7, 8]. In yeast, it has been reported
that centromere, telomere, breakpoints, tRNA and
early replication origin genes were enriched in
inter-chromosomal region [8, 9].
While inter-chromosomal interactions are experi-

mentally proved in eukaryotes (eg., mainly mediated
by CTCF) and are associated with potential functions
(such as the transcription factory hypothesis [10]
which states that genes on different chromosomes
migrates to the transcription hotspot [11]), it remains
poorly understood what TFs are involved in the
inter-chromosomal interactions in yeast and what
their functions are. In yeast, transcriptional regula-
tors are likely function at short distance along the
linear DNA, because more than 70% transcriptional
regulator binding sites lie between 100 and 500 base

pair upstream of protein-coding sequence [12]. In
addition, two transcription factors, Ace2 and Ams2,
were found to play important roles in recruiting con-
densin for global chromosomal organization in fission
yeast [13]. Thus, it remains elusive whether TF
binding sites are related with inter-chromosomal
interactions and which TFs are potentially involved,
as CTCF is absent [14]. In this study, we mapped
yeast TF binding sites and Hi-C data to detect the
potential TFs related to order inter-chromosomal
structure.

Methods
Data sets
Hi-C data
Hi-C sequencing data were downloaded from Se-
quence Read Archive (accession ID: SRP002120)
which was generated from Duan et al.’s study [9]. The
experiment does not include cell cycle arrest. There-
fore, these are average results among the whole cell
cycle, and we cannot avoid the limitations from the
“average model” [15]. False discovery rate control of
the contact frequencies was conducted following the
methods from the original study [9]. We split every
chromosome of yeast with a size 1 kb as the data
from chromosome conformation capture was at
kilo-base resolution [9], resulting in non-overlapping
chromosome segments. The Hi-C sequencing data
were mapped to these segments. For any pair of seg-
ments (i.e., interactions), we count the number of
reads mapped to either segments and denoted the
total number of reads by n. We discarded interactions
(pairs of fragments) where the two fragments were lo-
cated shorter than 1 kb, because such segment pairs
are unlikely to represent an interaction with each
other. Interactions with 5 or less reads were also dis-
carded, as those interactions contained a lot of false
positive sites and more likely to be noises.

Yeast TF binding data
Yeast TF binding data was obtained from the Ref
[12]. The data contains prediction results from six
motif discovery programs for 203 TFs using
genome-wide chromatin immunoprecipitation data.
The regulatory map was constructed by finding all
conserved occurrences of each motif within intergenic
regions bound by the corresponding TF. TF binding
site conserved in at least two other yeast were
chosen. As a result, we had TF binding data for 105
TFs. Each TF binding sites were mapped to the
chromosome segments used for Hi-C data. Finally, all
chromosome segments were labelled whether they
were overlapping with a TF binding site or not.
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Correlation between inter-chromosomal interactions and
TF binding sites
We defined the following rules for our model to detect
the relationship between interactions and transcription
factor binding site.

1. For each interaction, we used n to represent the
number of counts obtained from Hi-C, where n
measures the interaction intensity. We utilized N to
represent those interaction fragments from Hi-C
data that contains at least n reads.

2. Low-intensity filter: interactions with n ≤ 5 were
removed from further analysis, as these interactions
are likely noise in the Hi-C experiment data.

3. We investigated n = [6,…,100]. The interactions with
n ≤ 100 accounted for 99.99% of all interactions.

4. For each interaction, we compared the genomic
coordinates of both its interacting fragments and
combine them with TF binding sites. An interaction
is labelled as positive if at least one of its bins
overlapped with a TFBS.

5. Lastly, for each threshold T we picked the
corresponding fragments mentioned in rule 2nd
and computed the percentage of those
corresponding fragments that contains at least one
TF binding site (Fig. 1).

Method 1: Chi-square method to detect differential TF
binding data in interactions
We utilized Chi-square test to assess whether the bind-
ing sites of a given TF showed different distribution in
interactions with different intensity. Suppose T indicates

the threshold that separates the interactions into two
groups: one with n ≥T (A) and the other with n <T (A).

TFBS

Interaction ∣A ∩ B∣ j A∩B j
j A∩B j j A∩B j

Here, A denotes the set of interactions whose n ≥Tand B
denotes the set of interactions that involve at least one
segment which overlaps with a TF binding bin. The format
|•| indicates the number of records referred by •. ∣A ∩B∣
denotes the number of interactions with n ≥T while
overlapping with TF binding bins; j A∩B j denotes the
number interactions with n < T while overlapping with TF
binding bins; j A∩B j denotes the number of interactions
with n ≥T but not overlapping with any TF binding bins
and j A∩B j represents the number of interactions with n <
T and not overlapping with any TF binding bins. We used
the Chi-square test to estimate whether a TF has its binding
bins significantly enriched with interactions whose n was ≥
T. For each TF, we tested T from 7 and 45. Throughout this
work, we defined an overlapping ratio for each TF at a
given threshold Tas |A ∩B|/ ∣A∣, which describes the pro-
portion of interactions that overlapped with the binding
bins of a given TF.

Method 2: Regression model to detect differential TF
binding data in interactions
As far as we know, CTCF binding pattern and inter-
chromosomal interaction reads has positive relationship,

Fig. 1 Distribution of interaction reads. a Distribution of interactions. The x-axis is the number of reads mapped to interactions. The y-axis is the
number of interactions. Inter-chromosomal interactions (green) and all kinds of interactions (black) were plotted seperately. b Distribution of
interactions in log10 scale
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we assumed the potential TFs contribute to yeast inter-
chromosomal interaction might have a similar pattern [4].
Thus, the correlation relationship between interaction
reads and TF binding data was modelled using a
multivariate linear regression approach based on the
Elastic Net algorithm implemented in the R package
“glmnet” [16]. Elastic Net is a combination model of
traditional Lasso and ridge regression methods,
emphasizing model sparsity while appropriately
balancing the contributions of correlated variables. It is
ideal for building linear models in situations where the
number of variables (markers) greatly outweighs the
number of samples. Taking the interaction reads as the
response variable, we included the overlapping ratio of all
105 TFs as the predictor in the model, aiming to select
TFs that are most likely associated with the interaction
reads. Optimal regularization parameters were estimated
via 10-fold cross validation. We employed bootstrap ana-
lysis, sampling the data set with replacement 500 times.
Because it is not known a priori at which read range the
linear relationship fits the data appropriately, we tested 5
ranges, i.e., n = [6,…,40], [6,…,45], [6,…,50], [6,…,55], and
[6,…,60] (similar to multiple threshold of T as we used in
the Chi-square test). We selected the TFs that
remained in the final Elastic Net model with more
than 5% times (i.e., 25 out of 500 times for each
range or 125 out of 2500 times in total) and com-
puted the beta score of each picked TF.

Results
Overview of results: Distribution of interactions
Our analysis pipeline was presented in Fig. 2. By setting
the interacting segments with size 1 kb, we found about
305,000 interactions involving 3678 unique fragments
(~ 3.46 million reads in total), including about 240,000
interactions are inter-chromosome among 3480 unique
fragments (~ 1.92 million reads in total). Following the

rules described in methods, we plotted Fig. 1. The de-
clining curve indicates that the distance between inter-
acting segments is negatively correlated with the
number of reads n, which is consistent with previous
studies [4]. Around 50% of total interactions had no
more than 10 reads. The number of interactions de-
creased dramatically when their mapped reads in-
creased. On the very end of the distribution, there were
only about 100 interactions that had 100 or more reads
and 70 of them were between inter-chromosomal inter-
actions. Previous works have defined two kinds of inter-
actions according to their reads: the strong interactions
and the weak interactions [4]. The strong interactions
were referred to be the fragments contained more than
10 reads, as the binary fragments are likely to be
spatially close to each other. The rest were referred as
the weakly interacting fragments. In our results, we
observed that at around 15, the interactions could be
approximately distinguished as strong interactions and
weak interactions.

TFs that showed difference in their overlapping ratios:
Results from the chi-square method
To find the TFs that are significantly involved in spatial
interaction, we applied Chi-square test on each of the
105 TFs with available data [12]. For each TF, we con-
ducted Chi-square test multiple times depending on the
different threshold of T, ranging from 7 to 45. Because
n is proportional to spatial interaction, a TF that dis-
played significant differences at any threshold indicated
that the TF might have significantly differentiated spatial
interactions. As shown in Fig. 3, we found 20 TFs showing
significant difference (adjusted p-value < 0.05 using the
Bonferroni correction) with at least one threshold
(Table 1). Among them, Sut1 had the strongest pattern at
threshold 17–34, followed by Azf1 being differentiated at

A B

Fig. 2 The analysis pipeline used in this work
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threshold 20–30. Interestingly, these TFs formed two
groups according to the threshold ranges. Seven genes,
Stp1, Opi1, Gcr1, Met4, Cin5, Azf1, and Sut1, showed
significantly different distributions around the thresh-
old range 15–35. In contrast, the other 13 TFs showed
differentiation when the threshold of T tuned large,
e.g., T > 30. Collectively, these TFs represented the can-
didates whose binding data were significantly different
in the tested range 7–45. The result of 105 TFs
Chi-square test is in Additional file 1.

TFs whose overlapping ratio was associated with reads n:
Results from the regression model
To detect TFs which were associated with the number of
reads, we built a predictive model to find the relationship
between threshold T and the overlapping ratio of each TF
using a penalized multivariate regression method known
as Elastic Net [17], combined with a bootstrap approach.
As a result, we identified 17 TFs that were selected in the
final regression model for > 5% times, implying they were
not selected by chance expectation (Table 1). The TF Cin5
had the strongest association with reads n, as it remained
in the final model for nearly all resamples (2466 out of
2500). Other TFs with strong associations included Rlr1,
Dig1, Ydr026c, Sok2 and Spt2. Bootstrap result for 105 TF
is in Additional file 2.

TFs related to chromatin interactions in yeast: The
combined results
Comparing the result from the Chi-square test (Fig. 3)
and the regression model (Table 1), we found 10 TFs that
were significant according to both methods. We thus con-
sider these 10 TFs as high-confident candidates which me-
diate the inter-chromosomal interactions. The overlapping
ratio of each TF (i.e., |A ∩ B|/A) were plotted to threshold
T in Fig. 4. The enriched 11 TFs have higher ratio and
overall increasing curve than other non-significant TFs.
The TF Dig1 displayed the strongest pattern, where its
binding bins overlapped with interacting segments
reached > 40%. Similarly, Rlr1 also had a quite high over-
lapping ratio at n > 60. Other TFs also showed a clear pat-
tern that was distinct from non-significant ones, whose
overlapping ratio failed to distinguish at any threshold.
Overlapping ratio plot for each TF is in Additional file 3.
We plotted the interactions involved in the 10

significant TFs using a circos diagram [18] (Fig. 5). To
demonstrate the relationship between reads and
chromosomal, we plotted interactions with T = 20 and T
= 40. In T = 20 diagram (Fig. 5a), a few telomere
interactions could be observed, besides the strong
interactions between centromere and its periphery
regions. In T = 40 diagram (Fig. 5b), the majority of
these interactions were mainly distributed within the

Fig. 3 Distribution of results from the Chi-square method. We conducted the Chi-square test for each threshold T moving from 7 to 45 to reject
those TFs which have unbalanced overlapping ratio before and after threshold T at least one time. The 20 TFs that showed significant differential
interactions (adjusted p-value < 0.05, Bonferroni method) were shown in the figure. Although the adjusted p-value for Ste12 was not significant, it
had a quite significant raw p-value and thus, we included it in the figure (Table 1 & Additional file 1)
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centromere region, its periphery region and telomere
region. Circos diagrams for each significant TF at two
conditions (T = 20, T = 40) is in Additional files 4.
An investigation of the interactions among these

TFs using the STRING network showed that 7 out of
the 10 TFs had interactions or functional associations
[19] (Fig. 6).

Discussion
Chromatin interaction is associated with many critical
biological processes in living cells, such as regulation of
transcription, replication, and maintenance of chromatin
structure. Identification of TFs that are involved in
chromatin interactions could provide insights on the
functions and mechanisms underlying cellular processes.
In this work, we systematically investigated TFs that
were involved in chromatin interaction and showed
significant space difference in yeast. Our results
highlights 10 TFs that are significantly involved in
chromatin interactions. The interactions mediated by
these TFs mainly occurred in centromere, telomere, and

their periphery regions, implying potential functional
importance.
Among the 10 significant TFs, Ste12 and Dig1 had

been previously reported to be the centromere-binding
proteins [20]. Ste12 is activated by a MAPK signalling
cascade; activates genes involved in mating or pseudo-
hyphal/invasive growth pathways. Dig1 (Down-regula-
tor of Invasive Growth) is MAP kinase-responsive
inhibitor of the Ste12p transcription factor; involved in
the regulation of mating-specific genes and the invasive
growth pathway [21–25]. Moreover, Ste12 was involved
in recruiting genes from the nucleoplasm to the nuclear
periphery [26]. Interestingly, we found Cbf1 (Centromere
Binding Factor) significant enriched in the Chi-square
method. Previous study has shown Cbf1 involved in me-
thionine biosynthesis [27], which binding the core centro-
mere DNA as a bona fide constitutive centromere protein
[28]. Thus, Ste12 and Dig1 could regulate Cbf1 activity.
Loss of Cbf1, Ste12 or Dig1 resulted in chromosomal in-
stability. Moreover, chromosomal instability phenotype of
Cbf1 mutants could be rescued by driving centromere
transcription from an artificial promoter, indicating tran-
scription at the centromere is vital to centromere function
in yeast [20, 29].
Checking function of the other TFs in yeast genome

database (https://www.yeastgenome.org/), we know that
Ydr026c is a RNA polymerase I termination factor;
binds to rDNA terminator element region between
chromosomes in nucleolus [30–33]. Thus, the main
function of Ydr026c is chromatin silencing at rDNA,
which is an important biological process to limit rDNA
transcribed to rRNA, and therefore keep the translation
function stop. Spt2 has function similar to mammalian
HMG1 (high-mobility group protein 1) proteins, which
might act DNA chaperone involved in replication,
transcription, chromatin remodeling and etc. [34–36].
Functions of Adr1, Hsf1, Rlr1, Sko1, Cin5 and Opi1
were concluded in Additional file 5.
As far as we know, there is no sophisticated method

exactly designed to test the situation we encountered
here. “Test For Trend In Proportions” can test whether
the proportion of trends are consistent or not, which
could be used to test the overlapping ratio trend. We
used R function prop.trend.test () to conduct this test in
5 ranges defined in Method 2 (Additional file 6). We
sorted the TFs by significance of the p-value. Ninety-two
out of 105 TFs were significant after Bonferroni correc-
tion. Top 20 increasing TFs have 17 overlapping genes
with our Chi-square method group, while 10 genes were
found to be overlapped with multivariate regression
model group (Additional file 7). The top significance
TFs from proportion trend test have high accordance
with our Chi-square method result. However, the inter-
pretation of the whole significant TF set is very hard,

Table 1 Significant TFs obtained using the Chi-square method
and the multivariate regression model

Chi-square method Multivariate regression model

TF p < 0.05 Adjusted p < 0.05 TF # times selected

Sut1 39 33 Cin5a 2466

Azf1 38 34 Rlr1a 2032

Cin5a 38 23 Dig1a 1558

Opi1a 38 23 Ydr026ca 1286

Gcr1 38 22 Sok2 1235

Stp1 37 27 Spt2a 1037

Met4 36 23 Sko1a 783

Spt2a 34 16 Rlm1 556

Swi5 34 12 Adr1a 458

Sko1a 32 24 Ste12a,b 381

Ste12a,b 31 0 Hsf1a 376

Rlr1a 30 20 Uga3 360

Hsf1a 30 15 Opi1a 234

Tye7 29 20 Reb1 224

Cbf1 28 18 Pdr3 211

Phd1 28 14 Stb4 177

Skn7 26 15 Gat1 137

Ydr026ca 26 1

Dig1a 25 10

Adr1a 25 8
a Overlapping between two methods
b Ste12 was not among the significant TF list but was manually selected
because it contained more than 30 raw p < 0.05 and have several marginal
adjusted p ~ 0.05
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Fig. 4 Distribution of the overlapping ratio for all 105 TFs. Y: The overlapping ratio. X: T, indicating the threshold that separates the interactions
into two group. For example, when x = 40, the overlapping ratio is calculated for interactions with n > =40. Solid lines: significant TFs; different TFs
were shown with different colors. Dashed lines: non-significant TFs (grey)

a b

Fig. 5 Circos diagram showing the interactions involved in the 10 significant TFs. The outside circle showed chromosomes, where red bars at
both ends of each chromosome indicates centromeres and blue bars indicate telomeres. Each link indicates an interaction. The color of the link is
the same as in Figure 4. a Circos diagram for T = 20. b Circos diagram for T = 40
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since this proportion trend test cannot distinguish a stable
trend, a decreasing trend or an increasing trend. Thus, a
lot of false positive result will be kept in the significant set.
Even we only keep those TFs which has an increasing ra-
tio, it will still need extra methods to evaluate the import-
ance of different TFs. Overall, our Chi-square method and
multivariate regression model could greatly narrow down
the candidate TF set.
We failed to detect the significant enrichment of Yap5,

Dal80, and Stp23, which were discovered in previous
study [5]. Even the same TF binding dataset was used, the
different enrichment strategy and flanking region scale
could bring difference. Ace2 and Ams2 were reported has
the ability to recruit condensin to maintain topological
association domain in fission yeast [13]. However, the
reason that we have not found them enriched might
because they were M/G1 stage specific expressed cell
cycle TFs, while our Hi-C model is in an “average model”
and the TF binding information we took was a mixture of
different stage and environment [12].

Conclusions
We presented an analysis framework to systematically
detect TFs that are involved in chromatin interactions in
yeast. Through two computational approaches, we identified
10 TFs that are significantly enriched in inter-chromosomal

interactions. We highlighted two significantly enriched TFs,
Ste12 and Dig1, which had been reported to be involved in
centromeric transcript maintaining and spatial organization,
as a proof for the rationality of our approach. No TF in our
study was found to have a dominant impact on the
inter-chromosomal interaction as CTCF did in human
or other metazoan [4], suggesting species without
CTCF might have different regulatory systems in me-
diating inter-chromosomal interactions. Our finding
could provide candidate TFs for future studies.

Additional files

Additional file 1: Table is for the result of 105 TFs from Chi-square
approach. (XLSX 34 kb)

Additional file 2: Table is for Bootstrap result of 105 TFs from
multivariate method. (XLSX 13 kb)

Additional file 3: A folder named SB-06-S3 contains 105 overlapping
plot for each TF. (ZIP 624 kb)

Additional file 4: A folder named SB-06-S4 contains circos diagrams for
10 significant TFs at two conditions (T = 20, T = 40). (ZIP 2300 kb)

Additional file 5: Table contains function annotation for 10 significant
TFs. (XLSX 8 kb)

Additional file 6: Table is for the result of 105 TFs conducted by “Test
For Trend In Proportions” (prop.trend.test function in R). (XLSX 9 kb)

Additional file 7: Table contains the comparison between the top
results of three approaches. (XLSX 18 kb)

Fig. 6 Protein-protein interaction (PPI) among the 10 significant TFs based on the STRING network. Seven out of the ten significant TFs had PPIs.
THO2 is alias to Rlr1. NSI1 is alias to Ydr026c.
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