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Abstract

Background: The mammalian brain is organized into regions with specific biological functions and properties.
These regions have distinct transcriptomes, but little is known whether they may also differ in their metabolome. The
metabolome, a collection of small molecules or metabolites, is at the intersection of the genetic background of a given
cell or tissue and the environmental influences that affect it. Thus, the metabolome directly reflects information about
the physiologic state of a biological system under a particular condition. The objective of this study was to investigate
whether various brain regions have diverse metabolome profiles, similarly to their genetic diversity. The answer to this
question would suggest that not only the genome but also the metabolome may contribute to the functional diversity
of brain regions.

Methods: We investigated the metabolome of four regions of the mouse brain that have very distinct functions:
frontal cortex, hippocampus, cerebellum, and olfactory bulb. We utilized gas- and liquid- chromatography mass
spectrometry platforms and identified 215 metabolites.

Results: Principal component analysis, an unsupervised multivariate analysis, clustered each brain region based
on its metabolome content, thus providing the unique metabolic profile of each region. A pathway-centric analysis
indicated that olfactory bulb and cerebellum had most distinct metabolic profiles, while the cortical parenchyma and
hippocampus were more similar in their metabolome content. Among the notable differences were distinct oxidative-
anti-oxidative status and region-specific lipid profiles. Finally, a global metabolic connectivity analysis using the
weighted correlation network analysis identified five hub metabolites that organized a unique metabolic network
architecture within each examined brain region. These data indicate the diversity of global metabolome corresponding
to specialized regional brain function and provide a new perspective on the underlying properties of brain regions.

Conclusion: In summary, we observed many differences in the metabolome among the various brain regions
investigated. All four brain regions in our study had a unique metabolic signature, but the metabolites came
from all categories and were not pathway-centric.
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Background
Highly specialized brain functions, including learning,
memory, attention and numerous other physiological pro-
cesses, directly depend on the neuronal network forma-
tion, cellular homeostasis and overall tissue metabolism
[1]. Metabolism is critical for the proper function of all liv-
ing cells. The small biomolecules that participate in the
metabolic processes determine an individual’s metabolic
state and provide a close representation of that individual’s
overall health status [2]. Recent studies have reported that
the neurological and mental health disorders could be
traced to alterations in the metabolic pathways [3, 4].
Pathologic conditions mostly disturb normal metabolic
processes, resulting in changes that can be observed as
metabolic signatures [5-12]. Tracing these metabolic sig-
natures could thus reveal information about the physio-
logic state of the brain under a particular condition [13].
One of the approaches to trace metabolic signatures
utilizes ‘omics methodologies, widely used for molecular
profiling, identification of biomarkers, characterization of
complex biochemical pathways, and examination of
pathophysiological processes in various diseases [14]. One
of the ‘omics sciences is metabolomics, which measures
the biochemical content of cell processes downstream of
genomic, transcriptomic, and proteomic systems [15—17].
The collection of all metabolites, known as the metabo-
lome, includes a broad range of small (<1 kDa) mole-
cules such as monosaccharides, disaccharides and
oligosaccharides; organic bases, nucleosides, and nucle-
otides; amino acids and peptides, numerous kinds of
lipids, and other compounds [18]. The level of each
metabolite within the metabolome depends on the
specific physiological, developmental, and pathological
state of a biological system, thus, reflecting on the
phenotype in response to different genetic and environ-
mental influences [19]. The systemic study of these
small molecule metabolites thus may lead to a deeper
insight into the dynamic phenotype of the biologic
system and its change as a result of pathology [20, 21].
Mass spectrometry (MS) and nuclear magnetic
resonance (NMR) spectrometry are the two technolo-
gies used for metabolomics studies [22]. MS can be
combined with gas and liquid chromatography (GC
and LC, respectively) separation tools to better resolve
the metabolites [23]. Metabolomics analyses can gen-
erally be separated into two groups: targeted and
untargeted analyses. Targeted metabolomics is used
when a set of metabolites is examined, typically focus-
ing on one or more selected pathways of interest [24].
Untargeted metabolomics involves simultaneously meas-
uring as many metabolites as possible without bias [25]. In
contrast to targeted metabolomics, untargeted metabolo-
mics is global in scope and reveals the comprehensive me-
tabolism of a whole cell/tissue/organism [26].
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Despite the importance of the brain metabolism for its
proper function and in pathology, our insights are sparse
[27]. Thus, the objective of this study was to investigate
whether various brain regions have diverse metabolome
profiles, similarly to their genetic diversity. The answer
to this question would suggest that not only the genome
but also the metabolome may contribute to the func-
tional diversity of brain regions. Further, abnormalities
in the region-specific metabolome may be underlying
the pathology, as recently reported [9]. We report here
the complete metabolome profile of four mouse brain
regions (olfactory bulb, frontal cortex, hippocampus, and
cerebellum) involved in distinct brain functions
(processing of smell, higher order functions, learning
and memory, and movement, respectively), using an
untargeted GC/LC-MS metabolomics analysis. We then
sought to find the metabolites that distinguish each
region using univariate, bivariate, and multivariate statis-
tical approaches. We defined a set of metabolites that
contribute to each region’s metabolic signature. To
understand the metabolic architecture within each re-
gion, we concluded the study with a metabolic network
analysis, identifying key modules with a potential to in-
fluence the metabolic network architecture.

Methods

Sample preparation

We harvested four different brain regions (olfactory
bulb, frontal parenchymal, hippocampus, and cerebel-
lum) from six 4-week-old C56BL6 mice. The tissue
weight was measured and subsequently quickly frozen.
Sample analysis was conducted by Metabolon, Inc. using
a proprietary series of organic and aqueous extractions
to remove the protein content while allowing maximum
recovery of small molecules. The extract was divided
into two parts: one for analysis by LC and the other for
analysis by GC. TurboVap°® (Zymark) was used to re-
move the organic solvent content. Each sample was then
frozen and dried under vacuum. The following method-
ology section was provided by Metabolon, Inc. as their
standard protocol for untargeted mass spectrometry
metabolomics.

Untargeted mass spectrometry profiling

Metabolon, Inc. used three independent platforms
(ultrahigh performance liquid chromatography/tandem
mass spectrometry (UHPLC/MS-MS?) optimized for
basic species, UHPLC/MS-MS? optimized for acidic spe-
cies, and gas chromatography/mass spectrometry (GC/
MS)) to generate untargeted high-throughput mass
spectrometry-identified metabolites in the brain regions.
Metabolic profiling analysis combined the three inde-
pendent platforms using a non-targeted approach to
obtain the relative quantity of a broad spectrum of
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molecules. Experimental samples and controls were ran-
domized across platforms. In addition, several technical
replicate samples were created from a homogeneous
pool containing a small amount of all study samples.
Prior to extraction, recovery standards were added to
ensure quality control (QC) charts. Sample preparation
was conducted using a Metabolon, Inc. proprietary series
of organic and aqueous extractions to remove the pro-
tein content while allowing maximum recovery of small
molecules. Each sample was then frozen and dried under
vacuum. A number of additional samples were included
with each day’s analysis for QA/QC charts. Furthermore,
a selection of QC compound was added to each sample,
including those under test. These compounds were cau-
tiously chosen so as not to interfere with the measure-
ment of the endogenous compounds. Prior to loading
the samples into the mass spectrometers, the instrument
variability was determined by calculating the median
relative standard deviation (RSD) for the standards that
were added to all sample. Overall variability was deter-
mined by calculating the median RSD for all endogenous
metabolites (i.e., non-instrument standards) present in
100% of the samples, which are technical replicates of
pooled samples. For UHPLC/MS/MS? analysis, aliquots
were separated using a Waters Acquity UPLC (Waters
Corp.) and analyzed using an LTQ mass spectrometer
(MS) (Thermo Fisher Scientific, Inc.), which consisted of
an electrospray ionization source and linear ion-trap
mass analyzer. The MS instrument scanned 99 to
1,000 m/z and alternated between MS and MS® scans
using dynamic exclusion with approximately 6 scans per
second. Derivatized samples for GC/MS were loaded to
a 5% phenyldimethyl silicone column with helium as the
carrier gas and a temperature ramp from 60 °C to 340 °
C and then analyzed on a Thermo-Finnigan Trace DSQ
MS (Thermo Fisher Scientific, Inc.) operated at unit
mass resolving power with electron impact ionization
and a 50 to 750 amu scan range.

Metabolite identification

Metabolites were identified by comparison of the ion
features in the experimental samples with a library of
compound standard entries that included retention time,
molecular weight to charge ratio (m/z), preferred ad-
ducts, and in-source fragments as well as associated MS
spectra, and were curated by visual inspection for quality
control using the software improved by Metabolon, Inc.
[28]. The raw mass spectrometry data extraction gave
information that could be loaded into a relational data-
base. Afterward, the information was examined, and
appropriate QC limits were implemented. Numerous
curation procedures were carried out to ensure that a
high-quality dataset was made available for statistical
analysis and data interpretation. QC and curation
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processes were generated to ensure precise and consistent
identification of true compound entities, and to remove
those representing system artifacts, mis-assignments, and
background noise. Metabolon, Inc. uses proprietary
visualization and interpretation software to confirm the
consistency of peak identification among the various sam-
ples. Library matches for all compounds were checked for
each sample and corrected if necessary.

Weighted correlation network analysis

To better understand the metabolite network organization
in the brain, we performed the weighted correlation
network analysis (WGCNA). This method is a network
inference algorithm derived from a biological profile and
widely applied for studying biological networks [29]. This
algorithm relies on the pairwise correlation between
metabolites and it provides information such as network
module (a subset of metabolites that highly correlate each
other) and eigen-metabolite (an imaginary metabolite that
represents a module). To perform the network analysis,
we first calculated every pairwise correlation of metabo-
lites from the metabolite profiles of the entire 24 samples
of four brain regions in this study. All of the correlations
were stored in the matrix S, and s; stored a correlation
between i-th metabolite and j-th metabolite in the profile.
Next, we defined a weighted network adjacency A with
the soft thresholding manner [29]. An element of i-th and
j-th metabolites in soft-thresholded adjacency weighted
matrix A is defined by a;; = s{’; S =1 is a parameter to fit
the network of A to the scale-free topology, which many
biological networks follow [30]. For a scale-free network,
degree/connectivity distribution of the network follows a
power low p(k)~k™”, where p(k) is the distribution of nodes
with a degree of k in the network. From an empirical ob-
servation of the scale-free topology with different /5 values,
we chose 11 as the optimal value of the 5. We next de-
fined Q, which reflects a relative inter-connectedness be-
tween a pair of metabolites:

oy = lita
v min(ki, k]) + l—ﬂij

where [; = > uiu*ay; and the node connectivity k;
= Db

Q is converted to a dissimilarity matrix D, and D is de-
fined by d;; = 1 - w;;.

With the dissimilarity matrix we performed a
complete-linkage hierarchical clustering method using
‘flashClust’ function in R [31], and then we cut the
hierarchical tree using the dynamic branch cut method
[32] using ‘cutDynamic’ function in R and default
parameters of the function. After the tree-cutting, we
defined a metabolite module if two criteria were satis-
fied: i) metabolites in the module were connected in
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the cut tree, and ii) the number of metabolites in the
module was larger than 10. If metabolites were not
assigned to any module, they were omitted. We
repeated the clustering and cutting procedure until
every metabolite was assigned. At the final step, we
calculated eigen-metabolite for each network module,
defined as the first principal component of the con-
centration matrix of the metabolites in the module.

Bioinformatics and statistical analyses

Statistical analysis was conducted using ‘R’ language (http://
cran.r-project.org/). Analysis of variance (ANOVA) with
false detection rate (FDR) correction using Benjamini—
Hochberg procedure was performed for the metabolomics
data [33, 34] Normalization when indicated was done using
studentized residual or z-score. Comparison of the statis-
tical difference in a single metabolite between two regions,
we used Welch’s two-sample t-test.

Results

Brain metabolome is enriched in several classes

of metabolites

Using UHPLC/MS-MS?> optimized for basic species,
UHPLC/MS-MS? optimized for acidic species, and GC/
MS, we performed untargeted high-throughput mass
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spectrometry and identified metabolites in four mouse
brain regions: olfactory bulb, frontal cortex, hippocam-
pus, and cerebellum (N=6 per region). We detected
215 metabolites overall (Fig. 1), using a library of more
than 2000 purified compounds. Mean concentration-
variance plot indicated marginal within-group variance.
The 215 metabolites belonged to eight different cat-
egories of small molecules: amino acids, carbohydrates,
cofactors and vitamins, energy metabolism, lipids,
nucleotides, peptides, and xenobiotics. Amino acid and
lipid categories predominated (Fig. 1b).

To then determine the metabolites that differed sig-
nificantly across all regions, we used analysis of variance
(ANOVA) and false discovery rate (FDR) for multiple
testing corrections at a cutoff of FDR < 0.01. Seventy me-
tabolites achieved this statistical significance. We then
sought to determine whether the degree of abundance in
these 70 significant metabolites could be used to infer
region specificity (Additional file 1). We used a two-
sample t-test to examine pairwise difference in 70 me-
tabolites for each brain region (the threshold p-value <
0.05 was used as a threshold for statistical significance,
and log2 fold change of metabolite concentration be-
tween any two regions was used to calculate the relative
metabolite abundance). 27/70 metabolites were detected

CBL

FCX HC oB

B

Carbohydrate ( 19 )
Cofactors and vitamins ( 10 ) Amino acid ( 56 )

Energy (7))

Xenobiotics ( 3 )

Lipid (71) \ Peptide (29 )

Nucleotide (20 )

Fig. 1 Untargeted metabolomics identifies 215 metabolites in four brain regions of an adult mouse. From a proprietary library of Metabolon, Inc.
containing > 2000 compounds, 215 metabolites were identified in the four brain regions: olfactory bulb, frontal cortex, hippocampus and
cerebellum (N=6 per region). a. Heat map represents the relative concentration of each metabolite organized by its respective metabolic
category and brain region. Relative concentration of the metabolites was normalized by using studentized residual method. Color gradient represents
the Z score distribution of each metabolite across all four regions, each containing six biological samples. Within-group variance is marginal. b. Eight
major types of metabolites were identified. Shaded regions indicate their respective metabolic category and the number of metabolites in shown in
parentheses. OB, olfactory bulb; FCX, frontal cortex; HC, hippocampus; CB, cerebellum
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in either high (log2 fold-change > 0) or low (log2 fold-
change < 0) amounts in the cerebellum, and 9/70 metab-
olites were highly abundant in the olfactory bulb. In the
hippocampus, two metabolites were either high or low,
and in the frontal cortex no metabolites were signifi-
cantly different. Although cerebellum, olfactory bulb and
hippocampus (to an extent) may have a set of metabo-
lites that can distinguish them from each other, the
abundance of each metabolite was not a sufficient ana-
lytical parameter to distinguish the various brain regions.
Regardless, a region-specific metabolome relationship
still appeared to exist.

Untargeted mass spectrometry suggest regional metabolic
differences

To further parse out the metabolic profiles of four brain
regions, we applied a multivariate analysis utilizing PCA
(Fig. 2). With the set of metabolomics data, PCA
grouped the brain regions into a few latent components.
These components identified the brain regions with
strong similarity; therefore, brain samples with strong
similarity would share the same component, while those
that are different would be separated by a distance. As
seen in Fig. 2a, the separation of the brain regions is evi-
dent in the first and second principal components.
While the olfactory bulb and cerebellum were distinctly
clustered in the scores plot, hippocampus and the frontal
cortex clustered together, suggesting that they share
similar metabolome. Based on the loadings, we revealed
a set of metabolic profiles for each brain region (Fig.
2b-d; Additional file 2).

Targeted analysis of the brain Metabolome

We then focused on individual metabolites among those
significantly different between brain regions, to examine
whether they belong to biochemically defined pathways.
We found significantly high levels of histidine-containing
dipeptides, carnosine and anserine, in the olfactory bulb
relative to the other regions of the brain (Fig. 3; p < 0.001).
It has been proposed that carnosine plays a role as a neu-
romodulator in olfaction [35], and our findings support
this hypothesis given the abundance of this metabolite in
this region compared to others. Further, we found that
metabolites that participate in cysteine pathway were dif-
ferently distributed in different regions (Fig. 4). Cysteine is
a non-essential amino acid central to many biochemical
pathways including the biosynthesis of antioxidants gluta-
thione and taurine and production Coenzyme A (CoA)
[36]. Cystathionine, an intermediate product of cysteine,
was present in significantly higher amount in the cerebel-
lum than in the other regions (p < 0.01), as reported [37].
In addition, oxidized glutathione level was the highest in
the frontal region (p<0.05-p<0.001), while cysteine-
glutathione disulphide was higher in cerebellum compared
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to other regions (p <0.01). These data suggest that cere-
bellum may experience relatively elevated oxidative stress
and anti-oxidant demands matched by increased activity
along the cysteine transulfuration pathway to generate
glutathione. Cysteine and glutathione have beneficiary ef-
fects on nerve cell survival by reducing the oxidative stress
[38-41] and have been reported as some of the key me-
tabolites in Parkinson’s and Huntington’s diseases [27].
Taurine, also derived from cysteine, has been implicated
in multiple cellular functions in the brain including a cen-
tral role as a neurotransmitter, neuromodulator, an osmo-
lyte, and as a neuroprotectant against oxidative stress. The
highest level of taurine was observed in the olfactory bulb
followed by the frontal cortex, and the lowest level was
observed in the cerebellum. These region-specific taurine
levels suggest differential importance for this neuroactive
amino acid derivative across the brain regions analyzed.

Interestingly, the levels of cholesterol in the brain re-
gions examined did not vary (Fig. 5). Cholesterol in the
brain is synthesized de novo and its concentration is reg-
ulated by the rate of its turnover. Generation of 24-S-
cholesterol by cholesterol-24-dehydrogenase enzyme in
the endoplasmic reticulum is the main pathway for choles-
terol turnover in the brain [42]. 24-S-hydroxycholesterol
crosses the blood brain barrier and is transported via circu-
lation to the liver for further metabolism [43]. In our study,
the highest level of 24-S-cholesterol was found in the
frontal cortex followed by the hippocampus (p < 0.01), im-
plying a higher rate of cholesterol metabolism in these tis-
sues relative to the cerebellum and the olfactory bulb (Fig.
5). Dietary cholesterol homologues from plants, campes-
terol and sitosterol, are known to get enriched to some
extent in the mammalian brain [44] and were detected in
our samples as well. The campesterol was most abundant
in the olfactory bulb (Fig. 5; p <0.001). Brain cholesterol
metabolism seems to play a role in the Alzheimer’s disease
pathogenesis. It was shown that both beta-amyloid and
amyloid precursor protein can oxidize cholesterol to form
7-beta-hydroxycholesterol, a proapoptotic oxysterol that is
neurotoxic at nanomolar concentrations [45]. Our data
indicate that this metabolite is produced in the normal
brain under physiological conditions and it will be
important to study this metabolite in mouse models
of neurodegeneration.

Finally, the brain tissue was particularly rich in two
polyunsaturated fatty acids (PUFAs), arachidonic acid
(AA) (20:4n-6) and docosahexaenoic acid (DHA)
(22:6n-3) (Fig. 6). The DHA and AA are essential for
brain function, optimal growth, and development [46].
PUFAs are also very effective against post-stroke brain
injury and angiogenesis and they support white matter
restoration [47]. The differences in PUFA distribution
between the cerebellum and the other regions of the
brain may come from the composition of cellular
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membranes of Purkinje cells and granule cells found in
the cerebellum. The high levels PUFAs in Purkinje cells
provide protection against the degeneration and autoph-
agy at some pathologic conditions [48]. Joffre et al.
found highest concentration of DHA and AA in the
hypothalamus in their mouse model study [49]. It has
also been reported that in the mouse astrocytes, prosta-
glandin D2 and prostaglandin E2 are powerful inducers

of nerve growth factor and brain derived neurotrophic
factor [50].

Global metabolic connectivity and network module
analysis of the brain Metabolome

To examine whether each brain region has a distinct
metabolic architecture in addition to its enrichment in
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certain metabolites, we performed WGCNA analysis on
all 215 metabolites. We found five modules consisting of
the 61 out of 215 metabolites (Fig. 7a; Additional file 3).
154 metabolites had low correlation to other metabolites
and were thus omitted from network analyses. The correl-
ation of all pairwise metabolites in each module is high
(Fig. 7b). Although we used WGCNA to detect the net-
work with high correlation across the entire dataset, we
discovered that each module in the network has brain
region-specific property. Namely, we calculate eigen-

metabolites of each module using principal component
analysis of metabolite concentrations within each module
(Fig. 7c). The eigen-metabolites show that each module
has different pattern of metabolite concentration com-
pared to other modules, and these patterns differed for
each brain region. Region-specific differences in two mod-
ules, the blue and yellow ones, was confirmed with
ANOVA. Further, the eigen-metabolites identified hub
metabolites for each module with the $k$ connectivity
measure: deoxy-carnitine (blue, k=0.954), 2-palmitoyl
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glycerol phosphoethanolamine (brown, k =0.999), glycine
(green, k=0.968), leucil-leucine (turquoise, k =0.968),
and ergothioneine (yellow, k = 0.942). To then examine
how each brain region builds its metabolic architecture
around these hub metabolites, we plotted the correla-
tions of every pairwise metabolite of each module in
the contour graph (Fig. 7d). Indeed, each module
except the brown one shows different correlation pat-
tern for each brain region. These data indicate that not
only brain regions differ in a set of metabolites they
accumulate as we have shown using a traditional, tar-
geted approach, but also in their organization of meta-
bolic networks centered around a few common hub
metabolites as shown using the WGCNA analysis.

Discussion

In this study, we utilized several approaches to examine
brain metabolome. We investigated whether different
brain regions have unique metabolome contents using

untargeted mass spectrometry metabolomic profiling of
the mouse brain. First, we found that each region is
enriched in a set of metabolites, supporting our hypoth-
esis that metabolic specificity may be important for the
biological function of a given region. Not surprisingly,
the biochemical profiles of the frontal and hippocampal
regions were very similar, while the cerebellum was the
most distinct when compared to other tissues. Second,
we found that each region has a unique metabolic net-
work architecture, further highlighting their metabolic
specificity.

Metabolomics has become one of the approaches to
understand the integrated response of cellular processes
to genetic and environmental factors. However, given
the large amount of information generated through
metabolomics, as in other ‘omics approaches, the study
of metabolism requires additional approaches to reduce
complexities. Namely, understanding the metabolome
can be a daunting task because of the hundreds of mea-
sured metabolite species. A classical way to study
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metabolism is pathway-centric. The biochemical path-
ways provide the roadmap for energy transfer, which in-
cludes the enzymes catalyzing a reaction, the substrates
that get converted from one state to another, and the
physical chemistry, ie. kinetics and thermodynamics,
that explains why and how the energy transfer can take
place. In our study, many biochemical differences were
observed among the various brain regions, illustrating
the diversity of global metabolism corresponding to spe-
cialized regional brain function. Overall, olfactory bulb
and cerebellum showed more distinct metabolic profiles,
while the cortical parenchymal and hippocampus were
more similar. This is not surprising, given that both
structures participate in memory formation. Among the
notable differences across all four regions were distinct
redox status and region-specific fatty acid profiles, sug-
gesting that different brain regions depend on these mol-
ecules to a varying degree to perform their function and
maintain steady-state.

When one moves away from the pathway-centric ap-
proach and starts to incorporate the interconnected
metabolic pathways, the complexities increase exponen-
tially. For example, the metabolite concentrations are
theoretically determined by the activity of the enzymes.
However, there are countless variables that both the
enzyme activity and the metabolites are affected by. Un-
derstanding the quantity of just one metabolite and/or
its interaction with a few other metabolites that belong
to the same pathway is not enough to understand me-
tabolism of a given cell or tissue. On the other hand, by
looking at the whole metabolome, we can find character-
istic patterns in metabolite profiles, directly linking them
to the underlying biochemical reaction networks. We
thus reasoned, based on the biochemistry paradigm of
feedback regulation, that the metabolites could be part
of a biochemical network of interconnecting pathways
where the changes of a set of metabolites could influ-
ence another set of metabolites. In theory, the metabo-
lites in a biochemical network are connected with each
other; a change in one metabolite can influence a metab-
olite from a different pathway, thus creating a dense net-
work. With the relative concentrations of the identified
metabolites, a partial relationship could be inferred by
the correlations between metabolites [51, 52]. The
weighted correlation network analysis (WGCNA) [29]
we used to identify network modules of the metabolites
showed exactly what we predicted — each brain region
has a unique metabolic network architecture.

Conclusion

We observed many differences in the metabolome among
the various brain regions investigated. All four brain re-
gions in our study had a unique metabolic signature, but
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the metabolites came from all categories and were not
pathway-centric. To better understand these unique,
region-specific metabolic signatures, the metabolic net-
work analysis essentially found network of structures, and
led to the discovery of the five hubs important to maintain
the common metabolic architecture for all brain regions.

Additional files

Additional file 1: 70 metabolites significantly differed across all brain
regions. The significance of the metabolites was determined by ANOVA
with FDR correction (FDR < 0.01). (PDF 2060 kb)

Additional file 2: List of predominant metabolites of the four brain
regions determined by PCA loadings. (PDF 52 kb)

Additional file 3: Metabolites that represent each identified module.
(PDF 50 kb)

Abbreviations

AA: Arachidonic acid; ANOVA: Analysis of variance; CoA: Coenzyme A;
DHA: Docosahexaenoic acid; DSQ: Dual stage quadrupole; FDR: False
detection rate; GC: Gas chromatography; kDa: Kilodalton; LC: Liquid
chromatography; LTQ: Linear Trap Quadropole; m/z: Molecular weight to
charge ratio; MS: Mass spectrometry; NMR: Nuclear magnetic resonance;
PCA: Principal component analysis; PUFAs: Polyunsaturated fatty acids;
QA/QC: Quality assessment/Quality control; RSD: Relative standard
deviation; UHPLC/MS-MS* Ultrahigh performance liquid chromatography/
tandem mass spectrometry; WGCNA: Weighted correlation network analysis

Acknowledgements

The metabolomic profiling data collection was done by Metabolon, Inc.. We
thank the members of Maletic-Savatic lab for comments and critical reading
of the paper.

Funding

The research was supported in part by the Baylor College of Medicine
Microscopy Core (P30HD024064 Intellectual and Developmental Disabilities
Research Grant from the Eunice Kennedy Shriver National Institute of Child
Health and Human Development). WTC was supported by the NLM Training
Program in Biomedical Informatics (T15LM007093) and the Baylor College of
Medicine Medical Scientist Training Program. Publication of this article was
funded in part by the NIH grant GM120033-01 (MMS, ZL). The funding
bodies did not have any role in the design or conclusions of this study.

Availability of data and materials
All data and materials will be shared in accordance with the NIH Grants
Policy on Sharing of Unique Research Resources.

About this supplement

This article has been published as part of BMC Systems Biology Volume 12
Supplement 8, 2018: Selected articles from the International Conference on
Intelligent Biology and Medicine (ICIBM) 2018: systems biology. The full contents
of the supplement are available online at https://bmcsystbiol.biomedcentral.
com/articles/supplements/volume-12-supplement-8.

Authors’ contributions

WTC performed the experiments, analyzed the data and wrote the manuscript.
MT analyzed the data and wrote the manuscript. HHJ performed metabolic
network analysis and wrote the manuscript. CK and FS participated in validation
of the data. ZL and MMS designed and supervised all studies, analyzed and
interpreted the data, provided financial support, and wrote the manuscript. All
authors have read and approved the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.


https://doi.org/10.1186/s12918-018-0644-0
https://doi.org/10.1186/s12918-018-0644-0
https://doi.org/10.1186/s12918-018-0644-0
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-6
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-6

Choi et al. BMC Systems Biology 2018, 12(Suppl 8):127

Competing interests
All authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details

'Program in Developmental Biology, Baylor College of Medicine, Houston,
TX, USA. *The National Library of Medicine Training Program in Biomedical
Informatics, Houston, TX, USA. *Medical Scientist Training Program, Baylor
College of Medicine, Houston, TX, USA. “Jan and Dan Duncan Neurological
Research Institute, Texas Children’s Hospital, Houston, TX, USA. *Department
of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.
®Department of Molecular and Human Genetics, Baylor College of Medicine,
Houston, TX, USA. “Quantitative Computational Biology Program, Baylor
College of Medicine, Houston, TX, USA. ®Department of Neuroscience, Baylor
College of Medicine, Houston, TX, USA.

Published: 21 December 2018

References

1. Qi M, Philip MC, Yang N, Sweedler JV. Single Cell Neurometabolomics. ACS
Chem Neurosci. 2018;9(1):40-50.

2. Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M, Brennan
L, Wishart DS, Oresic M, Hankemeier T, et al. Metabolomics enables
precision medicine: “a white paper, community perspective”. Metabolomics.
2016;12(10):149.

3. Kiristal BS, Shurubor YI. Metabolomics: opening another window into aging.
Sci Aging Know! Environ. 2005;2005(26):pe19.

4. Kaddurah-Daouk R, Krishnan KR. Metabolomics: a global biochemical
approach to the study of central nervous system diseases.
Neuropsychopharmacology. 2009;34(1):173-86.

5. Oresic M, Anderson G, Mattila I, Manoucheri M, Soininen H, Hyotylainen T,
Basignani C. Targeted serum metabolite profiling identifies metabolic
signatures in patients with Alzheimer's disease, Normal pressure
hydrocephalus and brain tumor. Front Neurosci. 2017;11:747.

6. Botas A, Campbell HM, Han X, Maletic-Savatic M. Metabolomics of
neurodegenerative diseases. Int Rev Neurobiol. 2015;122:53-80.

7. Petrovchich |, Sosinsky A, Konde A, Archibald A, Henderson D, Maletic-
Savatic M, Milanovic S. Metabolomics in schizophrenia and major depressive
disorder. Front Biol. 2016;11(3):222-31.

8. Gandy K, Kim S, Sharp C, Dindo L, Maletic-Savatic M, Calarge C. Pattern
separation: a potential marker of impaired hippocampal adult neurogenesis
in major depressive disorder. Front Neurosci. 2017;11:571.

9. Liu L, MacKenzie KR, Putluri N, Maletic-Savatic M, Bellen HJ. The glia-
neuron lactate shuttle and elevated ROS promote lipid synthesis in
neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab.
2017,26(5):719-37 e716.

10.  Zhu'Y, Fan Q, Han X, Zhang H, Chen J, Wang Z, Zhang Z, Tan L, Xiao Z,
Tong S, et al. Decreased thalamic glutamate level in unmedicated adult
obsessive-compulsive disorder patients detected by proton magnetic
resonance spectroscopy. J Affect Disord. 2015;178:193-200.

11, Vingara LK, Yu HJ, Wagshul ME, Serafin D, Christodoulou C, Pelczer |, Krupp
LB, Maletic-Savatic M. Metabolomic approach to human brain spectroscopy
identifies associations between clinical features and the frontal lobe
metabolome in multiple sclerosis. Neuroimage. 2013;82:586-94.

12. Zhang X, Tang Y, Maletic-Savatic M, Sheng J, Zhang X, Zhu Y, Zhang T,
Wang J, Tong S, Wang J, et al. Altered neuronal spontaneous activity
correlates with glutamate concentration in medial prefrontal cortex of
major depressed females: an fMRI-MRS study. J Affect Disord. 2016;201:
153-61.

13. Brown AG, Tulina NM, Barila GO, Hester MS, Elovitz MA. Exposure to
intrauterine inflammation alters metabolomic profiles in the amniotic fluid,
fetal and neonatal brain in the mouse. PLoS One. 2017;12(10):e0186656.

14. Zhang Y, Yuan S, Pu J, Yang L, Zhou X, Liu L, Jiang X, Zhang H, Teng T, Tian
L, et al. Integrated metabolomics and proteomics analysis of Hippocampus
in a rat model of depression. Neuroscience. 2018;371:207-20.

15. Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass
spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24(5):
613-46.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

Page 87 of 115

Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and
disease. Cell. 2008;134(5):714-7.

Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM, O'Brien
R, Pletnikova O, Troncoso JC, Toledo J, et al. Brain and blood metabolite
signatures of pathology and progression in Alzheimer disease: a targeted
metabolomics study. PLoS Med. 2018;15(1):21002482.

Issag HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD. Analytical and
statistical approaches to metabolomics research. J Sep Sci. 2009;32(13):
2183-99.

Fiehn O. Metabolomics-the link between genotypes and phenotypes. Plant
Mol Biol. 2002;48(1-2):155-71.

Luan H, Wang X, Cai Z. Mass spectrometry-based metabolomics: targeting
the crosstalk between gut microbiota and brain in neurodegenerative
disorders. Mass Spectrom Rev. 2017. https://doi.org/10.1002/mas.21553.

Liu CC, Chen JL, Chang XR, He QD, Shen JC, Lian LY, Wang YD, Zhang Y, Ma
FQ, Huang HY, et al. Comparative metabolomics study on therapeutic
mechanism of electro-acupuncture and moxibustion on rats with chronic
atrophic gastritis (CAG). Sci Rep. 2017,7(1):14362.

Gika HG, Wilson ID, Theodoridis GA. The role of mass spectrometry in
nontargeted Metabolomics. Compr. Anal. Chem. 2014;63:213-33.

Arnold JM, Choi WT, Sreekumar A, Maletic-Savatic M. Analytical strategies for
studying stem cell metabolism. Front Biol (Beijing). 2015;10(2):141-53.
Dudley E, Yousef M, Wang Y, Griffiths WJ. Targeted metabolomics and mass
spectrometry. Adv Protein Chem Struct Biol. 2010;80:45-83.

Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the
omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263-9.

Wang X, Wang D, Zhou Z, Zhu W. Subacute oral toxicity assessment of
benalaxyl in mice based on metabolomics methods. Chemosphere. 2018;
191:373-80.

Gonzalez-Riano C, Garcia A, Barbas C. Metabolomics studies in brain tissue: a
review. J Pharm Biomed Anal. 2016;130:141-68.

Dehaven CD, Evans AM, Dai H, Lawton KA. Organization of GC/MS and LC/
MS metabolomics data into chemical libraries. J Cheminform. 2010;2(1):9.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. 2008;9:559.

Jeong HH, Leem S, Wee K, Sohn KA. Integrative network analysis for
survival-associated gene-gene interactions across multiple genomic profiles
in ovarian cancer. J Ovarian Res. 2015;8:42.

Langfelder P, Horvath S. Fast R functions for robust correlations and
hierarchical clustering. J Stat Softw. 2012;46(11):11.

Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical
cluster tree: the dynamic tree cut package for R. Bioinformatics. 2008,24(5):
719-20.

Pavlidis P. Using ANOVA for gene selection from microarray studies of the
nervous system. Methods. 2003;31(4):282-9.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Ser B Methodol.
1995;57(1):289-300.

Sassoe-Pognetto M, Cantino D, Panzanelli P, Verdun di Cantogno L,
Giustetto M, Margolis FL, De Biasi S, Fasolo A. Presynaptic co-
localization of carnosine and glutamate in olfactory neurones.
Neuroreport. 1993;5(1):7-10.

Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM. Mammalian cysteine
metabolism: new insights into regulation of cysteine metabolism. J Nutr.
2006;136(6 Suppl):16525-9S.

Lefauconnier JM, Portemer C, Chatagner F. Cystathionine in rat brain:
catabolism in vivo. Neurochem Res. 1978:3(3):345-56.

Maher P. Potentiation of glutathione loss and nerve cell death by the
transition metals iron and copper: implications for age-related
neurodegenerative diseases. Free Radic Biol Med. 2018;115:92-104.

Song W, Tavitian A, Cressatti M, Galindez C, Liberman A, Schipper HM.
Cysteine-rich whey protein isolate (Immunocal (R)) ameliorates deficits in
the GFAPHMOX1 mouse model of schizophrenia. Free Radic Biol Med.
2017;,110:162-75.

Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M,
Pastore A, Pascente R, Liang LP, Villa BR, et al. Targeting oxidative stress
improves disease outcomes in a rat model of acquired epilepsy. Brain. 2017,
140(7):1885-99.

Jiang X, Chen J, Bajic A, Zhang C, Song X, Carroll SL, Cai ZL, Tang M, Xue M,
Cheng N, et al. Quantitative real-time imaging of glutathione. Nat Commun.
2017,8:16087.


https://doi.org/10.1002/mas.21553

Choi et al. BMC Systems Biology 2018, 12(Suppl 8):127

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

Benussi L, Ghidoni R, Dal Piaz F, Binetti G, Di lorio G, Abrescia P. The level of
24-Hydroxycholesteryl esters is an early marker of Alzheimer's disease. J
Alzheimers Dis. 2017;56(2):825-33.

Meljon A, Theofilopoulos S, Shackleton CH, Watson GL, Javitt NB, Knolker HJ,
Saini R, Arenas E, Wang Y, Griffiths WJ. Analysis of bioactive oxysterols in
newborn mouse brain by LC/MS. J Lipid Res. 2012;53(11):2469-83.

Saeed AA, Genove G, Li T, Hulshorst F, Betsholtz C, Bjorkhem |, Lutjohann D.
Increased flux of the plant sterols campesterol and sitosterol across a
disrupted blood brain barrier. Steroids. 2015;99(Pt B):183-8.

Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein
and beta-amyloid peptide. J Biol Chem. 2005;280(8):7377-87.

Harauma A, Hatanaka E, Yasuda H, Nakamura MT, Salem N Jr, Moriguchi T.
Effects of arachidonic acid, eicosapentaenoic acid and docosahexaenoic
acid on brain development using artificial rearing of delta-6-desaturase
knockout mice. Prostaglandins Leukot Essent Fatty Acids. 2017;127:32-9.

Cai M, Zhang W, Weng Z, Stetler RA, Jiang X, Shi Y, Gao Y, Chen J.
Promoting neurovascular recovery in aged mice after ischemic stroke -
prophylactic effect of Omega-3 polyunsaturated fatty acids. Aging Dis. 2017;
8(5):531-45.

Bak DH, Zhang E, Yi MH, Kim DK, Lim K, Kim JJ, Kim DW. High omega3-
polyunsaturated fatty acids in fat-1 mice prevent streptozotocin-induced
Purkinje cell degeneration through BDNF-mediated autophagy. Sci Rep.
2015;5:15465.

Joffre C, Gregoire S, De Smedt V, Acar N, Bretillon L, Nadjar A, Laye S.
Modulation of brain PUFA content in different experimental models of
mice. Prostaglandins Leukot Essent Fatty Acids. 2016;114:1-10.

Toyomoto M, Ohta M, Okumura K, Yano H, Matsumoto K, Inoue S, Hayashi
K, lkeda K. Prostaglandins are powerful inducers of NGF and BDNF
production in mouse astrocyte cultures. FEBS Lett. 2004;562(1-3):211-5.
Moschen S, Higgins J, Di Rienzo JA, Heinz RA, Paniego N, Fernandez P.
Network and biosignature analysis for the integration of transcriptomic and
metabolomic data to characterize leaf senescence process in sunflower.
BMC Bioinformatics. 2016;17(Suppl 5):174.

DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA. Weighted correlation
network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS
One. 2011,6(10):226683.

Page 88 of 115

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations

e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Sample preparation
	Untargeted mass spectrometry profiling
	Metabolite identification
	Weighted correlation network analysis
	Bioinformatics and statistical analyses

	Results
	Brain metabolome is enriched in several classes �of metabolites
	Untargeted mass spectrometry suggest regional metabolic differences

	Targeted analysis of the brain Metabolome
	Global metabolic connectivity and network module analysis of the brain Metabolome

	Discussion
	Conclusion
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

