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Abstract

Background: A fundamental problem for translational genomics is to find optimal therapies based on gene
regulatory intervention. Dynamic intervention involves a control policy that optimally reduces a cost function based
on phenotype by externally altering the state of the network over time. When a gene regulatory network (GRN) model
is fully known, the problem is addressed using classical dynamic programming based on the Markov chain associated
with the network. When the network is uncertain, a Bayesian framework can be applied, where policy optimality is
with respect to both the dynamical objective and the uncertainty, as characterized by a prior distribution. In the
presence of uncertainty, it is of great practical interest to develop an experimental design strategy and thereby select
experiments that optimally reduce a measure of uncertainty.

Results: In this paper, we employ mean objective cost of uncertainty (MOCU), which quantifies uncertainty based on
the degree to which uncertainty degrades the operational objective, that being the cost owing to undesirable
phenotypes. We assume that a number of conditional probabilities characterizing regulatory relationships among
genes are unknown in the Markovian GRN. In sum, there is a prior distribution which can be updated to a posterior
distribution by observing a regulatory trajectory, and an optimal control policy, known as an “intrinsically Bayesian
robust” (IBR) policy. To obtain a better IBR policy, we select an experiment that minimizes the MOCU remaining after
applying its output to the network. At this point, we can either stop and find the resulting IBR policy or proceed to
determine more unknown conditional probabilities via regulatory observation and find the IBR policy from the
resulting posterior distribution. For sequential experimental design this entire process is iterated. Owing to the
computational complexity of experimental design, which requires computation of many potential IBR policies, we
implement an approximate method utilizing mean first passage times (MFPTs) — but only in experimental design, the
final policy being an IBR policy.

Conclusions: Comprehensive performance analysis based on extensive simulations on synthetic and real GRNs
demonstrate the efficacy of the proposed method, including the accuracy and computational advantage of the
approximate MFPT-based design.
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Background

A salient aim of translational genomics is to develop new
drugs via constructing gene regulatory network (GRN)
models characterizing the interactions among genes and
then use these models to design therapeutic interven-
tions. Most intervention strategies in the literature assume
perfect knowledge regarding the network model. How-
ever, unfortunately this is not a realistic assumption in
many real-world biomedical applications as uncertainty is
inherent in genomics due to the complexity of biological
systems, experimental limitations, noise, etc. Presence
of model uncertainty degrades the performance of
interventions.

Markovian genetic networks, an example of which are
probabilistic Boolean networks (PBNs), have received
great attention in recent years [1-5]. These networks have
been shown to be effective in mimicking the behavior of
biological systems, particularly as they are able to cap-
ture the randomness of biological phenomena by means
of a transition probability matrix (TPM). The long-run
behavior of a Markovian network is determined by a
steady-state distribution over network states. Designing
therapeutic interventions for these networks, often stud-
ied in the context of Markov decision processes (MDPs),
has been extensively studied over the past two decades
[6]. The basic assumption behind many intervention algo-
rithms is that the TPM is perfectly known.

When dealing with network models possessing uncer-
tainty, it is prudent to design a robust intervention that
provides acceptable performance across an uncertainty
class of possible models compatible with the current state
of knowledge. In general, the problem of designing robust
operators (or interventions in this paper) is typically
viewed from two different perspectives: minimax robust-
ness and Bayesian robustness. Under a minimax criterion,
the robust operator has the best worst-case performance
across the uncertainty class. The main problem with mini-
max robustness is that it is very conservative and gives too
much attention to outlier models in the uncertainty class
that may possess negligible likelihood.

Bayesian robustness addresses this issue by assigning
a prior probability distribution reflecting existing knowl-
edge about the model. Under this criterion, the aim is
to find a robust operator possessing the optimal perfor-
mance on average relative to this prior distribution. In the
context of Bayesian robustness, when optimality is relative
to the prior distribution, the resulting operator is called
an intrinsically Bayesian robust (IBR) operator, examples
being IBR Kalman filter in signal estimation [7], IBR signal
compression [8], and IBR network structural intervention
for gene regulatory networks [9, 10]. When optimality is
relative to the posterior distribution obtained by incorpo-
rating observations into the prior distribution, the robust
operator is called an optimal Bayesian operator [11-14].
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It is of prime interest to reduce model uncertainty via
additional experiments and thereby improve the perfor-
mance of the intervention. Since conducting all potential
experiments is not feasible in many biomedical applica-
tions owing to operational constraints such as budget,
time, and equipment limitations, it is imperative to utilize
an experimental design strategy to rank experiments and
then conduct only those experiments with high priority
[15-18].

As experiments are aimed at reducing uncertainty, a
crucial step in experimental design is uncertainty quan-
tification. From a translational perspective, we are not
concerned with overall uncertainty, but rather with the
degradation induced by the uncertainty in the interven-
tion performance. Taking this into account, we employ an
objective-based uncertainty quantification scheme called
the mean objective cost of uncertainty (MOCU) [10].
MOCU has been successfully used for developing exper-
imental design in gene regulatory networks when struc-
tural interventions are concerned [15, 19-21].

In this paper, we extend the application of the objective-
based experimental design for GRNs to the realm of
dynamical interventions. The interactions among genes
are characterized by a set of conditional probability matri-
ces where the conditional probabilities in each matrix
correspond to the regulatory relationship between a gene
and its regulating genes. We address the experimental
design problem involving a GRN model in which a num-
ber of probabilities across conditional probability matrices
are missing. Unknown conditional probabilities are repre-
sented by conjugate prior distributions which are closed
under consecutive observations. In this paper, we show
how the uncertainty in the conditional probabilities can be
translated into the uncertainty in an unknown transition
probability matrix. Furthermore, we show how additional
information in terms of a trajectory of consecutive state
transitions from the true system, if available, can be inte-
grated to update prior distributions to posterior distribu-
tions containing lesser uncertainty. Deriving IBR control
policies, which involves minimizing the average cost rela-
tive to the prior distribution among all stationary control
policies, is at the very core of our experimental design cal-
culations. In this regard, we take advantage of the fact that
an IBR control policy can be derived by using an effective
transition probability matrix that represents the uncer-
tainty class of transition probability matrices. We should
emphasize the optimality of the IBR control policy, which
is selected from all possible stationary policies as opposed
to the model-constrained Bayesian robust (MCBR) con-
trol policy [22], which is selected from among only the
policies that are optimal for networks belonging to the
uncertainty class.

It is worth mentioning that due to the computa-
tional complexity limitation, we are only concerned with
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stationary control policies in this paper. Another approach
for designing a Bayesian robust control policy is to
design a non-stationary policy, referred to as the opti-
mal Bayesian robust (OBR) control policy. In addition to
the expected immediate cost and different future costs
obtained due to being in different states at the next time
steps, an OBR policy also considers the effect of obser-
vations obtained by different actions on the sequence of
different posterior distributions, which makes an OBR
policy be non-stationary. In an OBR setting, the control
problem is transformed into an equivalent problem in
which each state, being referred to as a hyperstate, con-
tains both the ordinary state of the system and the state
of the knowledge reflecting the prior information and the
history of observations from the system. Utilizing the con-
cept of hyperstates for designing OBR control policies has
roots in the classical works of Bellman and Kalaba [23],
Silver [24], Gozzolino [25], and Martin [26]. The major
obstacle of the OBR theory is its enormous computa-
tional complexity [27-29], such that it cannot be applied
to networks of larger than 4 genes, even when only net-
work control is concerned [29], let alone experimental
design whose complexity is several-fold more than that of
the control problem. Hence, taking into account complex-
ity considerations with OBR, we focus on IBR stationary
policies for our experimental design problem, which still
requires massive computations but at a more tolerable
cost compared to OBR policies.

To mitigate the computational complexity burden of
experimental design, and considering the fact that com-
puting the IBR control policy can be computationally
demanding, we approximate it by using the method of
mean first passage time (MFPT) [30]. The main motiva-
tion behind utilizing MFPT for controlling GRN networks
is the desire to reach desirable states and leave undesirable
states in the shortest time possible. Using this intuition,
MEPT is used in [31] to derive a stationary control policy
that can be used as an approximation for the optimal con-
trol policy and in [32] to find the best control gene. Using
the concept of MFPT, we approximate the IBR control pol-
icy required for the experimental design and thereby lower
the complexity of the experimental design. We emphasize
that the MFPT approximation is only used for experimen-
tal design and that the implemented control policy will
always be the optimal stationary control policy.

We summarize the main contributions of the paper.
(1) Despite all the previous MOCU-based experimental
design methods whose focus was on structural interven-
tions [15, 19, 20], in this paper we consider the class of
stationary interventions and derive a closed-form solu-
tion for the IBR stationary intervention when the TPM
is unknown. (2) While in the previous works, uncer-
tain parameters involve a number of regulatory edges
between genes, in this paper we consider the case that a
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number of conditional probabilities characterizing regu-
latory relationships between genes are unknown. Given
that conditional probabilities can be estimated using time
series gene expression data generated through a biological
experiment, it is more realistic to consider these prob-
abilities, rather than regulatory edges, as the outcomes
of biological experiments. This new uncertainty assump-
tion requires us to define a new uncertainty class and
prior probability model. (3) To address the complexity
concerns of the proposed method, we propose an approx-
imate experimental design method utilizing mean first
passage times (MFPTs) in which we extend the application
of MFPT-based controls to unknown TPMs.

Methods

Markovian regulatory networks

In a network with n genes, a set of binary variables V =
{X1,X2,..., Xy}, Xi € {0,1}, determines the expression
states of the genes. The vector of gene expression values
at time ¢, X(¢) = (X1(¢),...,X,(?)), referred to as the
gene activity profile (GAP), defines the network state at
each time step. In a Markovian regulatory network, net-
work dynamics involves a trajectory of states over time
governed by the transition rule X (¢ + 1) = f(X(¢), w(¢t)),
t > 0, where w(t) € E captures randomness in the sys-
temand f : Sx E - S5, S = {0,1,...,2" — 1} being
the set of corresponding decimal representations for the
network states, is a mapping that characterizes the state
transitions in the network. The sequence of states over
time can be viewed as a Markov chain characterized by a
transition probability matrix (TPM) P =[sz],2,;:_()l, where
P; = Pr[X(t + 1) = jIX(¥) = i], Pr[-] being the prob-
ability operator. An ergodic Markov chain is guaranteed
to possess a unique steady-state distribution , such that
7T = TP, T being the transpose operator.

Assume that the expression state of a gene is solely
determined by its regulating genes. In other words, given
the values of its regulating genes, the expression state of
a gene is conditionally independent from those of other
genes. Let the vector of expression states of the regulating
genes for X; be denoted by I'x,, where the ordering in 'y,
is induced from the ordering Xi, X»,...,X,. In a binary
setting, if X; has k; regulating genes, then I'y; can have
2ki possible vector values. To define the regulatory rela-
tionship between gene X; and its regulating genes, we can
construct a conditional probability matrix (CPM) C(X;) of
size 25 x 2, where each row of the matrix corresponds to
a certain combination of gene expressions in I'y, and the
first and second columns correspond to the conditional
probability of gene X; being 0 and 1, respectively, i.e.,

Gii(X)) = Pr[X; = 0|T'x, =],
Cio(X;) =Pr[X; = 1|Tx, =], (1)
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where by I'y, = j we mean that the equivalent decimal
value of the vector of expression states for the regulat-
ing genes of X; is j. A network of #n genes with each gene
having k; regulating genes can be completely defined by #
CPMs C(X;), 1 < i < n, each being of size 2ki % 2. These
matrices can be used to construct the transition probabil-
ity matrix. Owing to the mutual conditional independence
of all genes given the values of all regulating genes, the
entry P; of the TPM can be found as

n n
PL']'ZHPI‘|:X]< =jk Urxl[i]j|
k=1 =1

= HPr[Xk =ji |Tx, [1]
k=1

n
=[] Cry s+ X0), (2)
k=1

where ji is the binary value of the k-th gene in state j
and I'x, [i] is the vector of binary values of the regulating
genes for Xj extracted from the representation of state i.
For example, consider a 3-gene network, n = 3, in which
gene X; (k = 1 in (2)) is regulated by genes X, and X3.
For this network, when computing P14 (i = 1 andj = 4 in
(2)),jx = 1(as X1 = 1forj = 4) and I'y, [i]] = (0,1) (as
(X2, X3) = (0,1) fori = 1).

From a translational perspective, the states of a net-
work can be partitioned into two sets: desirable states D,
being associated with healthy phenotypes, and undesir-
able states U/, corresponding to pathological cell functions
such as cancer. The goal of therapeutic interventions is to
alter the dynamical behavior of the network in such a way
as to reduce the steady-state probability 7y = ), 7; of
the network entering the undesirable states. There are two
different approaches for network interventions: structural
interventions and dynamical interventions. In a structural
intervention, the goal is to modify the dynamical behav-
ior of the network via a one-time change in its underlying
regulatory structure [9, 33—-35]. Dynamical interventions
are typically studied in the framework of Markov decision
processes and are characterized by control policies. These
interventions usually involve the change in the expres-
sion of one or more genes, being called control genes, and
can be applied either over a finite-time [36-38] or an
infinite-time horizon [31, 39].

Optimal dynamical control

Network interventions in this paper belong to the cate-
gory of dynamical interventions. We assume that there is
a control gene g € V whose expression value is affected
by a binary control input ¢ € C, C = {0,1}. The value
of g is flipped when ¢ = 1 and not flipped when ¢ = 0.
It is straightforward to extend the results to m control
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genes, where there are 2 different control actions. Let
P(c) = [P,j(c)]izj;ol denote the controlled TPM, i.e.,

Pjj(c) = Pr[X(t+ 1) = jIX(®) = i,c(t) = ]. (3)

The controlled TPM can be found using the uncontrolled
TPMP as

P ifc=0

where states 7 and i differ only in the value of gene g.

The problem of optimal control can be modeled as
an optimal stochastic control problem [39]. Let the cost
function r(i,j,¢) : S x § x C — R determine the
immediate cost accrued when the network transitions
from state i to state j under control action ¢. This cost
reflects both the desirability of states and the cost for
imposing control actions. Usually, larger cost values are
assigned to the undesirable states and when the control
action is applied. This cost function is assumed to be
time-invariant, bounded, and nonnegative. We consider
an infinite-horizon discounted cost approach as proposed
in [39] in which a discount factor 0 < ¢ < 1 is used to
guarantee convergence [40]. Control actions are chosen
over time according to a control policy u = (u1, t2,...),
e : S — C. In this setting, given a policy ¢ and an initial
state Xy, the expected total cost is

M—1
JuXo)= lim E [Z £t (X(8), X (¢ + 1>,m(X<t>>\Xo] :

t=0
(5)

where the expectation is taken relative to the probability
measure over the space of state and control action trajec-
tories. If IT denotes the space of all admissible policies, we
seek an optimal control policy u*(Xp) such that

W (Xo) = argmin J,,(Xo) VXo € S. (6)
nw

The corresponding optimal expected total cost is denoted

by J*(Xo). It has been shown that the optimal policy

1*(Xo) exists and can be found by solving Bellman’s opti-

mality equation [40],

2"—1

J*(i)=min ,XO:P”‘(C) (rjo + ()| vies. ()
]:

The optimal cost J* = (J*(0), ..., J* (2" — 1)) is the unique
solution of (7) among all bounded functions and the con-
trol policy p* that attains the minimum in (7) is stationary,
ie, u* = (u* u*,.) [40]. In order to find the fixed
point in the Bellman’s optimality equation and thereby
find the optimal control policy, dynamic programming
algorithms, including the value iteration algorithm that
iteratively estimates the cost function, can be used.
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MOCU-based optimal experimental design framework

In this section, we review the general framework of the
experimental design method in [15], which is based on
the concept of the mean objective cost of uncertainty
(MOCU) [10]. Let @ = (01,62, ...,01) be composed of T
uncertain parameters in a network model. The set of all
possible realizations for # is denoted by © and is called
an uncertainty class. A prior distribution f (@) is assigned
to 0, which reflects the likelihood of each realization of 6
being the true value.

For each possible intervention ¢ € W, the class
of interventions, and each model 0 in the uncertainty
class, an error function &p(vy) determines the error
of ¢ when applied to the network model #. The
optimal intervention 1 (#) has the lowest error rela-
tive to model 0, ie., & () < &), Yy € W.
When dealing with an uncertainty class ©, the intrin-
sically Bayesian robust (IBR) intervention ¥pr(®) is
defined as

Y1BrR(®) = arg 111}1513 Eg [0 (¥)], (8)

where the expectation is taken relative to the prior distri-
bution £ ().

An IBR intervention is optimal on average rather than at
each specific network model @; therefore, relative to 6 an
objective cost of uncertainty (OCU) can be defined as

Uy £ (0) = & (Y1Br(O)) — 59 (¥ (0)). )

Taking the expectation of Uy (f) relative to f(0), we
obtain the mean objective cost of uncertainty (MOCU):

My £ (©) = Eg[ Uy, ()]
= Eg[ &9 (Y1Br(©)) — &9 (¥ (0))].

MOCU measures the model uncertainty in terms of the
expected increased error due to applying an IBR interven-
tion (the chosen intervention in the presence of uncer-
tainty) instead of an optimal intervention (the chosen
intervention in the absence of uncertainty). Uncertainty
quantification based on MOCU can lay the groundwork
for objective-based experimental design.

Assume that corresponding to each parameter 6;, there
is an experiment &; that results in the exact determina-
tion of 6;. The goal of the experimental design is to find
which experiment should be conducted first so that model
uncertainty is reduced optimally. Focusing on experiment
&; and parameter 6;, consider the case that the outcome
of experiment &; is 0. Then the remaining MOCU given
6; = 0] is defined as

My (©16; = 6;)

= Egjo/ [é0 (Vinr (©16; = 6))) — &0 (¥ (616; = 6)))],
(11)

(10)
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where the expectation is taken relative to the conditional
distribution f (16; = 6]), ®|6; = 6}, is the reduced uncer-
tainty class obtained after 6; = Gi’, and vector 0|6, =
6/ is obtained from vector @ by setting 6; to 6;. Taking
the expectation of (11) relative to the marginal distri-
bution f (), which is in fact the marginal distribution
of the parameter 6;, we obtain the expected remaining
MOCU given experiment &; is carried out (or equivalently
parameter 6; is determined):

My £(©;0;)
= Eg [My ¢ (016; = 0)]

= Eyy | Eqp [0 (vie (0161 = 67)) — & (v (616 = 6)))] ]
(12)

My ¢ (©;6;) measures the pertinent uncertainty expected
to remain in the model after conducting experiment &;.
The experiment &+ that attains the minimum value of the
expected reaming MOCU is called the optimal experi-
ment and suggested as the first experiment [15]:

i =arg min  Muyg(0;06;). (13)
ie(1,2,.,T}

2,
The parameter 6 corresponding to & is called the
primary parameter. Note that (13) can be further sim-
plified through some mathematical manipulations and
removing expressions not dependent on the optimization
variable [20]:

¥ = i ! / ;= / .
i =arg_min_Ey [Eopy [E0Wsm (@16 = 6))]] . (1)

{

A number of experimental design methods based
on the MOCU framework have been proposed in
the literature [15, 19, 20]. In all of these cases,
the MOCU-based experimental design can reduce the
number of needed experiments significantly in com-
parison to other selection policies such as entropy-
based experimental design, pure exploitation, or random
selection policy.

Uncertainty in transition probability matrix

Assume that regulatory information between a gene and
its regulating genes is missing for a number of genes in
the network. In other words, a number of rows in the n
conditional probability matrices are unknown. We repre-
sent unknown conditional probabilities by a set of random
variables § = (01,09, ...,07). Since each row of the CPM
adds up to one, ie., Cj1(X) + Cj2(X;) = 1, there is
only one degree of freedom. The uncertainty in the CPMs
will eventually show up in the corresponding TPM and
thereby can affect the performance of the control pol-
icy. Therefore, it is of interest to reduce the uncertainty
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in the CPMs. We seek an experimental design method
that efficiently guides us on which unknown conditional
probability to determine first.

We need to assign prior distributions to the random
variables representing unknown conditional probabilities.
Assigning accurate priors is highly challenging. A prior
distribution must describe the current state of knowl-
edge regarding the unknown model accurately. It is also
desirable that the prior distribution and the posterior dis-
tribution, obtained by incorporating data into the prior,
belong to the same family of distributions, being referred
to as a conjugate prior distribution. Using conjugate prior
distributions, we can easily update the priors to the pos-
teriors, which facilitates the computations in a Bayesian
setting as it is enough to only keep track of the hyperpa-
rameters in the distributions. With this in mind, we utilize
the beta distribution as the prior distribution for each
unknown parameter 6;. Relative to a random variable 6;,
the beta distribution Beta(«;, B;) with hyperparameters «;
and B; is of the following form:

R
Beta(a;, Bi) = ——————,
B(wi, Bi)
where B(w;, B;) is the beta function The expected value
of 0; ~ Beta(w;, B;) is E[0;] = a+5 When o; = 8; = 1,
the beta distribution becomes a uniform distribution over
interval [0, 1].

We assume that 61,0;,...,67 are independent and
each parameter 6;, 1 < i < T, has a beta distribu-
tion Beta(q;, B;); therefore, the prior distribution of § =
{91,«92, . ,9T} is

(15)

T T
f®) =] [Beta(e, p) o [ 67 1 — 6%

i=1 i=1

(16)

In addition to the set of CPMs, containing unknown
conditional probabilities, it is possible that observa-
tions from network dynamics in terms of a trajectory
X = ({X(0),X(1),...,X(L)} of L consecutive state
transitions are also available. The state trajectory A
can be utilized as an additional source of information
to update the initial beta distributions to the posterior
beta distributions. If 6; represents the unknown condi-
tional probability Cj1(X;) = Pr[Xi(t+1) =0[Ty, =],
then given a state trajectory A7 the posterior dis-
tribution f(6;|X7) is again a beta distribution
with new hyperparameters

o _al—|—z
,3;=,3i+z]1
=0

[Tx[XD]=jX(+1)=0] (17)

[Cx[XDI=j X+ =1], (18)
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where X;(I) denotes the value of gene X; at the /-th state
in the trajectory, and 1[-] is the indicator function. In
other words, those state transitions in which the event
corresponding to the unknown conditional probability 6;
occurs can be used to update the information about that
unknown probability. Note that I'y,[ X (/)] = j implies that
the equivalent decimal value of the gene expression vector
for the regulating genes of X; extracted from network state
X(/) should be equal to j. The conditional expectation of
0; given A is
/

+ o+ B
Since the uncertainty of an unknown conditional prob-
ability is governed by the corresponding terms o', g/,
and given the fact that observation(s) can potentially
increase o’s and B’s according to (17) and (18), avail-
ability of a state trajectory A} is equivalent to a lesser

initial uncertainty, and hence a simpler experimental
design problem.

E[6;]XL] = (19)

Optimal experimental design for determining unknown
conditional probabilities

Building on the general MOCU-based experimental
design framework in (8)-(14), we propose an experi-
mental design method when dynamical controls charac-
terized by stationary control policies are concerned. A
schematic diagram of the proposed experimental design
framework is given in Fig. 1. We first assign beta dis-
tributions with initial hyperparameters («;, 8;) to each
unknown conditional probability. Then if a state trajec-
tory A7 is available as an additional source of knowledge,
it is incorporated to update the initial hyperparameters
to (alf, /Sl’) according to (17) and (18). These updated
hyperparameters characterize the uncertainty class for
finding the best parameter to determine using the pro-
posed MOCU-based framework. When the first exper-
iment is chosen and carried out, its outcome (the true
value for the chosen unknown conditional probability)
is incorporated in the uncertainty class, leading to a
reduced uncertainty class that contains fewer uncertain
parameters. If operational resources allow more exper-
iments, this new uncertainty class can be used to find
the next parameter for determination (this process can
be iterated). Otherwise, the experimental design step is
finished and the reduced uncertainty class is used to
derive the IBR control policy based on which control
actions at each time step are applied to the underlying
true network.

As (14) suggests, in order to implement the exper-
imental design, we need to derive IBR interventions.
Therefore, we first focus on explaining how an IBR control
policy can be derived. Considering an uncertainty class
©® of TPMs, relative to an initial state Xy, the average
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Fig. 1 A schematic diagram of the proposed experimental design framework

Experimental

expected total discounted cost across ® for control policy

w= (1,142, ..) is:

J€ (15 Xo) = Eg[J® (w; X0)]

=FEy [ lim E
M— o0

M-1

M—-1
[Z ¢t (X(@0), X(¢ + 1),m(X<t)>\Xo
t=0

= lim 3" E) [gtr X0, X(t + 1),Mt(X(t))‘Xo],
t=0
(20)
where Ej[-]= Eg[E[[-]] is the expectation over both

within-model stochasticity and model uncertainty. For
initial state Xy, the optimal average cost is defined as

J®(Xo) = L‘Eﬁ‘]@) (14 Xo), (1)

and the minimum is attained by the IBR control policy
1O Xo) = (17 X0), n3 (Xo), - .- )-

This control problem can be transformed into a
dynamic programming problem of the following form for
eachie Sandt > 0:

Ji(i) = minE [E [r(i.j,¢) + e ()]
271
= mm Eg Z P (c) r(l j0) + ¢ (]))
21
= min ;=Zo Eo [ P)(0)] (i) + Eesn 1)
(22)

We call Ey [Pz (c)] the effective controlled transition prob-
ability matrix. It is obtained similarly to Pj(c) by plugging

PL@ = Ey [Pl‘f'.] in (4). The eﬁective transition probability

matrix (ETPM) P® = [PO] is obtained as
l]*

PP =Eg [Ph] = T Eo [Pro [Xe = jx [T [1]], (23)
k=1

where Pryg[-] is the probability operator relative to # and
Eg[-] is taken relative to the updated prior (posterior)
distribution (8] X7 ). The ETPM P® represents the uncer-
tainty class of TPMs and enables finding the IBR control
policy u® for an uncertainty class of TPMs in the same
way that the optimal control policy for a known TPM is
found. Since the 6;’s are independent, the expectation can
be brought inside the product. Each conditional proba-
bility term in (23) is either known, whose known value is
used for multiplication, or is unknown and corresponds to
an unknown parameter 6; whose expected value obtained
according to (19) is used in the multiplication.

The dynamic formulation in (22) is similar to the
dynamic programming used for optimal control except

that the known TPM has been replaced by Eg I:PZ(C)];

therefore, a similar approach used for solving optimal
control dynamic programming can be utilized here with
the distinction that all theorems should be defined relative
to ETPM. Keeping this in mind, we define a mapping
TJ:S — R for a bounded function J: S — R and Vi€ S as

2"—1
/(i) = min Z; Eo [P)@ ] (ij.o) + €1 ()
1:

(24)
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The following three theorems, whose proofs are similar
to those in [40] relative to a known TPM, lay out the
theoretical foundation for finding the IBR control policy.

Theorem 1 (Convergence of the algorithm) Letting J :
S — R be a bounded function, for any i € S, the
optimal average cost function J©(i) satisfies J(i) =
limaz— o0 TM](i)'

Theorem 2 (Bellman’s optimality equation) The opti-
mal average cost function J© satisfies

21
ﬂ®=%12mpwmmmwy%nWe&

(25)

Theorem 3 (Necessary and sufficient condition) A sta-
tionary policy u® is an IBR control policy if and only if
foreachi € S, w® (i) attains the minimum in Bellman’s
optimality equation.

Based on Theorem 1, J© can be computed recursively
using the value iteration algorithm in the same way that
this algorithm is used to find the optimal control policy
for a known TPM. The converged cost satisfies Bellman’s
optimality equation (Theorem 2). Also, the corresponding
policy is a stationary IBR control policy (Theorem 3). 11©
attains the minimum in the Bellman’s optimality equation,
where the ordinary TPM is replaced by the ETPM.

The concept of effective quantities has also been used
for deriving IBR operators in other problems: for example
in [7], effective noise statistics are used to derive the IBR
Kalman filter; or in [8], effective covariance matrix is used
for achieving IBR signal compression.

To define the experimental design problem in the con-
text of the framework laid out in (8)-(14), let the class of
interventions W be the set of all admissible control poli-
cies I1. Each ¢/ € W is characterized by a control policy u
and the cost of intervention is

g0 (V) = Ex, [/ (X0) |

where ]Z(Xg) is obtained according to (5) with E[-] rela-
tive to the probability measure defined by the TPM P?.
To find a single value as the cost of a control policy for a
specific TPM, in (26), we take the expectation over all pos-
sible initial network states Xp, assuming that the possible
initial states are equally likely. Regarding the IBR interven-
tion, we find a single value as the average cost of the IBR
intervention:

Eg [£0 (1°)] = Ex, [J° X0)],

where J©(X;) is obtained using (25). The definitions of
cost and intervention in (26) and (27) set the stage for

(26)

27)
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objective-based uncertainty quantification in the context
of dynamical control according to (10). After defining
MOCU, the MOCU-based experimental design frame-
work can be used and the the primary parameter 6;+ can
be found by plugging (27) in (14):

=arg min E/[ 016:—0! ( (~)|€i=9i’)]
gie{l,Z,‘.,T} 0] S(ow,_el.) M

)0;=0!

=arg min Ey |E PO LOX ,
8 icllonr ¥ [ o []u("""'*’i( O)H

(28)

where the IBR control policy for the reduced uncer-
tainty class O] (Oi = 91.’) is found using the ETPM
POI=0] obtained relative to the conditional probability
distribution f (616; = 6;).

According to (28), to evaluate the determination of
each unknown parameter 6;, for each realization 6] of
0;, we need to obtain the average cost of the IBR con-
trol policy w®9=b; across the reduced uncertainty class
Q| (91- =0/ ) and then take the average of all these aver-
age costs relative to the marginal distribution of parameter
6;. In practice, the expression in (28) is approximated via
Monte-Carlo simulations. We draw a number of samples
from the marginal distribution of §; and then approximate
the expression being minimized in (28) as the average
of all inner expectations computed for each generated
sample. The steps required for obtaining the primary
parameter 0;+ are summarized in Algorithm 1. The inputs
to this algorithm are n CPMs characterizing the GRN,
T unknown parameters 6; corresponding to unknown
conditional probabilities, hyperparameters (¢;, 8;) for the
prior beta distributions, the state trajectory A7, and ¢,
r, and I, which determine the discount factor, cost func-
tion, and the number of iterations for value iteration,
respectively.

Finding IBR control policies for an uncertainty class
(like finding the optimal control policy for a known TPM
[41]) is computationally expensive and the complexity
grows exponentially with the number of genes. Therefore,
most of the computational burden of the experimental
design is in finding IBR control policies. To mitigate the
complexity of the proposed method, in the next section
we propose an approximate method for computing IBR
control policies.

Approximate experimental design based on MFPT

The mean first passage time (MFPT) from state i to j mea-
sures how long it would take on average that the network
transitions from state i to state j.
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For a Markovian GRN, if the sets of desirable states D
and undesirable states I/ are determined, we can have the
following partitioning for the TPM:

pP— |:PD,D Ppy ] ’

29
Pyp Puu @9)

where Pgs, s, involves the transition probabilities from
each state in the set Sj to the states in set Sy. The vectors
Kpys and Ky,p of MFPTs from each state in D to U/ and
from each state in U to D, respectively, can be computed
as [30]

(30)
(31)

KD,Z/{ =e+ PD,D K’D,L{
Kuy,p = e+ Py Ky,p,

where e is an all-unity column vector of appropriate size.
If g is the control gene and X¢ is the flipped state cor-
responding to state X obtained by flipping g in state X,
then to find the MFPT-based stationary control policy
ull\,’[FPT : § — C, the control action for each desirable state
X € D is obtained as [31]

MEPT v |1 if Kpy(X®) — Kpu(X) > A
pp (X)) = {O otherwise ’

(32)
and for each undesirable state X € Uf as

MEPT v |1 if Kyp(X) — Kyp(X8) > A
pp o (X) = { 0 otherwise ’
(33)

where A in (32) and (33) is a tuning parameter that should
be adjusted based on the definition for the cost function
r(i, j, u).

In the spirit of the MFPT-based approximation for
optimal control, we approximate the IBR control policy
needed in experimental design via MFPT. Taking into
account that the IBR control policy 1 ® is in fact the opti-
mal control policy relative to the ETPM and that MFPT
can be used as an approximation for the optimal control
policy, we approximate the IBR control policy by finding

the MFPT-based control policy relative to the ETPM and
MEPT

denote it by g™, i.e.,
u® ~ uMEPT _ M%/[@FPT‘ (34)

/LIIYI@F PT js obtained by solving (29)-(33) for the effective
transition probability matrix P®. When we approximate
the IBR control policy via MFPT in experimental design,
the average cost needed in (28) is computed via Monte-
Carlo simulations (over different initial network states) as
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pOIei=1;
Ex, ]/L(_WFG; (Xo)
N M-1
~ iz lim ) ¢t (X(t),X(t—l— 1),;/.MFPT,(X(L‘))> )
N ot M—>o00 = pOIoi=5;
(35)

where N is the total number of simulations and ) (-) is
the accrued total discounted cost in the n-th simulation.
The pseudo-code for the approximate method is the same
as Algorithm 1 except for steps 19 and 20. For the approx-
imate method, in step 19, we find MI(:;I‘I;AI_)T via the MFPT
MEPT

ol obtained from
i

approach. Then in step 20, we plug

step 19, in (35) to compute n(éi).

Having used the MFPT approach for the sole purpose
of reducing the uncertainty class, the IBR control pol-
icy is obtained by solving Bellman’s equation using value
iteration.

Computational complexity analysis

The computationally demanding step in the proposed
experimental design method is to find IBR control poli-
cies. If there are T different unknown parameters and we
generate M different samples for Monte-Carlo simulations
for each one, then we need to find IBR control policies

Algorithm 1 Optimal experimental design
L: input: {C(Xi)};l:p {01'}?:1» { (e, Isi)}[T:p X, ¢l
2: output: 0;«
3: fori=1:Tdo
4 o] < using Eq. (17)
B} < using Eq. (18)

EL01X] < o

7: fori=1:T do

8: Draw a sample 6; from Beta(a/, B;)
9: forl,m=1:2"do
©|60;
10: Pl,m <~ 1
11: fork=1:ndo
12: if Pr [X{( = mk|1jxk [1]]is known then
13: P;?}fi <~ Pl(jlfi x Pr [Xk = Wlk|rxk[l]]
14: else
15: if Pr[Xg = m|Tx,[{]] is unknown and
corresponds to 6; then
o10; o0; _ A
16: Pl,rln <~ PM‘" X 6;
17: if Pr [Xk = mk|l"Xk[l] ] is unknown and
corresponds to 6}, [ # i then
©16; ©16;
18: P PP < ELO)| %]

19: {J(Xo))%,_, < value iteration(P®%, 1, , ¢)
200 n) <« Ex,[J(X0)] A
21: v(0;) < Average of [ (6;)] over 6;

22: O« <— arg min v(6;)
i=1,2,...,n
23: return i*
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in our experimental design calculations 7' x M times.
Since we use value iterations to solve Bellman’s equation,
if we assume that the value iteration converges in [ iter-
ations, then we need to compute (|S| x |C|)! terminal
costs to obtain the control policy, |S| being the number
of network states and |C| being the number of control
actions. In this paper, we focus on binary networks and
binary control actions, i.e., |S| = 2”, n being the number
of genes and C = 2. Therefore, the order of complex-
ity when experimental design based on the IBR control
policy is implemented is O (T x M x (2"*1)!). The com-
plexity grows exponentially with the number of genes and
polynomially with the number of unknown parameters.

The complexity of the approximate experimental design
is much lower because there is no iterative calcula-
tion in MFPT. It is enough to solve the two linear
equations in (30) and (31), which involves two matrix
inversions. Although applying MFPT for experimental
design requires us to find the average cost of the MFPT-
based IBR control policy via Monte-Carlo simulations,
this overhead complexity for MFPT is not concerning and
still the complexity of the MFPT-based approach is much
smaller in comparison to that of the optimal experimental
design. Since the calculations for each unknown param-
eter and each realization of that parameter can be done
independently, a parallel implementation can be used for
the proposed experimental design methods.

In Fig. 2, we provide run times required for finding
the primary parameter among 5 unknown parameters for
GRNs with different numbers of genes. The codes are
scripted in MATLAB and run in a parallel framework on
a Machine with an Intel” quad-core 2.67 GHz CPU and 12
GB RAM. The number of iterations for value iteration is
I = 4. While the execution time grows exponentially with
the number of genes and the runs may be prohibitively
time-consuming beyond six genes for the optimal experi-
mental design, the MFPT-based approximate method can
be still implemented for networks of larger size.

Results

In this section, we study the performance of the proposed
methods based on synthetic and real gene networks. As
a class of Markovian regulatory network, we consider
Boolean networks with perturbation for the simulations.

Boolean networks with perturbation

An n-gene Boolean network is defined by a set of binary
variables V' = {Xi, X5, .., X}, and a set of Boolean func-
tions F = {f1,f2,...,fu}, where f; : (0,1} — {0,1}
determines the value of gene X; when it has k; regulating
genes. The transition rule X (¢ + 1) = F(X(#)) governs the
evolution of states over time. In a Boolean network with
perturbation (BNp), each gene may flip its value with a
small perturbation probability p. In this network, the next
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Fig. 2 Approximate run time in seconds elapsed for the optimal

(based on the value iteration method) and approximate experimental
design methods (based on MFPT)

state at time ¢ + 1 is F(X(¢)) with probability (1 — p)” or
F(X(t)) @ y with probability 1 — (1 — p)”, where y is a
binary vector of size #n and @ is the component-wise addi-
tion modulo 2 operator. The underlying state evolution of
a BNp over time can be viewed as a Markov chain with a
transition probability matrix P. The TPM can be derived
using the regulatory structure of the network and the per-
turbation probability [22]. When p > 0 the Markov chain is
guaranteed to possess a unique steady-state distribution 7.

Synthetic networks
We first randomly generate a number of BNps and then
from the corresponding TPMs we extract the set of con-
ditional probabilities for each gene in the network. We
consider BNps with 6 genes. The number of regulating
genes for each gene is set to 2 and they are randomly
selected from the set of genes. Therefore, the size of the
CPM for each gene is 4 x 2. The bias (probability) that a
Boolean function takes on the value 1 is randomly selected
from a beta distribution with variance 0.0001 and mean
0.5. The perturbation probability p is set to 0.01. We use
this protocol to generate 100 random BNps from which
we generate 100 different sets of CPMs.

The conditional probability C;; (X;) =Pr[X;=0|T"x, =]
characterizing the regulation of gene X; is obtained from
the generated TPM P as

Ci(X) =) Pss,

s

(36)

where I'x,[S] = j and S = 0. In other words, to find the
conditional probability for gene X; being down regulated
when the equivalent decimal value of its regulating genes
Iy, is j, we look for the row in the TPM in which Iy, is j
and then in that row we take the summation of all TPM
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entries corresponding to gene X; equal to 0. Similarly, we
extract Cj»(X;) = Pr[X; = 1|T'y; = j] from the generated
TPM as

Cia(X) =Y _ Psg, (37)
S/

where 'y, [S] = j and S; = 1. Since more than one row in a
TPM might correspond to I'x; = j, in order to have a con-
sistent procedure for extracting conditional probabilities,
we take the average of all the values found for the rows
corresponding to I'y, = ;.

To define the control problem, we assume that states
with down-regulated genes X; and X, are undesirable, i.e.,
U = {1,...,16}. The control gene whose expression can
be flipped via control actions is Xg. We use the following
cost function for the simulations:

6 ifjed and c=1

N ) ifjed and ¢c=0
)0 =14 ifjeD and c=1° %

0 ifjeD and ¢=0

This cost function reflects penalties assigned to undesir-
able states and also to the transitions to which the control
action is applied. The discount factor ¢ is set to 0.2. The
tuning parameter A for the MFPT method is set to A =
0.3. We use value iteration with 4 iterations to find the
control policies in the optimal design method and for eval-
uating chosen experiments. All initial beta distributions
for unknown conditional probabilities 6; in the network
are Beta(1, 1), a uniform distribution. We run simulations
for different numbers L of initial data used for updating
priors.

In the first set of simulations, we generate 100 syn-
thetic BNps. After extracting corresponding conditional
probabilities for each network, we randomly select 5 con-
ditional probabilities in each network and assume they
are unknown. The aim is to decide which unknown
conditional probability should be determined first. For
each network, we generate a state trajectory Ap =
{X(0),...,X(L)}, used for updating initial hyperparame-
ters, by simulating the underlying true network.

In the simulations, when we want to evaluate the deter-
mination of an unknown probability 6;, we put back its
true value ¢;, which was discarded during experimental
design calculations, in the network, thereby resulting in a
new uncertainty class ©|(6; = ¢;) of remaining unknown
probabilities. We find the IBR control policy 1©1@=%) for
this new uncertainty class by solving Bellman’s equation
relative to P®I@=#) We then apply u®@=%) to the
underlying true network and run the controlled network
until the horizon length 6 according to the underlying
true TPM and ©®!®=%) and record the cost at each time
based on the network state at that time and the cost func-
tion r(i, j, ¢) in (38). Then we compute the total discounted
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cost over the horizon by accumulating the costs incurred
over the horizon length according to the discount factor ¢.
We repeat this process of calculating the total discounted
cost for 10,000 iterations over different network initial
states Xo and state transition paths. Note that although the
underlying controlled TPM is fixed, there are still different
state transition paths over the horizon due to the ran-
domness characterized by the TPM. We represent the cost
corresponding to determining parameter 6; as the average
of all 10,000 total discounted costs and denote it by J(6;).
For comparing different experimental design approaches,
we report the average of /(6;) over 100 generated synthetic
networks and 100 different sets of assumed true values for
the unknown probabilities in each network drawn from
the beta prior distributions.

Using either optimal or approximate experimental
design methods we can rank potential experiments &;
up to & from the optimal experiment being denoted
by &1 (obtained according to (28)) to the least opti-
mal experiment denoted by &, which corresponds to
the maximum value of the expression being minimized
in (28). In Table 1, for different lengths L of the trajec-
tory data used for updating priors, we rank experiments
based on both experimental design methods and show the
average cost J(0y), 1 < i < 5, obtained after conduct-
ing experiment & . This table suggests that the average
cost obtained after conducting experiments with higher
priority is smaller. Also, although the approximate exper-
imental design method based on MFPT has much lower
complexity, its performance is close to that of the opti-
mal method. Note that the average cost obtained after
high ranked experiments is lower when they are chosen
by the optimal method but as we go towards low priority
experiments the performance of the approximate method
becomes better. This is because the optimal method yields

Table 1 Comparison of the ranked experiments according to the
optimal and approximate methods

Ev Ex Ey Ex Es

(@) L = 0 (no initial data)

Optimal 1.2215 12305 1.2399 12433 1.2427

Approximate 12246 12340 12388 12390 1.2416
(b)L =10

Optimal 1.1615 1.1736 1.1780 1.1790 1.1792

Approximate 1.1646 11747 11767 11775 11779
(L =20

Optimal 1.1573 11660 1.1706  1.1720 1.1705

Approximate 1.1598  1.1665 1.1701 1.1704  1.1695
(d)L =150

Optimal 1.1463 11534 11558 1.1560 1.1561

Approximate 1.1487 11529 1.1557  1.1547  1.1557
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a better ranking compared to the approximate method
and more experiments resulting in lower average cost are
given high priority in the optimal method. Another obser-
vation from the table is that, as we use more data for
updating prior distributions, the difference between the
performances of the different experiments gets smaller.
For example, the difference between the average costs of
&1 and &y is larger when no data are used for the prior
update than the case that the initial data A} of length
L = 50 are used for the prior update. This is because by
using more data in the prior update step the posterior dis-
tribution becomes tighter around the true model and less
uncertainty remains in the model.

Let J(@opt), J(@approx), and J(:nq) be the costs corre-
sponding to the determination of the unknown probability
chosen by the optimal method, the approximate method,
and randomly, respectively. Table 2 shows the average of
these costs over different networks and assumed true val-
ues. For different L, both optimal and approximate meth-
ods provide close performance and clearly outperform the
random selection policy.

When comparing the optimal experiment £/ with an
experiment &, i # 1 (when experiments are ranked based
on either optimal or approximate method), we say that a
success occurs if J(61/) — J(6y) < —0.002, a failure hap-
pens if J(61/) — J(07) > 0.002, and a tie corresponds to
|J(61)) — J(07)] < 0.002. Table 3 shows the ratio of suc-
cess, failure, and tie for both methods and different L.
Regardless of the experimental design approach, the ratio
of success is always higher than the ratio of failure and
gets larger when we compare the optimal experiment &/
with lowest ranked experiments. Note that the ratio of
tie increases for larger values of L because a tighter prior
leads to closer experimental performance.

Now, we evaluate the experimental design methods for
a sequence of experiments. At each step in the sequen-
tial experiments, we choose experiment £+ based on the
experimental design method. After incorporating the true
value ¢;+ of the corresponding unknown probability 6;+ in
the model, we compute the cost J(;x). The distribution
for the new uncertainty class ®|(6x = ¢;+) is the prod-
uct of the beta distributions for the remaining unknown
probabilities as we assume that all unknown probabil-
ities are statistically independent. This distribution is
used as the new prior distribution to find the next best
experiment. This process continues until all unknown

Table 2 The comparison of the average costs obtained after
choosing the experiment via different selection policies

L=0 L=10 L=20 L =50
J(Oma) 1.2350 11743 11673 1.1535
J(B approx) 1.2246 1.1646 11598 1.1487
JBopt) 12215 11615 11573 1.1463
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parameters are estimated and the underlying true net-
work model is fully identified. Figure 3 presents the
average cost over 50 different 6-gene networks and 100
different sets of assumed true values for optimal exper-
imental design, approximate experimental design, and
the random selection policy when there are T = 5
unknown probabilities and no initial data is used for
updating priors, i.e., L = 0. Since the first data-point cor-
responds to the cost before any experiment and the final
point corresponds to the cost after conducting all exper-
iments, they are the same for all three curves. However,
the decrease in the cost obtained by either experimen-
tal design method is faster in comparison to that of the
random policy.

Figure 4 compares approximate experimental design
with the random selection policy when the network is of
size n = 9 and there are T = 8 unknown probabilities. For
this network size and number of unknown probabilities,
the computational burden of optimal experimental design
is prohibitively large. Therefore, we only implement the
approximate method and the random selection policy.
Recall that although we use the MFPT-based approximate
approach for the experimental design step, the robust con-
trol policies after each experiment are still obtained by
solving Bellman’s equation using value iteration. We see
the promising performance of the approximate method
in this figure. By following the approximate method, after
conducting only four experiments the optimal cost is
almost reached.

Real network example: TP53 pathways

In this section, we consider the set of pathways involv-
ing the TP53 gene as shown in Fig. 5 [42]. TP53 is a
tumor suppressor playing a major role in cellular activ-
ities in response to stress signals such as DNA damage.
When DNA damage occurs, a mutant TP53 may lead
to the abundance of abnormal cells, which eventually
results in tumors. For example, it has been observed that
mutated TP53 is present in 30 to 50% of human cancers
[43]. In normal conditions, TP53 remains low-expressed
under the control of MDM2, which is an oncogene often
highly expressed in tumor cells. We model the pathways
shown in Fig. 5 via a BNp with perturbation probability
p = 0.01. Six nodes DNA DSBs, MDM2, TP53, WIP1,
CHK?2, and ATM are named X; up to Xg, respectively.
DNA DSBs is a signal that indicates the existence of dou-
ble stand breaks. The dynamics of the network are gov-
erned via majority vote rule for which a regulatory matrix
R defining the regulatory interactions between genes is
defined as

1 activating relation from j to i
Rj =1 —1 suppressive relation from j to i .
0 no relation from j to i

39)
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Table 3 The percentage of success, failure, and tie for performing the chosen experiment rather than the suboptimal experiments
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Ey ~Ey Ey ~ &y Ey ~ &y Ey ~ &y
S F T S F T S F T S F T

(@) L = 0 (noinitial data)

Optimal 4938 453 49 549 398 53 552 396 5.1 559 387 54

Approximate 50.0 446 54 510 434 56 518 424 58 52.1 425 54
(b)L =10

Optimal 54.0 409 5.1 553 38.6 6.0 56.4 378 58 56.8 37.7 55

Approximate 50.5 432 6.3 520 425 55 53 41.0 6.0 528 410 6.2
(QL=20

Optimal 504 438 58 52.1 415 6.4 52.8 414 58 539 403 5.7

Approximate 50.0 442 58 508 424 6.8 51.2 428 6.0 514 423 6.3
(d)L =50

Optimal 50.1 432 6.7 52.2 41.2 6.6 529 40.0 7.1 52.3 418 59

Approximate 48.7 445 6.8 51.0 417 73 50.0 436 64 508 429 6.3

Using matrix R, the value of gene X; is updated as

1 if Y RXj() > 0
Xit+D)=fiX@®) =1 0 if Y RX;(t) <0 (40)
Xi(t) if Y RX;j(t) =0

In Fig. 5, blunt arrows represent suppressive regulations
and normal arrows represent activating regulations. It has
been observed that in the presence of DNA damage (X; =
1), up-regulated MDM2 (X, = 1) and down-regulated
TP53 (X3 = 0) would lead to cancerous cells [15, 44, 45].
Therefore, the set of undesirable states ¢/ includes those
states with X1 = 0, X3 = 1, and X3 = 0, ie, U =
{48, ...,55}. The cost function r(i, j, ¢) is the same as the

1.42
=%~ Random selection
=8~ Approximate method
=& Optimal method
7 141
o
O
o
o)
o
9]
>
< 147
1.39
0 1 2 3 4 5
Number of Experiments
Fig. 3 Performance evaluation of different experimental design
approaches for a sequence of experiments. The size of initial data
used for updating priorsis L = 0

one given in (38). We also use gene ATM as the control
gene.

After building the BNp model from pathways, we extract
the CPMs based on the procedure explained for simula-
tions on synthetic networks. Since the network is fixed
in this example, we randomly select 10 different sets
of 5 conditional probabilities and assume that they are
unknown. We run the experimental design simulations for
100 different assumed true values for each set of unknown
probabilities. The length of A} used for updating beta pri-
ors is L = 5. Figure 6 illustrates the average cost obtained
(over 1,000 different simulations) after each experiment
in a sequence of experiments when optimal experimental
design, approximate experimental design, or the random

2.386 T .
=¥~ Random selection
—8- Approximate method
% 2.382
o
(@]
[0
o))
o
[}
>
< 237871
2.374
0 1 2 3 4 5 6 7 8

Number of Experiments

Fig. 4 Performance evaluation of the approximate experimental
design method and random selection policy for networks with 9
genes and 8 unknown probabilities. The length of X} isL =5
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DNA DSBs

Fig. 5 Regulatory relationships between genes in a signal pathway
regulating the TP53 gene [42]

selection is employed. Better performance of both pro-
posed approaches in comparison to the random selection
policy is obvious from this.

Real network example: mammalian cell cycle

As another example of real gene regulatory networks,
consider the 9-gene mutated cell cycle network model.
Cell cycle is a tightly controlled process initiated only
in response to external stimuli, such as growth factors,
under normal situations. A regulatory model containing
10 genes is proposed for the normal cell cycle in [46].
These 10 genes are the genes in Table 4 along with gene
p27. A permanently down-regulated gene p27 in the cell
cycle network results in a mutated cell cycle network con-
sisting of 9 genes. The Boolean functions for the mutated
network are summarized in Table 4 [46]. We use these
Boolean functions and build a BNp model with pertur-
bation probability p = 0.01. The index of each gene in
the BNp model is given in the table. In this network, if
both Cyclin D (CycD) and retinoblastoma (Rb) are down-
regulated, then cell cycle continues even in the absence of
stimuli, thereby leading to the growth of tumors. Hence,
states with down-regulated CycD (X; = 0) and down-
regulated Rb (X, = 0) are undesirable. To define a control
problem, we use the cost function in (38) and choose gene
CycA as the control gene.

Due to the size of the mammalian cell cycle, the opti-
mal experimental design is not applicable. Therefore, for
this network, we compare the approximate method and
the random selection policies. The simulation settings are

0.86
=¥ Random selection
=8~ Approximate method
-4 Optimal method
0.855 |

Average Cost
o
&

0.845

0 1 2 3 4 5
Number of Experiments
Fig. 6 Performance evaluation of different experimental design

approaches for a sequence of experiments based on the TP53
regulatory model

exactly the same as those for the TP53 model. We gen-
erate a state trajectory of size L = 5 for updating priors.
Simulation results in Fig. 7 are averaged over 10 differ-
ent selections of sets of 5 unknown probabilities and 100
different assumed true values for each. The promising
performance of the approximate method is clear in this
figure.

Discussion

An inherent problem of dealing with stationary con-
trol policies in a Markovian network is computational
complexity, which is due to the exponential increase of
the number of states with the network size. We have
been able to mitigate the complexity of the experimental
design and thereby push the size limit (as demonstrated in
Fig. 2) by proposing an approximate experimental design
approach based on mean first passage time. However,
we believe that more complexity reduction should be
achieved for addressing experimental design for extremely

Table 4 The set of Boolean functions for a mutated cell cycle [46]

Gene Node Boolean function

CycD X1 Extracellular signal

Rb X G A Xa A Xo A Xg)

E2F X 0G AXg A Xa)

CycE X4 (X3 A X2)

Cdc20 X5 X

Cdhi Xo Xo AXg) V X5

UbcH10 X5 Xo V (Xs A X7 A (X5 V Xo V Xg))
CycB X8 X5 A Xs)

CycA X9 (X3 AXa AXs A (Xs A X7))

V(X0 AXy AXs A (Xe A X))
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Fig. 7 Performance evaluation of the approximate experimental
design for a sequence of experiments based on the mutated
mammalian cell cycle model

large gene networks. Considering these intrinsic compu-
tational issues, we plan to find more efficient approx-
imations and investigate accelerated implementation of
the method via efficient computer architecture platforms,
such as Graphic Processing Unit (GPU).

Another consideration is the accuracy of the prior distri-
butions used in the experimental design calculation. The
performance of the experimental design depends on the
degree to which the prior probabilities can describe the
existing knowledge regarding uncertain parameters accu-
rately. The problem of finding optimal prior probabilities
in this context can be solved under a prior construction
optimization framework, which involves constructing a
mapping that transforms signaling relations to constraints
on the prior distribution. Constructing optimal priors has
been done for genomic classification [14, 47]. In future
work, we aim to develop an optimization framework to
address prior construction for experimental design in
gene regulatory networks.

Conclusions

Given the complexity of biological systems and the cost
of experiments, experimental design is of great practical
significance in translational genomics. In this paper, we
address the problem of optimal experimental design for
gene regulatory networks controlled with stationary con-
trol policies. The proposed experimental design frame-
work is based on the notion of mean objective cost of
uncertainty, which views model uncertainty in terms of
the increased cost it induces. Future work includes fur-
ther reducing the computational cost of the method and
also designing optimization frameworks for construct-
ing optimal prior distributions. Also, another avenue of
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research is to implement an integrative experimental
design method that can utilize the RNA-Seq data for the
genes on the same pathway [48] for optimal uncertainty
reduction.
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