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Abstract

Background: Single-cell RNA sequencing (scRNA-Seq) is an emerging technology that has revolutionized the
research of the tumor heterogeneity. However, the highly sparse data matrices generated by the technology have
posed an obstacle to the analysis of differential gene regulatory networks.

Results: Addressing the challenges, this study presents, as far as we know, the first bioinformatics tool for scRNA-
Seq-based differential network analysis (scdNet). The tool features a sample size adjustment of gene-gene correlation,
comparison of inter-state correlations, and construction of differential networks. A simulation analysis demonstrated the
power of scdNet in the analyses of sparse scRNA-Seq data matrices, with low requirement on the sample size, high
computation efficiency, and tolerance of sequencing noises. Applying the tool to analyze two datasets of single
circulating tumor cells (CTCs) of prostate cancer and early mouse embryos, our data demonstrated that differential
gene regulation plays crucial roles in anti-androgen resistance and early embryonic development.

Conclusions: Overall, the tool is widely applicable to datasets generated by the emerging technology to bring
biological insights into tumor heterogeneity and other studies. MATLAB implementation of scdNet is available at
https://github.com/ChenLabGCCRI/scdNet.
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Background
Single-cell sequencing is a developing technology that en-
ables a close look into the heterogeneity and clonal evolu-
tion of cancer cells. While many methods have been
designed to analyze single-cell DNA-Seq data [1], the ana-
lysis of scRNA-Seq data remains challenging due to high
sparsity that prevents direct applications of methods ori-
ginally developed for microarray and bulk RNA sequen-
cing. On the other hand, the analysis of gene regulatory
networks is a widely used approach to realize the signaling
and interactions among genes. Recent studies have suc-
cessfully applied correlation onto the inference of gene
regulatory networks by using scRNA-Seq data [2, 3].

However, realizing that tumor cells are highly heteroge-
neous, network topologies may be massively changed be-
tween cells of different cellular states [4]. Recently, a
computational method was proposed to investigate the
change in mean absolute distances of a gene to others [5].
However, the computational method for studying individ-
ual gene pairs of which regulatory strengths alter between
conditions was only carried out in the bulk RNA sequen-
cing data [6–8].
Addressing this research need, here we developed a

comprehensive bioinformatics tool for single cell-based
differential network analysis, namely scdNet. It features
two main functions: i) gene correlation analysis out of
highly sparse data matrices and ii) differential network
analysis between cellular states. Performance of scdNet
was tested by simulated datasets. We further applied the
tool to scRNA-Seq datasets of CTCs and early-stage
mouse embryos for differential networks associated with
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anti-androgen resistance of prostate cancer and early
embryonic development.

Methods
Transformation of intra-state gene-gene correlation
Suppose a scRNA-Seq dataset EG ×K = {e(g, k)} contains
read counts normalized by DESeq2 [9] of the g-th genes
in the k-th single cells (g ∈ [1,G] and k ∈ [1, K]). We
z-transformed E with respect to genes to eliminate

biases: Ez
G�K ¼ feðg;kÞ−μgσg

g, where μg and σg are mean and

standard deviation values of gene g across K cells. For
the sparsity of scRNA-Seq data, we adopted a sample
size adjustment and comparison of Pearson correlation
coefficients among states. Within a cellular state n
(n ∈ {0, 1}), gene-gene correlation coefficients were com-
puted into the correlation matrix Cn

G�G :

Cnði; jÞ ¼ ρðEði; xi; jÞ;Eð j; xi; jÞÞ; ð1Þ
where (i, j) ∈ [1,G] × [1,G] and xi, j = {s| E(i, s) ≠ 0} ∩ {t|

E(j, t) ≠ 0} for samples of the state. Number of samples
used to calculate the correlation was stored in the sam-
ple size matrix SnG�G :

Snði; jÞ ¼ ∥xi; j∥: ð2Þ
We applied the Fisher transformation F , as described

in our previous studies [6–8], to convert the correlation
coefficients into a sample size-free domain and termed
as the interaction matrix InG�G :

Inði; jÞ ¼ FðCnði; jÞ; Snði; jÞÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Snði; jÞ−3p

2
ln
1þ Cnði; jÞ
1−Cnði; jÞ : ð3Þ

Elements of the interaction matrix followed the stand-
ard normal distribution.

Inter-state differential network analysis
We analyzed the changes of interaction strengths of each
gene-gene pair, say i and j, between two cellular states:

ΔI i; jð Þ ¼ I1 i; jð Þ�

�

�

�− I0 i; jð Þ�

�

�

� ð4Þ
and tested for statistical significance by the cumulative
distribution function (CDF) [8]:

F ΔI i; jð Þð Þ ¼ 1
2
þ erf

ΔI i; jð Þ
2

� �

−
1
2
sgn ΔI i; jð Þð Þ∙ erf

ΔI i; jð Þ
2

� �� �2

ð5Þ
, where erf() and sgn() are the Gauss error function and
sign function, respectively. Given the exact CDF of the
changes in the interaction values, P-values are directly
assessed and time-consuming permutation or simulation
tests can be avoided. Gene pairs with significant changes

were defined as differential pairs and merged into a dif-
ferential network.

Visualization and functional annotation analysis of gene
regulatory networks
Networks of identified genes and their dynamic interac-
tions across cellular states were visualized by the Cytos-
cape software (version 3.5.1) [10], with nodes and edges
denoting genes and differential gene regulations, respect-
ively. To investigate the functional relevance of cellular
state-modulated differential networks, top hub genes of
the network were analyzed for the associations with
Gene Ontology (GO) terms of molecular functions,
cellular components, and biological processes by the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) [11].

Results
Model overview
scdNet is devised to analyze differential gene regulatory
networks associated with cellular states at the single cell
level. Fig. 1 shows the flowchart of the tool. Briefly,
scRNA-Seq data were preprocessed and normalized to
eliminate inter-cell biases, and non-informative genes
with a coefficient of variation < 0.25 in either state were
eleminated. Within each group of cells, gene-gene cor-
relation coefficients were calculated with an exclusion of
zeros, and transformed to a sample size independent do-
main by the Fisher transformation to eliminate sample
size related biases. Normalized correlation coefficients
were compared between groups of cells and the changes
in correlation were statistically tested in the Fisher do-
main. Significantly changed gene-gene pairs were
merged into a differential network. Visualization and
functional annotation analyses were performed to realize
the biological relevance of such dynamic network.
MATLAB implementation of scdNet is available at
https://github.com/ChenLabGCCRI/scdNet.

Assessment of model performace – simulation design
We simulated scRNA-Seq datasets to test the performance
of the proposed method in analyzing gene-gene correla-
tions out of highly sparse scRNA-Seq data. Since we
z-transformed the sequencing data, the synthetic datasets
were generated by randomly sampling the standard normal
distribution. We note that the performance of the compari-
son of interaction matrices (Eqs. 4–5) has been described
in our previous papers [7, 8]. Thus, the simulation was sim-
ply focused on the comparison of intra-group correlations
against zero (uncorrelated). In each simulation scenario,
10,000 gene pairs were generated, of which 20% were de-
fined as correlated (covariance=θ), and the remaining 80%
as independent (covariance = 0). Four parameters were
tuned in the simulation: i) covariance of correlated gene
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pairs (θ, 0, 0.3, 0.7, and 1.0), ii) relative power of Gaussian
noises added to the original signals to mimic sequencing er-
rors (ε, 0, 0.05, 0.1, 0.25, 0.50, 0.75, 0.9, and 1.0), iii) number
of single cells (K, 10, 20, 50,100, and 200), and iv) propor-
tions of low-signal elements to be eliminated (representing
zeroes of scRNA-Seq) (τ, 0, 0.25, 0.50, 0.75. 0.9, and 0.95).
Yielded Fisher-transformed scores were compared to zero;
gene pairs with Bonferroni-adjusted P-value< 0.05 were
called as significant. Performance was evaluated by accur-
acy, sensitivity, specificity, and time consumption. The
simulation processes were performed on MATLAB.

Assessment of model performace by four parameters
Gene-gene Covariance (θ)
With ε, K, and τ set at 0.05, 50, 0.25, respectively, we tested
the performance of scdNet across different gene-gene co-
variance θ. As shown in Fig. 2a, the increase in θ greatly rose

sensitivity from to 0.14 to 1.00 (θ=0 and 1.0) and slightly in-
creased accuracy from 0.70 to 0.88. On the other hand, spe-
cificity seemed to be independent of θ (range, 0.84–0.85).

Relative Power of Noises (ε)
We then tested the effect of sequencing noises. Simulation
settings were identical as described above, while θ was fixed
at 0.7. At a general level of sequencing errors (ε=0.1),
scdNet achieved high performance (accuracy, sensitivity,
and specificity = 0.86, 0.90, and 0.85). While accuracy and
specificity were not sensitive to ε, the sensitivity dropped to
0.40 when the noise was extremely high (Fig. 2b).

Number of Single Cells (K) and Proportion of Low-signal
Elements (τ)
Due to limitations in budget and specimens, scRNA-Seq
data are typically of limited sample sizes. To realize the

Fig. 1 Flowchart of the proposed method. The method is designed to analyze differential gene regulatory networks from scRNA-Seq data. It
features two functions: i) measurement of sample size corrected gene-gene correlation for each state to handle the sparse data matrices and ii)
statistical inference of the changes in correlation across cellular states. The identified differential gene-gene pairs were subject to network and
functional annotation analyses
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effects of sample size and sparsity of scRNA-Seq data,
we jointly analyzed the two factors. As shown in Table 1,
the proposed tool achieved generally favorable perform-
ance in regardless of settings of K and τ when either
group of cells had 10 or more non-zero values.

Time Consumption
Facilitated by the exact probability function (Eq. 5),
scdNet is of remarkably high computation efficiency. An

inference of 10,000 gene pairs described above took an
average of 1.3 s (std., 0.5) on a personal computer.

Application to a prostate cancer dataset of CTCs
We then applied scdNet to a real dataset derived from
prostate CTCs. CTCs is an emerging technology of liquid
biopsies that allows minimally invasive assessment and
prediction of metastasis and treatment outcomes of ad-
vanced prostate cancer [12, 13]. Here we studied on the
resistance of enzalutamide, a second-generation anti-
androgen medication which is used in the treatment of
prostate cancer [14, 15] while its resistance mechanisms
remain vague. Thus, we utilized a public dataset of 169
scRNA-Seq of prostate CTCs (Gene Expression Omnibus
accession number: GSE67980) [16]. We normalized raw
read counts by DESeq2. The dataset was found very
sparse. Among 21,696 unique genes, each cell carried an
average of ~ 76.4% genes (16,573, std., 2293) with no se-
quencing reads. We analyzed 77 samples isolated from 13
patients, of which 41 progressed on enzalutamide (here-
after referred to as the enzalutamide-resistant group) and
36 were enzalutamide-naïve. Out of ~ 4.7 million
transcriptome-wide gene pairs, we set a stringent criterion
to identify the most significant subset of pairs that exhib-
ited significant changes between the two groups (Bonfer-
roni adjusted P < 1 × 10− 5). In total, 6023 and 10,670 pairs
of genes were correlated with each other specifically in
enzalutamide-resistant and -naïve groups, respectively, in-
volving 2735 genes. These gene pairs formed a highly
intertwined network (Fig. 3a); on average, each gene was
connected to 12.2 partner genes. We note that only 2.8%
of these genes were differentially expressed (with
t-test P < 0.05) between the two groups of cells,

Fig. 2 Simulation analysis for performance assessment with respect to gene-gene covariance and relative power of noise. a Performance of the
tool on a dataset composed of 20% of correlated samples with a covariance ranging from 0 to 1 and 80% of uncorrelated samples. b Performance of
the tool when Gaussian noises of different power relative to the original signals were added

Table 1 Simulation analysis on the number of single cells and
proportions of low-signal elements

Performance Number
of Cells
(K)

Proportion of Low-signal Elements (τ)

0 0.25 0.50 0.75 0.90 0.95

Accuracy 10 0.84 0.77 0.81 – – –

20 0.87 0.81 0.78 0.81 – –

50 0.88 0.87 0.81 0.83 0.80 0.80

100 0.87 0.87 0.85 0.79 0.83 0.80

200 0.87 0.88 0.87 0.81 0.84 0.82

Sensitivity 10 0.82 0.36 0.11 – – –

20 0.98 0.65 0.35 0.03 – –

50 1.00 0.94 0.64 0.27 0.01 –

100 1.00 1.00 0.86 0.45 0.14 0.00

200 1.00 1.00 0.98 0.64 0.25 0.08

Specificity 10 0.85 0.87 0.99 – – –

20 0.84 0.85 0.88 1.00 – –

50 0.85 0.85 0.85 0.97 1.00 –

100 0.84 0.84 0.84 0.87 1.00 1.00

200 0.84 0.85 0.84 0.86 0.98 1.00
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confirming that our analysis was not biased by differential
expression. (Fig. 3b). Table 2 tabulates the top 10 hub
genes of the network. ENOSF1, a mitochondria enzyme
that have been shown as a serum biomarker for gastric
cancer [17], was the top hub with 150 differential pairs
(Fig. 3c). Consistently, functional annotation analysis of
the top 100 hub genes in the network also highlighted the
association between mitochondria-related biological func-
tions and anti-androgen resistance (Table 3). Thus, our
data indicate differential gene regulatory networks, at least
partially, govern mitochondria functions and play an es-
sential role in anti-androgen resistance of prostate cancer.

Application to a dataset of early mouse embryos
We also applied scdNet to study the differential network
associated with early development of mouse embryos. We
preprocessed scRNA-Seq data of 32 single cells at the
8-cell stage and 16 cells at the 2-cell stage (ArrayExpress
accession number E-MTAB-3321 [18]) as described in the
CTC study. The data were also highly sparse (68.6% spars-
ity). Using identical criteria, we identified 11,245 gene
regulatory pairs specifically shown in 2-cell (2915 pairs)
and 8-cell (8330) embryos composed of 3998 genes
(Fig. 4a). Again, the proportion of these genes to be differ-
entially expressed was lower than expectation (39.1% com-
pared to an expectation of 49.0%; Fig. 4b). The top 100
hubs genes were significantly associated with cell division
and differentiation-related functions, such as cytoskeleton
and chromatin assembly, and the ribosome and

mitochondria, which are known to regulate early develop-
ment of mouse embryos [19, 20] (Table 4).

Discussion
Recent advances in scRNA-Seq technology have revolu-
tionized the investigation of tumor heterogeneity
[21–23] and construction of the cell atlas in human
[24] and mouse [25]. This study addresses the unmet
demand for studying condition-specific gene regulatory
network using scRNA-Seq data. We proposed and im-
plemented a novel bioinformatics algorithm, scdNet,

Fig. 3 Differential gene networks associated with anit-androgen resistance of prostate cancer. a Differential gene regulatory network. The network was
constructed by merging differential gene pairs between enzalutamide-resistant or -naïve CTCs, with nodes and edges representing genes and
differential correlations, respectively. Top hub genes are labeled with gene symbols. b Venn diagram of genes involved in the differential network and
those differentially expressed between two groups of cells. c Subnetwork of the top hub gene ENOSF1

Table 2 Top hub genes in the differential gene network
between enzalutamide-resistant and -naïve CTCs

Gene
symbol

Gene name Num. differential
pairs

ENOSF1 Enolase superfamily member 1 150

EIF5B Eukaryotic translation initiation factor 5B 122

HSPD1 Heat shock 60 kDa protein 1 (chaperonin) 107

SAE1 SUMO1 activating enzyme subunit 1 106

GOT2 Glutamic-oxaloacetic transaminase 2,
mitochondrial (aspartate aminotransferase 2)

102

MLEC Malectin 102

TXNIP Thioredoxin interacting protein 99

LPP LIM domain containing preferred translocation
partner in lipoma

98

RAD21 RAD21 homolog (S. pombe) 97

EIF6 Eukaryotic translation initiation factor 6 95
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for systematic identification of gene pairs with regula-
tory strengths significantly changed between two
groups of single cells. We adopted a sample-size cor-
rection transformation on correlation coefficients to
cope with the sparsity of scRNA-Seq data. Using simu-
lated datasets, we demonstrated the tolerance of scdNet
to gene-gene covariances, relative power of noises, and
number of single cells, as well as its great computa-
tional efficiency. We also applied the method to study
two real-world datasets. CTC is a minimally invasive li-
quid biopsy strongly indicated for investigation of me-
tastasis [26], prediction of treatment response [12, 13],
and risk assessment of cancers [27, 28]. Our work is a
unique extension into the underlying mechanisms of
CTCs in treatment response of metastatic prostate can-
cer. By comparing CTCs obtained from patients
responsive and naïve to a second-generation anti-
androgen therapy, we constructed an intertwined gene
regulatory network. Our data are in line with previous
in vitro studies in the critical role of mitochondria and
oxidative stress in the development of hormone-
refractory prostate cancer [29–31]. In a non-cancer

setting, scdNet also identified biologically meaningful
results related to early development of mouse embryos.
Overall, we demonstrated the feasibility of our method
using simulated and real datasets. We expect the
method to be widely applicable to different studies of
biomedicine with the emerging applications of
scRNA-Seq.

Conclusions
Here we present a novel bioinformatics tool, namely
scdNet, for a fast and comprehensive inference of differ-
ential gene regulatory networks out of scRNA-Seq data.
Performance and computation efficiency of scdNet were
demonstrated by simulation analysis. Applying the tool
to a dataset of prostate cancer, we showed the

Table 3 Gene Ontology terms associated with top 100 hub genes
of the enzalutamide resistance-modulated differential network

Category Term Gene
count

P-value

Annotation Cluster 1 (Enrichment Score: 3.43)

CC GO:0044429~mitochondrial part 15 5.6 × 10−6

CC GO:0005739~mitochondrion 19 2.9 × 10−5

CC GO:0031980~mitochondrial lumen 8 3.1 × 10−4

Annotation Cluster 2 (Enrichment Score: 3.17)

CC GO:0044429~mitochondrial part 15 5.6 × 10−6

CC GO:0005740~mitochondrial envelope 12 2.4 × 10−5

CC GO:0005739~mitochondrion 19 2.9 × 10−5

Annotation Cluster 3 (Enrichment Score: 2.38)

CC GO:0031974~membrane-enclosed lumen 26 1.9 × 10−5

CC GO:0070013~intracellular organelle lumen 24 9.0 × 10−5

CC GO:0043233~organelle lumen 24 1.3 × 10−4

Annotation Cluster 4 (Enrichment Score: 1.90)

MF GO:0003743~translation initiation factor
activity

5 4.6 × 10−4

MF GO:0008135~translation factor activity,
nucleic acid binding

5 2.7 × 10−3

BP GO:0006412~translation 8 3.2 × 10−3

Annotation Cluster 5 (Enrichment Score: 1.74)

BP GO:0016071~mRNA metabolic process 8 5.8 × 10−3

BP GO:0006397~mRNA processing 7 1.1 × 10−2

BP GO:0000375~RNA splicing, via
transesterification reactions

5 1.2 × 10− 2

Each cluster is represented by the top three terms
Abbreviations: BP biological process, CC cellular component, MFmolecular function

Fig. 4 Differential gene networks associated with early development
of mouse embryos. a Differential gene regulatory network of differential
gene pairs identified by comparing the 2-cell and 8-cell stages of
mouse embryonic development. Top hub genes are labeled with gene
symbols. b Venn diagram of genes involved in the differential network
and those differentially expressed between two groups of cells
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involvement of mitochondria-related biological functions
in anti-androgen resistance. We also illuminated crucial
biological functions regulating early development of
mouse embryos. Taken together, our data suggest wide
applications of scdNet in exploring differential networks
out of the rapidly increasing scRNA-Seq studies.

Abbreviations
CTC: Circulating tumor cell; GO: Gene Ontology; scdNet: scRNA-Seq-based
differential network analysis; scRNA-Seq: Single-cell RNA sequencing
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