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Abstract

Background: Angiogenesis is important in physiological and pathological conditions, as blood vessels provide
nutrients and oxygen needed for tissue growth and survival. Therefore, targeting angiogenesis is a prominent
strategy in both tissue engineering and cancer treatment. However, not all of the approaches to promote or inhibit
angiogenesis lead to successful outcomes. Angiogenesis-based therapies primarily target pro-angiogenic factors
such as vascular endothelial growth factor-A (VEGF) or fibroblast growth factor (FGF) in isolation. However, pre-
clinical and clinical evidence shows these therapies often have limited effects. To improve therapeutic strategies,
including targeting FGF and VEGF in combination, we need a quantitative understanding of the how the promoters
combine to stimulate angiogenesis.

Results: In this study, we trained and validated a detailed mathematical model to quantitatively characterize the
crosstalk of FGF and VEGF intracellular signaling. This signaling is initiated by FGF binding to the FGF receptor 1
(FGFR1) and heparan sulfate glycosaminoglycans (HSGAGs) or VEGF binding to VEGF receptor 2 (VEGFR2) to
promote downstream signaling. The model focuses on FGF- and VEGF-induced mitogen-activated protein kinase
(MAPK) signaling and phosphorylation of extracellular regulated kinase (ERK), which promotes cell proliferation. We
apply the model to predict the dynamics of phosphorylated ERK (pERK) in response to the stimulation by FGF and
VEGF individually and in combination. The model predicts that FGF and VEGF have differential effects on pERK.
Additionally, since VEGFR2 upregulation has been observed in pathological conditions, we apply the model to
investigate the effects of VEGFR2 density and trafficking parameters. The model predictions show that these
parameters significantly influence the response to VEGF stimulation.

Conclusions: The model agrees with experimental data and is a framework to synthesize and quantitatively explain
experimental studies. Ultimately, the model provides mechanistic insight into FGF and VEGF interactions needed to
identify potential targets for pro- or anti-angiogenic therapies.

Background
Angiogenesis is the formation of new blood capillaries
from pre-existing blood vessels. The essential role of
blood vessels in delivering nutrients makes angiogenesis
important in the survival of tissues, including tumor
growth. Angiogenesis also provides a route for tumor
metastasis. Thus, targeting angiogenesis is a prominent
strategy in many contexts, for example, in both tissue
engineering and cancer treatment.

In the context of tissue engineering, there is a large
demand for organs needed for transplant surgery, but a
great shortage of donors. The long-term viability of
engineered tissue constructs depends on growth of new
vessels from host tissue, and stimulating new blood ves-
sel formation is an important pro-angiogenic strategy
for tissue engineering [1]. Alternatively, the formation
of new blood vessels is important for cancer growth
and metastasis. Thus, inhibiting angiogenesis is an
anti-angiogenic strategy for cancer treatment. Unfortu-
nately, not all approaches to promote or inhibit angio-
genesis lead to successful outcomes. For example,
clinical trials have shown no effective improvement in
blood flow or perfusion by fibroblast growth factor
(FGF)-induced [2] or vascular endothelial growth
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factor-A (VEGF)-induced [3] angiogenesis. Specifically,
a double-blinded randomized controlled trial studied
recombinant FGF-induced angiogenesis and showed no
symptomatic improvement (exercise tolerance or myo-
cardial perfusion) following 90 or 180 days of treatment
[2]. Similarly, in a double-blinded placebo-controlled
trial to study the effects of recombinant human
VEGF-induced angiogenesis in animal models, there
was no improvement in angina, in comparison with
placebo by day 60. Only a high dose of VEGF (50 ng/
kg/min) showed any effect [3]. Also, bevacizumab, an
anti-VEGF agent for cancer treatment, has limited effects
in certain cancer types, and it is no longer approved for
the treatment of metastatic breast cancer due to its disap-
pointing results [4]. Thus, there is a need to better under-
stand the molecular interactions and signaling required
for new blood vessel formation, in order to establish more
effective therapeutic strategies.
The established angiogenesis-based therapies primar-

ily target pro-angiogenic factors such as FGF and VEGF
in isolation. However, both FGF and VEGF bind to
their receptors to initiate mitogen-activated protein
kinase (MAPK) signaling and phosphorylate ERK, the
final output of the MAPK pathway [5, 6]. This signaling
pathway promotes cell proliferation in the early stages
of angiogenesis. Additionally, the combined effects of
FGF and VEGF have been shown to be greater than
their individual effects [7, 8]. A quantitative under-
standing of how these promoters combine together to
stimulate angiogenesis could greatly benefit the current
pro- and anti-angiogenic therapies.
Mathematical modeling is a useful tool to predict the

molecular response mediated by angiogenic factors. For
example, Mac Gabhann and Popel studied interactions
between VEGF isoforms, VEGF receptors (VEGFR1,
VEGFR2, NRP1), and the extracellular matrix using a
molecular-detailed model. The model predicted that block-
ing Neuropilin-VEGFR coupling is more effective in redu-
cing VEGF-VEGFR2 signaling than blocking Neuropilin-1
expression or binding of VEGF to Neuropilin-1 [9]. Stefa-
nini et al. constructed a pharmacokinetic model that stud-
ied VEGF distribution after intravenous administration of
bevacizumab, and they found that plasma VEGF was in-
creased after treatment [10]. Filion and Popel explored
myocardial deposition and retention of FGF after intracor-
onary administration of FGF using a computational model.
The model predicted that the response time is dependent
on the reaction time of the binding of FGF to FGFR rather
than the FGF diffusion time. Receptor secretion and in-
ternalization have also been predicted to be crucial in FGF
dynamics [11]. Wu and Finley characterized the intracellu-
lar signaling of TSP1-induced apoptosis and predicted re-
sponses of cell populations to TSP1-mediated apoptosis by
mathematical modeling [12]. Zheng et al. integrated the

effects of VEGF, angiopoietins (Ang1 and Ang2) and
platelet-derived growth factor-B (PDGF-B) on endothelial
proliferation, migration, and maturation using mathemat-
ical modeling. Their model illustrated that competition be-
tween Ang1 and Ang 2 acts as an angiogenic switch and
that combining anti-pericyte and anti-VEGF therapy is
more effective than anti-VEGF therapy alone in inducing
blood vessel regression [13]. Such models are useful to pre-
dict molecular responses of VEGF or FGF stimulation;
however, surprisingly, the interactions between these two
growth factors have not been investigated in detail. Target-
ing multiple growth factors simultaneously, exploiting their
overlapping and redundant signaling pathways, may im-
prove angiogenesis-based therapies. Thus, there is a need
for a model that provides quantitative insights into com-
bination effects of FGF and VEGF.
In the present study, we aim to quantitatively characterize

the crosstalk between FGF and VEGF in MAPK signaling
leading to phosphorylated ERK (pERK). We focus on pERK
because this species promotes cell proliferation [14] and is
mostly found in active, rather than quiescent, endothelial
cells [15]. We constructed a computational model that in-
corporates the molecular interactions between FGF, VEGF,
and their receptors, leading to MAPK signaling. We apply
the model to explore how FGF and VEGF promote ERK
phosphorylation. This is the first model that studies FGF
and VEGF interactions together on a molecular level. Our
model predicts the combination effects of FGF and VEGF
stimulation and shows that FGF plays a dominant role in
promoting ERK phosphorylation. Using this model, we also
investigated the effects of the VEGF receptor VEGFR2, in-
cluding how VEGFR2 density and trafficking parameters in-
fluence the ERK response. By predicting the effect of
VEGFR2 density and trafficking parameters, we can get a
better understanding of the role of VEGFR2 under
pathological conditions. Additionally, understanding
with quantitative detail the FGF and VEGF interactions
helps identify potential targets for enhancing pro- or
anti-angiogenic therapies.

Results
The validated mathematical model captures the main
features of FGF- and VEGF-stimulated ERK
phosphorylation dynamics
We constructed a computational model that character-
izes FGF and VEGF interactions leading to ERK phos-
phorylation (Fig. 1). Signaling is mediated by FGF and
VEGF binding to their respective receptors, leading to
pERK. The model was trained against published experi-
mental measurements [16–18] using Particle Swarm
Optimization (PSO) [19] for parameter estimation. We
note that pERK response stimulated by FGF was mea-
sured using the non-small cell lung cancer cell line
NCI-H1730 [16], while phosphorylated VEGFR2 (pR2)
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[18] and pERK [17] responses induced by VEGF were
obtained using human umbilical vein endothelial cells
(HUVECs). In this study, we assume the downstream
signaling has the same kinetics across different cell
lines. The FGFR1 and heparan sulfate glycosaminogly-
can (HSGAG) levels on various cell types are fairly con-
sistent: approximately 104 to 105 molecules/cell for
Balb/c3T3 [20], osteoblasts and bone marrow stromal
cells [21], bovine aortic endothelial cells (BAECs) [22],
and the NCI-H1730 cell line [16]. In addition, other
models have made similar assumptions that signaling is
consistent across cell types, for example, using HUVEC
data to study macrophage signaling responses [23].
That work, which supposes that the unique signaling
responses for specific cell types are due to their different
protein levels rather than the kinetics, is able to match ex-
perimental data. Thus, we assume the FGFR1 signaling
pathway for NCI-H1730 cells is the same as in endothelial
cells.
To explore the behavior of the model, we performed

a global sensitivity analysis, which identifies the vari-
ables that significantly influence the model outputs.
Specifically, we performed the extended Fourier Ampli-
tude Sensitivity Test (eFAST) (see Methods for more
details) and computed the total sensitivity indices (Sti)
for initial conditions or kinetic parameters on pERK
level by the stimulation of FGF or VEGF. The eFAST
results reveal the specific species and kinetic parameters

that affect pERK. These results show the importance of
particular species (Additional file 1: Figure S1A): FRS2
and Ptase2 for FGF-induced signaling and Ras, MEK, and
Ptase2 for VEGF-induced signaling. Additionally, the rates
of certain reactions involving these species are also shown
to be important (Additional file 1: Figure S1B). This in-
cludes “ked2” and “k_dpMEK_p”, which are the dephos-
phorylation rate of ppMEK by Ptase2 and the association
rate of pMEK and Ptase2, respectively. Moreover, the
eFAST results indicate the importance of the VEGFR2
trafficking parameters. Specifically, the internalization
rates of bound VEGFR (“k_intb”, “k_recb”, and “k_degb”)
are shown to affect ppERK with VEGF stimulation (Add-
itional file 1: Figure S1B, bottom two panels). These re-
sults provide the foundation to investigate how the
VEGFR2 trafficking rates influence pERK dynamics, which
we explore below. In addition, these results can guide
parameter fitting. Since many of the influential parame-
ters and initial values are involved in the overlap of
FGF and VEGF signaling pathways, along with the
VEGFR2 trafficking parameters, we selected those
values for model fitting.
The fitted model shows a good match to the training

data (Fig. 2). It can capture the biphasic pERK response
caused by FGF stimulation, which has been reported by
Kanodia et al. (Fig. 2a, c): pERK increases as the FGF
concentration increases from low to intermediate
levels, and decreases with increasing FGF at high

Fig. 1 Schematic of FGF and VEGF signaling network. Signaling is induced by the growth factors binding to their receptors, culminating with
phosphorylation of ERK, through the MAPK cascade. MAPK signaling is initiated through the activation of Raf and FRS2 by VEGF and FGF, respectively.
The FGF:HSGAG:FGFR1 complex dimerizes and leads to phosphorylation of FRS2 (pFRS2). VEGF binds VEGFR2 to activate Ras, forming Ras-GTP, which
further activates Raf (aRaf). Both aRaf and pFRS2 are able to phosphorylate MEK at two sites, and doubly phosphorylated MEK (ppMEK) further
phosphorylates ERK. ppERK provides negative feedback on the FGF pathway, as it promotes ubiquitination of FRS2 (FRS2u)
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concentrations. The decrease in pERK is caused by the
competitive binding of FGF to HSGAG and FGFR [16].
At lower FGF levels, there are enough FGFR molecules
to bind with FGF, forming FGF-FGFR complexes that
can interact with HSGAGs to form the pro-angiogenic
tertiary complex (FGF-HSGAG-FGFR). However, at
higher FGF levels, formation of the FGF-FGFR complex
is limited by the number of FGFR molecules, which
thus limits the formation of the tertiary complex. This
is primarily due to the different expression levels of
FGFR and HSGAGs (2 × 104 versus 105 molecules/cell,
respectively) [16]. Our fitted model recapitulates this
biphasic response at the simulated time points. Also,
VEGF-induced upstream (pVEGFR2) and downstream
(pERK) dynamics have good agreement with experi-
mental measurements (Fig. 2b, d) [17, 18]. For the best
16 fits, the weighted errors range from 17.4 to 18.6
(Additional file 2: Table S1). In addition, the fitted pa-
rameters have good consistency. We allowed the values
of the initial conditions and kinetic parameters that
were fitted to vary up to two orders of magnitude
(10-fold above and below the baseline starting value).
We examined the results of the 16 best parameter sets,

focusing on the range spanning two standard deviations
above and below the mean for each fitted initial condi-
tion and parameter. For all the fitted initial conditions
and 32 of the 34 fitted parameters, this range was within
one order of magnitude (Additional file 1: Figure S2).
Thus, the fitting reduced the bounds.
To validate the model, we compared the predictions

to additional experimental data. We first applied hep-
arin perturbation to the trained model to reproduce
another set of data by Kanodia et al. Heparin is a sol-
uble source of HSGAGs, and it competes with
HSGAGs to bind with FGF, interfering with FGF-in-
duced signaling (Additional file 1: Figure S3) [16]. It
has been reported that additional heparin increases
FGF-induced ERK phosphorylation at high FGF concen-
trations, and decreases FGF-induced ERK phosphorylation
at low FGF concentrations in two hours [16]. We validated
the model by expanding it to include heparin binding and
comparing to the experimental measurements. We added
500 μg/ml of heparin, the same concentration used in ex-
periments [16], and found that the difference of predicted
pERK responses upon FGF stimulation with and without
heparin within two hours exhibits the trend observed to

Fig. 2 Model comparison to training data for FGF or VEGF stimulation. a Normalized pERK dynamics in response to FGF concentrations ranging
from 0.16 to 500 ng/ml. b Normalized VEGFR2 phosphorylation time course following stimulation with 5 ng/ml VEGF. c Dose response of pERK for
FGF stimulation. d Normalized ERK phosphorylation time course upon stimulation with 50 ng/ml VEGF. The circles are experimental data. Curves
are the mean values of the 16 best fits. Shaded regions show standard deviation of the fits
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occur experimentally: at high FGF concentrations, the dif-
ference between the presence and absence of heparin is
greater than zero, while the difference is less than zero at
lower FGF concentrations (Fig. 3a). This shows a qualita-
tive agreement with experimental observations.
A separate set of experimental measurements of

phosphorylated ERK by the stimulation of 10 ng/ml
FGF conducted using BAECs [24] was extracted to fur-
ther validate FGF-induced endothelial signaling. Our
model also has a good agreement with this experimen-
tal data (Fig. 3b), which further confirms that this
model can be used to predict endothelial cell signaling.
Finally, we extracted an independent set of experi-

mental measurements of the phosphorylated VEGFR2
response by the stimulation with 80 ng/ml VEGF in
HUVECs [25] to validate the VEGF-induced signaling.
Our model quantitatively matches the experimental
data (Fig. 3c). Overall, we find that our trained model
can generate reliable predictions for the endothelial
intracellular signaling response stimulated by FGF or
VEGF. This further supports our assumption that dif-
ferent data sets can be used to establish a predictive
model of signaling in ECs. Thus, we used the best fits

(based on model training and validation) in subsequent
predictions and analyses.

FGF produces a greater angiogenic response than VEGF
when considering the maximum ERK phosphorylation
produced
Using the validated model, we first studied the effects
of FGF and VEGF individually on pERK. We simulate a
range of FGF and VEGF concentrations, based on sev-
eral experimental studies published in literature (see
Methods). Specifically, we chose the ligand concentra-
tion range of 0.01–2 nM to investigate the ERK activa-
tion in response to typical levels of FGF and VEGF in
in vitro studies.
The model predicts that FGF is more potent in pro-

moting ERK phosphorylation, compared to VEGF, at
equimolar concentrations. When FGF concentration is
varied from 0.01 nM to 2 nM, the maximum pERK
ranges from 4 × 105 molecules/cell to 8 × 105 molecules/
cell, while VEGF induces a maximum of 2 × 10− 2 mole-
cules/cell to 1 × 105 molecules/cell pERK for the same
concentration range (Fig. 4a). For example, on average
(across the 16 best fits), the maximum pERK induced by

Fig. 3 Model comparison to validation data. a The differences in pERK induced by stimulation of FGF with and without 500 μg/ml heparin at four
time points are predicted. Each dot represents one fit. The dots are spread horizontally to avoid overlap of similar responses from different fits. b
Normalized pERK by the stimulation of 10 ng/ml FGF. Circles are BAEC experimental data. c Normalized VEGFR2 phosphorylation time course upon
stimulation with 80 ng/ml VEGF. Circles are HUVEC experimental data. Curves are the mean values of the 16 best fits from the model training. Shaded
regions show standard deviation of the fits
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0.5 nM FGF is 8 × 105 molecules/cell, while 0.5 nM
VEGF induces a maximum pERK of 9 × 102 molecules/
cell. Thus, FGF produces a maximum ERK phosphoryl-
ation that is approximately three orders of magnitude
higher than that induced by VEGF. Furthermore, the
maximum pERK is more sensitive to increasing the
VEGF concentration, as compared to FGF. The max-
imum pERK increases steadily with increasing VEGF
stimulation, while maximum pERK remains relatively
constant as the level of FGF stimulation increases. The
measurements from Kanodia et al. show that FGF stimu-
lation does not significantly change the maximal pERK
level (Fig. 2a) for concentrations ranging from 0.8 ng/ml
(0.03 nM) to 100 ng/ml (4 nM) [16]. This experimental
observation agrees with our model predictions for FGF
stimulation shown in Fig. 4a. We can explain this result
by examining the levels of the intermediate signaling
species. For the FGF pathway, the phosphorylated tri-
meric complex of FGF, FGFR, and HSGAG binds to and
phosphorylates FRS2, and phosphorylated FRS2 (pFRS2)
leads to the phosphorylation of MEK. The resulting
doubly phosphorylated MEK (ppMEK) further mediates

the phosphorylation of ERK (Fig. 1). We found that even
with 0.01 nM FGF stimulation, FRS2 is rapidly depleted
(Additional file 1: Figure S4A). The shortage of FRS2
limits ppMEK level, which is the substrate for ERK
phosphorylation and further limits pERK level. There-
fore, FRS2 level limits the FGF-induced ERK phosphor-
ylation. Increasing FGF concentration 200-fold (from
0.01 nM to 2 nM) only doubles the maximum pERK
(from 4 × 105 molecules/cell to 8 × 105 molecules/cell),
again due to the shortage of FRS2. The importance of
FRS2 is also shown in the sensitivity analysis
(Additional file 1: Figure S1).
On the other hand, for the VEGF pathway, phosphor-

ylated VEGFR2 produces Ras-GTP, which activates Raf.
The activated Raf (aRaf ) mediates phosphorylation of
MEK. As in the FGFR pathway, ppMEK mediates ERK
phosphorylation (Fig. 1). The model predicts that there
is enough Raf and MEK supply even upon stimulation
with a high concentration of VEGF (2 nM), as shown in
Additional file 1: Figure S4B. Thus, the maximum
pERK increases significantly with increasing VEGF
concentration, compared with FGF-induced ERK

Fig. 4 Predicted maximum pERK response. a Maximum pERK in response to FGF (yellow) or VEGF (blue) concentrations varying from 0.01 nM to
2 nM. b Ratio, R, of combination effects to the summation of individual effects in response to FGF and VEGF. Each dot represents one fit. The dots
are spread horizontally to avoid overlap of similar responses from different fits. Asterisk indicates statistically significant difference compared with
one (p < 0.05). Bars are median ± 95% confidence interval
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phosphorylation. Furthermore, the maximum pERK in-
duced by FGF or VEGF gets closer as VEGF concentra-
tion increases (Fig. 4a).
The model predicts that one of the main reasons why

FGF induces a greater maximum pERK response com-
pared to VEGF is related to differences at the receptor
level. Despite depletion of FRS2, high FGFR levels en-
able robust FGF-mediated signaling. FGFR density is
much higher than VEGFR2 density (20,000 molecules/
cell compared to 1000 molecules/cell). Additionally, the
trafficking parameters (internalization, recycling, and
degradation rates) for FGFR are lower than the corre-
sponding VEGFR2 trafficking parameters (Additional
file 1: Figure S5). Although internalized VEGFR2 mole-
cules are recycled back to the surface more rapidly than
FGFR molecules, VEGFR2 is internalized and degraded
more rapidly than FGFR. Additionally, the dynamics of
FGF receptors and VEGFR2 in their signaling, internal-
ized, and degraded forms upon stimulation with 0.5 nM
FGF or 0.5 nM VEGF (Additional file 1: Figure S6)
indicate that more FGFR is available to signal instead of
being internalized or degraded (non-signaling), com-
pared to VEGFR2.

The combination of FGF and VEGF has greater effects in
inducing maximum pERK than the summation of the
individual effects
We next studied the combination effects of FGF and
VEGF in inducing maximum pERK. Here, we define a
ratio comparing the combination effects to the individ-
ual effects. Specifically, this ratio is the maximum pERK
obtained with co-stimulation of FGF and VEGF over
the summation of the maximum pERK for FGF and
VEGF stimulation individually (see Methods for more
details). In Fig. 4b (left panel), 0.5 nM FGF in combin-
ation with intermediate to high VEGF concentrations
(0.1–2 nM) can produce a significantly greater maximal
pERK response than the summation of their individual
effects, as indicated by the ratios being significantly
greater than one (p < 0.05). The ratios for combinations
of VEGF concentrations at 0.01 or 0.05 nM with 0.5 nM
FGF are slightly greater than one; however those differ-
ences are not statistically significant. Stimulation with
0.5 nM VEGF in combination with a FGF concentration
as low as 0.01 nM can exhibit greater combined effects
than the summation of their individual effects. For
these cases, the ratios are all significantly greater than
one (Fig. 4b, right panel).
Co-stimulation compensates for the limitations ob-

served when only one pathway is stimulated. The
model predicts that although VEGF-mediated MEK
phosphorylation is much lower than FGF at the equi-
molar concentrations (Additional file 1: Figure S7A, re-
actions R26 and R28 compared with Additional file 1:

Figure S7B, reactions R35 and R378), there are suffi-
cient levels of Raf available compared to FRS2 (Add-
itional file 1: Figure S4) to promote MEK
phosphorylation. Thus, VEGF co-stimulation provides a
way to overcome the limitation of the FRS2 level. On
the other hand, in comparison with VEGF stimulation
alone, the presence of FGF in the co-stimulation pro-
vides a high level of pMEK because MEK gets phos-
phorylated by pFRS2 much faster than by aRaf
(Additional file 1: Figure S7C, reactions R26 and R28
compared with reactions R35 and R37). Together, these
results explain why the combination of FGF and VEGF
has a greater effect on ERK phosphorylation than the
summation of their individual effect.
The effects of FGF and VEGF co-stimulation are more

sensitive to VEGF, as compared to FGF. That is, increas-
ing the VEGF concentration increases the ratio, while
the ratio does not change with varying FGF concentra-
tions. Additionally, the combination of FGF with VEGF
shows a more additive response at low VEGF concentra-
tions (< 0.1 nM). At higher concentrations (> 0.1 nM), in-
creasing VEGF concentration increases the ratio (Fig. 4b).
Overall, the model predictions show that combinations

of FGF and VEGF produce more ERK phosphorylation,
compared to their individual effects. Additionally, the
model indicates that VEGF-induced maximum pERK is
more sensitive to varying the ligand concentration than
FGF-induced maximum pERK, both for stimulation with
VEGF or FGF alone and for co-stimulation.

The combination of FGF and VEGF shows a fast and
sustained pERK response
The combination of FGF and VEGF exhibits a fast pERK
response
In addition to studying the magnitude of the predicted
pERK level upon FGF and VEGF mono- and co-stimu-
lation, we investigated the timescale of the pERK re-
sponse. First, we analyzed the time for the pERK level
to reach its maximum value, termed “T1” (see Methods
for more details) in response to the stimulation of FGF
or VEGF individually. We found that FGF generally
produces a faster response than VEGF stimulation at
the same concentrations. Here, we characterize the
timescale of the response in terms of the time it takes
to reach maximum pERK. At low FGF concentrations
(< 0.5 nM), the T1 values for FGF and VEGF are not
significantly different (Fig. 5a). However, at high FGF
concentrations (≥ 0.5 nM), FGF shows a significantly
faster T1 response than VEGF. Specifically, for FGF
concentrations ranging from 0.5 to 2 nM, the induced
pERK response peaks within six minutes, while for the
same range of VEGF concentrations, pERK reaches its
peak value within 8 to 22 min (Fig. 5a). Experimental
data from Kanodia et al. show that the values of T1 are
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all within eight minutes [16], and for 50 ng/ml (1.1 nM)
VEGF stimulation, T1 is 15min [17]. Thus, although we
did not explicitly fit the model to the T1 values shown in
experiments, our model predictions agree with those data.
Together with Fig. 4a, the model predicts that FGF can in-
duce a greater amount of ERK phosphorylation within a
shorter period of time, compared to VEGF.
This difference in how T1 is affected by the two

pro-angiogenic factors is caused by the availability of
upstream species needed to activate MEK, and subse-
quently, ERK. As described above, on average, there is
more Raf and aRaf available to promote downstream
signaling upon VEGF stimulation, as compared to FRS2
and pFRS2 available with FGF stimulation. At low FGF
concentrations, FRS2 is not depleted as quickly, and
more ERK can be phosphorylated. As the FGF concen-
tration used for stimulation increases, FRS2 is more
rapidly depleted, and the maximal concentration of
pERK happens more quickly. On the other hand, at
high VEGF concentrations, there are still sufficient

levels of Raf available to become phosphorylated and
lead to ERK phosphorylation. Thus, the time to reach
the maximal pERK concentration continues to increase
as VEGF stimulation level increases.
As for the combination effects, we found that when

the VEGF concentration is varied from 0.01 nM to 0.5
nM, co-stimulation with 0.5 nM FGF significantly speeds
up ERK phosphorylation, compared to VEGF stimulation
alone (Fig. 5a). For 0.5 nM VEGF stimulation, increasing
the FGF concentration decreases T1, compared to VEGF
stimulation alone. This decrease in T1 is significantly
different than VEGF stimulation alone for FGF concen-
trations greater than 0.5 nM (Fig. 5a). Overall, these re-
sults indicate that pERK responds faster with FGF
stimulation, as compared to VEGF stimulation.

The combination of FGF and VEGF induces sustained pERK
response
We explored how long ERK can remain phosphorylated
above its half-maximal value, termed “T2” (see Methods

Fig. 5 Predicted time response of pERK following stimulation by FGF, VEGF, and their combination. a T1, time to reach the maximum pERK in response
to growth factor stimulation. Asterisk indicates statistically significant difference compared to corresponding VEGF concentration (p < 0.05). b T2, time that
pERK is maintained above half of its maximum value in response to treatments. Each dot represents one fit. The dots are spread horizontally to avoid
overlap of similar responses from different fits. Asterisk indicates statistically significant difference compared to corresponding FGF concentration (p<
0.05). Yellow: FGF; Blue: VEGF; Red: combination. Bars are median ± 95% confidence interval
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for more details), as another means of characterizing the
timescale of the ERK response. The values of T2 for
FGF and VEGF stimulation alone with concentrations
ranging from 0.01 nM to 1 nM are not significantly dif-
ferent (T2 is approximately 9 min). However, a higher
VEGF concentration produces a more sustained pERK
response. Specifically, 2 nM VEGF shows significantly
higher T2 (18 min on average) than 2 nM FGF stimula-
tion (9 min on average) (Fig. 5b).
Regarding the combination effects, we found that

with 0.5 nM FGF, VEGF concentrations greater than
0.5 nM are able to maintain ERK phosphorylation above
its half-maximal value significantly longer, compared to
FGF stimulation alone at the same concentrations. That
is, T2 is significantly greater for combinations of 0.5
nM VEGF with FGF concentrations ranging from 0.01
nM to 2 nM, compared to FGF or VEGF stimulation
alone (Fig. 5b).
To identify the reasons why pERK shows a more

transient dynamic in response to FGF stimulation
compared to VEGF stimulation at certain concentra-
tions (> 0.5 nM), we compared the levels of the inter-
mediate signaling species following stimulation of FGF
or VEGF alone. For the co-stimulation of FGF and
VEGF, the depletion of FRS2 still limits production of
ppMEK with FGF stimulation (Additional file 1: Figure S8),
similar to the case of mono-stimulation of FGF (Additional

file 1: Figure S4). However, signaling through VEGFR com-
pensates for this limitation (Additional file 1: Figure S8).

Increasing VEGFR2 density can compensate for the
relatively low ERK phosphorylation induced by VEGF
At its baseline level, the density of VEGFR2 is 20
times lower than FGFR1. This large difference con-
tributes to the predicted results presented above.
However, VEGFR2 upregulation has been observed in
tumor growth. Experimental measurements of recep-
tor expression show that some subpopulations of
tumor endothelial cells (ECs) have high receptor
levels: 13% of tumor-derived ECs have 7500 VEGFR2
molecules/cell after three weeks of tumor growth, and
5% of the tumor-derived ECs have 16,200 VEGFR2
molecules/cell after six weeks of tumor growth [26].
Therefore, we sought to understand the effects of
varying the VEGF receptor density on the predicted
pERK response to gain some insights into VEGF-me-
diated signaling in pathological conditions.
We found that the maximum pERK induced by VEGF

increases when VEGFR2 density increases (Fig. 6a). At
equimolar concentrations of FGF and VEGF stimulation
(0.5 nM), increasing VEGFR2 density by five-fold can in-
crease the maximum pERK level to the same order of
magnitude as FGF stimulation alone (Fig. 6b), which
makes the effects of VEGF-mediated signaling sizeable in

Fig. 6 Predicted pERK response with varied initial VEGFR2 concentrations. a Maximum pERK induced by 0.5 nM FGF or 0.5 nM VEGF alone. b
Maximum pERK induced by the combination of 0.5 nM FGF and 0.5 nM VEGF. c Ratio, R, of 0.5 nM FGF in combination with 0.5 nM VEGF. d T1,
time to reach the maximum pERK in response to treatments. e T2, time that pERK is maintained above half of its maximum value in response to
treatments. Yellow: FGF; Blue: VEGF; Red: combination. Each dot represents one fit. The dots are spread horizontally to avoid overlap of similar
responses from different fits. Bars are median ± 95% confidence interval
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conditions of increased VEGFR2 density. Specifically, the
model predicts that maximum pERK induced by the com-
bination of FGF and VEGF increases more than 90% when
VEGFR2 is increased by five-fold. In contrast, decreasing
VEGFR2 by ten-fold leads to an 11.5% decrease in max-
imum pERK induced by the combination of FGF and
VEGF. Thus, VEGFR2 density significantly impacts ERK
phosphorylation with FGF and VEGF co-stimulation. In
addition, the maximum ppERK level is higher upon
stimulation by VEGF, compared to FGF, when VEGFR2
density is increased (Additional file 1: Figure S9A).
Moreover, although the reaction rates for ERK phos-
phorylation by stimulation of FGF are slightly higher
than VEGF during the first 10 min, VEGF induces
higher rates between 10 to 60 min (Additional file 1:
Figure S9B, reactions R42 and R43). In addition, VEGF
exhibits faster phosphorylation for pERK than FGF
(Additional file 1: Figure S9B, reactions R44 and R45).
This indicates that the effect of VEGF is dominant in
the combination effect when VEGFR2 density is in-
creased by five-fold.
In Fig. 6c, as VEGFR2 density decreases, the ratio

characterizing the ERK signaling response with a
combination of FGF and VEGF compared to the sum-
mation of their individual effects becomes closer to
one. This nearly additive combination effect occurs
because reducing VEGFR2 makes the effect of VEGF
stimulation negligible. Thus, the ratio is approxi-
mately one. The ratio increases when VEGFR2 dens-
ity is increased by two-fold, which indicates a
stronger combination effect. However, the summa-
tion of individual effects surpasses the combination

effects (the ratio is less than one) when VEGFR2
density is more than five-fold higher than the base-
line level. The reason for this is due to the competi-
tion between FGF and VEGF for downstream
resources. Specifically, when VEGFR2 is increased
more than two-fold, ERK is depleted (Additional
file 1: Figure S10). This makes the combination ef-
fects less than the individual effects, causing the ratio
to be less than one. Finally, by increasing VEGFR2,
VEGF more strongly impacts the dynamics of pERK,
as both T1 (Fig. 6d) and T2 (Fig. 6e) increase with in-
creasing VEGFR2 density.

ERK phosphorylation induced by VEGF can be promoted
by decreasing VEGFR2 internalization and degradation
rates
Because FGFR trafficking parameter values are lower
than the corresponding VEGFR2 trafficking parameters
(Additional file 1: Figure S5) and pERK is sensitive to
these trafficking rates (Additional file 1: Figure S1), we
explored the role of trafficking parameters in pERK re-
sponse. That is, we investigated the effects of decreas-
ing the VEGFR2 trafficking parameters individually or
together to the same level as FGFR trafficking parame-
ters (Fig. 7). Specifically, we simulated the signaling
dynamics with 0.5 nM VEGF when all of the VEGFR2
trafficking parameters are decreased to be the same as
the FGFR trafficking rates shown in Additional file 1:
Figure S5. We then decreased each VEGFR2 trafficking
parameter one-by-one to be the same as the corre-
sponding FGFR trafficking rate shown in Additional
file 1: Figure S5. By performing these simulations, we

Fig. 7 Effect of varying VEGFR2 trafficking parameters on pERK response. a Maximum pERK, b T1, and (c) T2. The panels show the effect of 0.5 nM
FGF (Yellow) or 0.5 nM VEGF (Blue) predicted using the fitted parameter values (“fitted” x-axis label). We ran the model with 0.5 nM VEGF when all
of the VEGFR2 trafficking parameters are decreased (“all” x-axis label) to be the same as the FGFR trafficking rates shown in Additional file 1:
Figure S5. Finally, we decreased each VEGFR2 trafficking parameter individually to be the same as the corresponding FGFR trafficking rate shown
in Additional file 1: Figure S5. We omitted some points for T1 and T2 when the pERK does not reach the maximum value in two hours. Each dot
represents one fit. Bars are median ± 95% confidence interval
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can determine how the trafficking of each pool of
VEGFR2 molecules influences the response to VEGF
stimulation.
We found that decreasing the internalization rates of the

free and bound forms of VEGFR2, individually or in com-
bination, with 0.5 nM VEGF leads to a significant increase
in maximum ERK phosphorylation (Fig. 7a, “fitted” com-
pared to “k_intf”, “k_intb”, or “k_int”). In fact, by decreasing
VEGFR2 internalization (“k_int”) to be the same as the
FGFR internalization rate, the maximal VEGF-mediated
ERK phosphorylation reaches the same magnitude as the
response induced by 0.5 nM FGF. This qualitative trend is
expected, since decreasing receptor internalization rates
makes more VEGFR2 available on the cell surface to bind
to the ligand, inducing downstream signaling. However,
the model provides detail about the quantitative effects of
these changes.
Decreasing the recycling rates of the free and bound

forms of VEGFR2 individually or in combination signifi-
cantly decreases ERK phosphorylation for 0.5 nM VEGF
stimulation (Fig. 7a, “fitted” compared to “k_recf”, “k_recb”,
or “k_rec”). A lower receptor recycling rate makes more
non-signaling internalized VEGFR2 remain inside the cell
longer and recycles available VEGFR2 to the cell surface
more slowly. Together, these effects limit ERK phosphor-
ylation. Interestingly, changing the recycling rate leads to
a wider range of responses compared to changing intern-
alization or degradation rates, especially for recycling of
free VEGFR2 (Fig. 7a).
Lowering the rate at which the free form of VEGFR2 is

degraded significantly increases the maximum ERK phos-
phorylation induced by 0.5 nM VEGF to be the same mag-
nitude of the maximal pERK level induced by 0.5 nM FGF
alone (Fig. 7a, “fitted” compared to “k_degf”, “k_degb”, or
“k_deg”). A lower free receptor degradation rate makes
more VEGFR2 available to promote signaling.
We also examined the timescales of the ERK re-

sponse. The model predicts that decreasing the traffick-
ing rates slows down the dynamics of VEGF-induced
ERK phosphorylation (Fig. 7b, c), both in terms of T1
and T2. Furthermore, we studied the effects of chan-
ging VEGFR2 trafficking parameters on the combin-
ation effects. We found that the combination of 0.5 nM
FGF and 0.5 nM VEGF with lower VEGFR2 trafficking
parameters has similar results as 0.5 nM VEGF-induced
pERK. That is, decreasing VEGFR2 internalization and
degradation rates leads to greater ERK phosphorylation
(Additional file 1: Figure S11). Overall, lower VEGFR2
trafficking parameters leads to an increased impact of
VEGF in the combination effects.

Discussion
We developed an intracellular signaling model of the
crosstalk between two pro-angiogenic factors, FGF and

VEGF. The molecular-detailed model represents the re-
action network of interactions on a molecular level,
based on reactions documented in literature. The kin-
etic parameters are taken from experimental measure-
ments, where available. Unknown parameters were
estimated by fitting the model to experimental data.
Additionally, we validated the model using three separ-
ate sets of data.
This is a novel model of FGF and VEGF interactions,

taking into account previous modeling work [6, 16],
with a focus on the MAPK cascade and the pERK re-
sponse as an indicator for pro-angiogenic signaling.
The fitted model predicts the pERK response upon
stimulation by FGF and VEGF, alone and in combin-
ation. We particularly focus on the pERK response
since pERK promotes cell proliferation [14], one aspect
of early-stage of angiogenesis. Additionally, it has been
shown that pERK is mostly found in active rather than
quiescent endothelial cells [15], and pERK has been
used as way to characterize the pro-angiogenic re-
sponse in other studies [27–29].
Overall, FGF is predicted to potently and rapidly pro-

mote ERK phosphorylation compared to VEGF stimula-
tion. VEGF also plays an important role in pERK
dynamics. Altogether, the model shows that the pERK
level in response to FGF, VEGF, and their combination
is dose-dependent and that some combinations induce
greater maximum ERK phosphorylation than the sum-
mation of their individual effects.
Our results reveal that the strength of VEGF-mediated

ERK signaling is a combination of the absolute receptor
expression level, the receptor availability, and some in-
trinsic characteristic of the receptors or the structure of
the signaling pathway. Firstly, there is imbalanced recep-
tor expression level (high FGFR1 compared to VEGFR2),
which is one of the reasons for VEGF’s lower ERK
activation in HUVECs. Increasing the expression of
VEGFR2 by five-fold (from 1000 up to 5000 receptors/
cell), without changing VEGFR2 trafficking parameters
allows the maximum VEGF-induced pERK level to be
the same as what is achieved through FGF stimulation at
equimolar concentrations. Additionally, changing the
VEGFR2 trafficking rates to be the same as those for
FGFR, without changing VEGFR2 density, also allows
the same maximal pERK to be achieved for equimolar
concentrations of FGF and VEGF. Thus, both the abso-
lute receptor level and availability of receptors directly
affect the signal strength. However, these are not the
only causes of the difference in the ability to drive ERK
signaling, because even with a five-fold increase in
VEGFR2 (to 5000 molecules/cell), its expression is still
less than that of FGFR, which is present at 20,000 mole-
cules/cell. Thus, to reach the same maximum pERK level
at equimolar concentrations of FGF and VEGF
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stimulation, the required VEGFR2 level is much lower
than FGFR level, independent of the high VEGFR2 traf-
ficking rates. This indicates that there is also some in-
trinsic ability of VEGFR2 that enables ERK activation.
This is particularly relevant, as endothelial VEGF recep-
tor expression is upregulated in tumors [30], and can
reach nearly 2 × 104 molecules/cell in tumor-derived
endothelial cells after six weeks of tumor growth [26].
The effect of VEGF-mediated pERK signaling may also
be due to the structure of the signaling network and ex-
pression levels of the pathway intermediates (such as
Raf, which is not present in the FGF signaling pathway).
Overall, the ability of VEGF to promote ERK signaling is
due to a combination of factors. Excitingly, our model is
able to predict the contribution of each of these factors.
The model predictions are consistent with several ex-

perimental studies. Multiple experiments show that FGF
induces the same level of angiogenic response at lower
concentration in comparison to VEGF [31–33], and their
combination induces greater angiogenic responses [8].
Additionally, the model predicts that decreasing VEGFR2
internalization and degradation rates can increase the im-
pact of VEGF in combination effects. This result comple-
ments experiments showing that receptor trafficking plays
a critical role in angiogenic signaling [34]. Overall, our
molecular-detailed model helps synthesize these experi-
mental data and observations related to VEGF- and FGF-
stimulated signaling.
One application of our work is that the model can

also be linked with computational models that predict
events on the cellular scale. Our model culminates with
ERK activation, complementing published models that
substantially simplify the intracellular signaling and
focus on specific cellular behavior, such as proliferation
[35], the probability of sprout formation and the speed
of vessel growth [36], or tumor growth [37]. However,
these models reduced the intracellular signaling net-
work such that the output signal is simply linearly pro-
portional to the fraction of bound receptors. In
comparison, our mechanistic model considers intracellular
signaling and quantitatively analyzes pERK response,
which could be a better indicator for these cellular behav-
iors. For example, Hendrata and Sudiono constructed a
computational model that includes molecular, cellular,
and extracellular scales to study tumor apoptosis [37].
Our model can be utilized in combination with such
models to more accurately predict cellular behavior.
Our model can also be used for exploring mechanisms

that regulate the magnitude and dynamics of pERK upon
FGF and/or VEGF stimulation, as has been done in other
modeling work [38–40]. For example, Edelstein et al.
showed that ligand depletion diminishes cooperative inter-
actions between ligands and binding sites, and that recep-
tor concentration plays an important role in biological

signal transduction [38]. Such depletion of the ligand that
initiates the signaling could also be explored using our
mechanistic model. In other work, Saucerman and Bers
combined a cardiac myocyte excitation-contraction com-
putational model with biochemical reaction models to in-
vestigate how calmodulin (CaM), calcineurin, and CaM-
dependent kinase are spatially and temporally activated by
local calcium signals [39]. Our model can be expanded to
explore spatial effects as well. Recently, Romano and co-
workers studied the competition of seven proteins for
CaM binding and concluded that this competition con-
tributes to synaptic plasticity [40]. This model of binding
competition is relevant to our system, for example in the
case of competitive binding the activators (FRS2 or aRaf)
and phosphatases to species such as MEK. Such competi-
tion can be examined in detail in future work.
Our model can also aid in studying the efficiency of pro-

or anti-angiogenic therapies. Some pro- or anti-angiogenic
treatments have not been very effective, particularly those
targeting only a single signaling family [2, 3]. However, tar-
geting both FGF and VEGF may be a promising strategy,
given the potential synergistic effects predicted by our
model and demonstrated in experimental studies. In fact,
multiple groups have reported interesting interactions be-
tween FGF and VEGF [7, 8, 41, 42]. This crosstalk may be
exploited to aid in angiogenesis-based therapies, and our
model can be helpful in understanding their interactions
and combination effects. Model predictions for species’ dy-
namics and reaction rates provide mechanistic insight into
FGF and VEGF interactions. Our predictions show that the
low success in targeting VEGF alone could be due to low
receptor numbers and fast internalization, recycling and
degradation. Although FGF has greater effects in inducing
ERK phosphorylation, its effects can be enhanced by the
addition of VEGF. Thus, our model can be used to investi-
gate the efficiency of targeting both FGF and VEGF as an
alternative strategy.
In addition to the amount of FGF or VEGF the cells

are stimulated with, other factors can influence the mag-
nitude of timescale of the pERK response. This includes
the growth factor concentration gradient, heterogeneity
in a population of cells, and genetic mutations. Our
computational modeling provides a platform for many
interesting and relevant studies that can be helpful to
characterize signaling dynamics that mediate endothelial
cell sprouting during the early stages of angiogenesis, in
response to extracellular signals.
Our model is the first to combine the signaling net-

works of FGF and VEGF, providing novel quantitative
insight into the effect of combined FGF and VEGF
treatment. However, we recognize some limitations in
our model. Firstly, this model does not include FGF ac-
tivated Ras-Raf signaling because the protein-protein
interactions in this pathway are still not clear. As more
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information becomes available as to the detailed mech-
anisms of those reactions, we can expand the model to
include FGF-mediated Ras signaling. Second, we as-
sumed that the internalized and degraded phosphory-
lated receptors would not signal. Receptor trafficking
processes such as internalization have conventionally
been thought to downregulate extracellular signals.
However, data suggest that VEGFR2 may signal even
when internalized [43–45]. Since the role of internal-
ized receptors is still somewhat debated and to focus
on the signaling dynamics mediated by cell surface re-
ceptors, we chose to exclude the effect of internalized
receptors in our model. This assumption can be relaxed
in future studies. Additionally, all bound forms of
FGFR1 are assumed to have the same internalization,
recycling, and degradation rates as a simplification and
because there are conflicting values reported in litera-
ture [20, 46]. We tried various FGFR1 trafficking pa-
rameters; however, this did not significantly change the
model predictions or our overall conclusions. Third,
this model only includes VEGFR2, although VEGF
binds to VEGFR1 and neuropilin-1 (NRP1). These re-
ceptors also contribute to angiogenesis and may be in-
corporated into the model in future studies. Finally, we
studied pERK response in two hours. We omit ligand
secretion and protein degradation during this time and
do not predict long-term responses. In the future, we
can expand our model to predict the cellular response
over a longer period of time.

Conclusions
In summary, our molecular-detailed model quantifies
ERK phosphorylation upon stimulation by two major
pro-angiogenic factors, FGF and VEGF, and provides
insights into the molecular interactions between these
proteins. Specifically, the model predicts the combin-
ation effects of FGF and VEGF on ERK phosphorylation
and quantitatively shows the magnitude and time scale
of the pERK response. Because of the complexity of this
biological system, it may be challenging to get a compre-
hensive understanding of the system using experiments
that only focus on a few molecular species. Our computa-
tional modeling provides a quantitative framework to ex-
plore the system as a whole, generating novel mechanistic
insight and complementing experimental studies.

Methods
Model construction
We constructed a molecular-detailed biochemical reaction
network including FGF, VEGF, and their receptors FGFR1
and VEGFR2 (Fig. 1). Signaling is induced by the growth
factors binding to their receptors, culminating with phos-
phorylation of ERK, through the MAPK cascade. MAPK
signaling is initiated through the activation of Raf and

FRS2 by VEGF and FGF, respectively. Activated Raf (aRaf)
and phosphorylated FRS2 (pFRS2) phosphorylate MEK at
two sites, and doubly phosphorylated MEK (ppMEK) fur-
ther phosphorylates ERK. The molecular interactions in-
volved in the network are illustrated in Fig. 1. The model
is a novel advancement of published computational
models [6, 16]. Specifically, we adapted the competition of
FGF and HSGAG to the binding of FGFR1 and the feed-
back loop from pERK to FRS2 from the model by Kanodia
et al., and we expanded the model by including FGFR traf-
ficking (internalization, recycling, and degradation) and
accounting for both singly- and doubly-phosphorylated
MEK and ERK. It is worth noting that the formation of
the tertiary signaling complex of FGF:HSGAG:FGFR only
occurs by FGFR binding to the FGF:HSGAG complex.
This is because the affinity of FGF:HSGAG binding is ap-
proximately two times stronger than that of FGF:FGFR,
and FGFR and HSGAG binding is more than two orders
of magnitude lower [47]. In addition, we simplified the
model of VEGF-induced ERK phosphorylation path-
ways from Tan and coworkers; specifically, we only in-
clude Ras activation either from Shc-independent or
Shc-dependent pathways [6]. Thus, we expanded upon
previous models to capture the major steps of FGF-
and VEGF-induced ERK phosphorylation and better
understand their interactions.
The model is simulated using a range of concentra-

tions for FGF and VEGF, based on published experimen-
tal studies. Typically, FGF and VEGF concentrations are
within the range of 0 to 50 ng/ml (0–2.2 nM) [31, 33, 48]
and 0 to 100 ng/ml (0–2.2 nM) [17, 18, 25, 49, 50], re-
spectively, in in vitro studies, although some studies uti-
lized concentrations as high as 300 ng/ml VEGF [8] and
500 ng/ml FGF [16]. It has been reported that 25 ng/ml
(0.56 nM) and 50 ng/ml (1.1 nM) VEGF significantly
increase tube formation by HUVECs, and 0.1 ng/ml
(0.004 nM) and 1.0 ng/mL (0.04 nM) FGF strongly in-
duced tube formation on Matrigel after 24 h compared
to the control groups [33]. Moreover, Pepper et al.
showed that the total sprout length formed by bovine
microvascular endothelial cells started to plateau when
treated with 30 ng/ml (1.3 nM) FGF and 100 ng/ml (2.2
nM) VEGF [8]. To account for these findings, we simu-
lated the model with the concentration of FGF and
VEGF ranging of 0.01 to 2 nM.
The network is implemented as an ordinary differen-

tial equation (ODE) model using MATLAB (Math-
works, Inc.). The main model includes 70 reactions, 72
species, and 75 parameters. The reactions, initial condi-
tions, and parameter values are listed in Additional
file 2: Tables S2 to S4. All reactions are assumed to fol-
low the law of mass action. Receptor internalization, re-
cycling, and degradation are considered in the model.
Because the simulated time is within two hours, we do
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not consider the degradation of the ligands or signaling
species. The final model is available in Additional file 3.
We also implement a modified model that includes
heparin to validate the estimated model parameters
(described below).

Sensitivity analysis
To identify the parameters and initial concentrations
that significantly influence the model outputs, we per-
formed the extended Fourier Amplitude Sensitivity Test
(eFAST) [51]. All targeted parameters and initial values
were varied simultaneously within specified bounds
(one order of magnitude above and below the baseline
values), and the effects of multiple model inputs (kin-
etic parameters or initial conditions) on the pERK con-
centration were computed (the total sensitivity indices,
“Sti”). We studied the Sti values for kinetic parameters
and initial concentrations. The Sti index can range from
0 to 1, where a higher Sti index indicates this input is
more influential to the output.

Data extraction
Data from published experimental studies [16–18, 24, 25]
were used for parameter fitting and model validation.
The Western blot data was extracted using ImageJ.
Experimental data from plots was extracted using
the function grabit.

Model parameters
The trafficking parameters for VEGFR2 and the parame-
ters and initial values that are involved in the overlap of
FGF and VEGF signaling pathways were estimated by fit-
ting the model to experimental data using Particle Swarm
Optimization (PSO) implemented by Iadevaia [19]. We
used MATLAB to implement the PSO algorithm. A total
of 39 parameters and initial values were estimated in the
fitting (Additional file 2: Table S1, and also highlighted in
red in Additional file 2: Tables S3 and S4). All other pa-
rameters were taken from published literature [6, 16, 20].
The parameters characterizing the overlapping MAPK
pathway were chosen for fitting because while FGF and
VEGF upstream parameters are well documented indi-
vidually in literature, a uniform set of parameters for their
interactions is needed for this combined model. The
VEGFR2 trafficking parameters were fitted, as they have
been shown to significantly affect ERK activation [6]. Add-
itionally, many of the kinetic parameters for the overlap-
ping reactions and the VEGFR2 trafficking rates were
shown to significantly influence pERK in the sensitivity
analysis (Additional file 1: Figure S1).
PSO starts with a population of initial particles (par-

ameter sets). As the particles move around (i.e., as the
algorithm explores the parameter space), an objective
function is evaluated at each particle location. Particles

communicate with one another to determine which has
the lowest objective function value. The objective func-
tion for each parameter set was used to identify optimal
parameter values. Specifically, we used PSO to minimize
the weighted sum of squared residuals (WSSR):

WSSR θð Þ ¼ min
Xn

i¼1

Vpred;i θð Þ−V exp;i

V exp;i

� �2

where Vexp,i is the ith experimental measurement, Vpred,i

is the ith predicted value at the corresponding time
point, and n is the total number of experimental data
points. The minimization is subject to θ, the set of upper
and lower bounds on each of the free parameters. The
bounds were set to be one order of magnitude above
and below the baseline parameter values, which were
taken from literature and listed in Additional file 2:
Tables S3 to S4. Although PSO is a global parameter es-
timation approach, and the parameter values are varied
within each run to minimize the error, we still ran the
algorithm multiple times to attempt to identify the opti-
mal parameter values within the large search space. We
were able to obtain a total of 72 fitted parameter sets,
which were ultimately narrowed down to 16 parameter
sets that allowed the model to capture the training and
validation data sets.
The model was fitted against three datasets, specific-

ally: 1) normalized pERK induced by FGF concentra-
tions varying from 0.16 ng/ml to 500 ng/ml, where
pERK level was normalized by the maximum pERK
stimulated by FGF across all six concentrations (0.16,
0.8, 4, 20, 100, and 500 ng/ml) in two hours, experi-
ments conducted using the H1703 cell line [16]; 2) nor-
malized pVEGFR2 (pR2) stimulated by 5 ng/ml VEGF,
pR2 was normalized by the maximum pR2 induced by
5 ng/ml VEGF, experiments conducted using HUVECs
[18]; 3) normalized pERK induced by 50 ng/ml VEGF,
where pERK was normalized by the maximum pERK
induced by 50 ng/ml VEGF, experiments conducted
using HUVECs [17]. We note that the pERK and pR2
in the model simulation include all free and bound
forms of pERK and ppERK, and all free and bound
forms of pR2 except the degraded pR2, respectively.
After model training, we validated the fitted model

with three datasets not used in the fitting. First, we sim-
ulated the effects following the addition of heparin. For
this case, we added 500 μg/ml heparin, which competes
with HSGAG and binds to FGF. There are an additional
26 reactions, 25 species, and 3 parameters for heparin
perturbation in the model. Without any fitting, parame-
ters are all taken from Kanodia et al.. The influence of
heparin is illustrated in Additional file 1: Figure S3, and
details are provided in Additional file 2: Tables S5 and
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S6. We simulated the pERK dose response with or with-
out heparin to compare with the experiments described
by Kanodia [16]. Having a difference in pERK with and
without additional heparin that is greater than zero indi-
cates that the presence of heparin enhances
FGF-induced ERK phosphorylation. Second, we pre-
dicted the phosphorylated pERK following stimulation
with 10 ng/ml FGF, mimicking measurements obtained
from BAECs [24]. Third, we predicted the
VEGF-induced pR2 response upon stimulation with 80
ng/ml VEGF, simulating experiments conducted using
HUVECs [25]. For all three datasets, we simulated the
experimental conditions without any additional model
fitting and compared to the experimental measurements.
A total of 16 parameter sets with the smallest errors
were taken to be the “best” sets based on the model fit-
ting and validation (Additional file 1: Figure S2 and Add-
itional file 2: Table S1) and were used for model
simulations.

VEGFR2 density
To study the impact of VEGFR2 expression on
VEGF-induced angiogenesis, we varied VEGFR2 density
within ten-fold of the baseline value (1000 molecules/
cell) and predicted the level and dynamics of ERK
phosphorylation.

VEGFR2 trafficking parameters
To investigate the effects of VEGFR2 trafficking in
VEGF-induced ERK phosphorylation, we decreased the
trafficking parameters (internalization, recycling, and
degradation rates) values for VEGFR2. We changed the
parameters one-by-one or together to be the same level
as FGFR trafficking parameters and predicted the
VEGF-induced pERK response. For example, we made
the internalization rate of free VEGFR2 to be the same
as the rate at which free FGFR is internalized.

ERK phosphorylation response
We investigated the ERK phosphorylation response by
the stimulation of FGF or VEGF alone, compared to
their combination. In this study, we mainly focus on
two aspects of pERK dynamics: magnitude of the re-
sponse and timescale of signaling.

Magnitude of ERK phosphorylation response

a. Maximum pERK. We calculate the maximum ERK
phosphorylation level induced by the stimulation of
FGF, VEGF, or their combination.

b. Ratio, R. To compare the combination effects with
FGF and VEGF individual effects, we introduce the
ratio below:

R ¼ max pERK FGF and VEGFð Þ
max pERK FGFð Þ þ max pERK VEGFð Þ

When R is greater than one, it indicates that the com-
bination effect in inducing maximal pERK is greater
than the summation of individual effects; when R is
equal to one, it implies that the combination effect is
additive; when R is less to one, it suggests an antagonis-
tic effect between FGF and VEGF.

Timescale of the signaling response
We use two parameters to characterize the timescale of
ERK activation: the time to reach the maximum pERK
(T1) and the time duration that pERK level remains
greater than half of its maximal value (T2). T1 indicates
how quickly ERK is phosphorylated: the smaller T1 is,
the faster ERK becomes phosphorylated. T2 indicates
how long ERK remains in a phosphorylated state: the
larger T2 is, the more sustained the pERK response.

Reaction rates
We specify the rates of each reaction based on the law
of mass action, where the rate of a chemical reaction is
proportional to the amount of each reactant. For
example, for the phosphorylation of VEGFR2:

VEGF þ VEGFR2 ↔
kpR2; kdpR2

pVEGFR2

The reaction rate is:

Rate ¼ kpR2∙ VEGF½ �∙ VEGFR2½ �−kdpR2∙ pVEGFR2½ �

where kpR2 and kdpR2 are rate constants for the forward
and reverse reactions, respectively, and [VEGF], [VEGFR2],
and [pVEGFR2] are the species’ concentrations.
We simplified the VEGFR phosphorylation into one

step because it has been reported that the two VEGFR2
monomers phosphorylate each other upon ligation [30].
Also, the specific mechanism of VEGFR2 phosphoryl-
ation is not our focus in this study. Therefore, we as-
sume autophosphorylation upon VEGF binding, as
implemented in other papers [6, 52].
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