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Model-based virtual patient analysis of
human liver regeneration predicts critical
perioperative factors controlling the
dynamic mode of response to resection
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Abstract

Background: Liver has the unique ability to regenerate following injury, with a wide range of variability of
the regenerative response across individuals. Existing computational models of the liver regeneration are
largely tuned based on rodent data and hence it is not clear how well these models capture the dynamics
of human liver regeneration. Recent availability of human liver volumetry time series data has enabled new
opportunities to tune the computational models for human-relevant time scales, and to predict factors that
can significantly alter the dynamics of liver regeneration following a resection.

Methods: We utilized a mathematical model that integrates signaling mechanisms and cellular functional state
transitions. We tuned the model parameters to match the time scale of human liver regeneration using an elastic
net based regularization approach for identifying optimal parameter values. We initially examined the effect
of each parameter individually on the response mode (normal, suppressed, failure) and extent of recovery to
identify critical parameters. We employed phase plane analysis to compute the threshold of resection. We
mapped the distribution of the response modes and threshold of resection in a virtual patient cohort generated
in silico via simultaneous variations in two most critical parameters.

Results: Analysis of the responses to resection with individual parameter variations showed that the response
mode and extent of recovery following resection were most sensitive to variations in two perioperative
factors, metabolic load and cell death post partial hepatectomy. Phase plane analysis identified two steady
states corresponding to recovery and failure, with a threshold of resection separating the two basins of
attraction. The size of the basin of attraction for the recovery mode varied as a function of metabolic load
and cell death sensitivity, leading to a change in the multiplicity of the system in response to changes in
these two parameters.

Conclusions: Our results suggest that the response mode and threshold of failure are critically dependent on
the metabolic load and cell death sensitivity parameters that are likely to be patient-specific. Interventions that
modulate these critical perioperative factors may be helpful to drive the liver regenerative response process
towards a complete recovery mode.

Keywords: Liver regeneration, Dynamic modeling, Level of resection, Metabolic load, Cell death sensitivity,
Phase portrait

* Correspondence: rajanikanth.vadigepalli@jefferson.edu
1Daniel Baugh Institute for Functional Genomics/Computational Biology,
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson
University, Philadelphia, PA, USA
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Verma et al. BMC Systems Biology            (2019) 13:9 
https://doi.org/10.1186/s12918-019-0678-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-019-0678-y&domain=pdf
http://orcid.org/0000-0002-8405-1037
mailto:rajanikanth.vadigepalli@jefferson.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Liver has the ability to fully regenerate post liver injury
or surgical resection [1]. This process of regeneration takes
place via a unique mechanism in which differentiated he-
patocytes re-enter the cell cycle to replenish lost cells [2].
This is followed by proliferation of non-parenchymal cells
to eventually reconstitute the cell types in the liver tissue,
and tissue remodeling to re-establish the lobular scale
morphology [3]. This unique regenerative capacity enables
majority of clinical interventions into liver disease via sur-
gical resection, as well as live donor transplants and small-
for-size liver transplants. While liver regeneration is robust
in healthy individuals, chronic disease diminishes this re-
generative capacity making the surgical interventions less
than effective and can even lead to post-surgery liver fail-
ure in some patients [4, 5]. There is an unmet need for
a prognostic tool that takes into account the patient-spe-
cific, disease-modified, regenerative capacity and evaluates
these in the context of known activation of molecular
pathways and cellular events post resection. A limited set
of studies focused on developing a mathematical model of
the underlying cellular and molecular mechanisms as a
potential solution to this problem [6–14]. These studies
demonstrate that a unified set of cellular and molecular
mechanisms, with associated parameters, can account for
differences in the regenerative response to varying levels
of resection [15], with failure above a threshold [16].
Majority of the computational modeling studies have fo-

cused on the relatively short time scale of regenerative re-
sponse in the rat and mouse (hours to few days), and
hence are not correctly tuned to account for the weeks-
to-months time scale relevant to the human regenerative
response to liver resection [17]. A limited tuning to human
time scales was performed using extremely low amount of
clinical data available on liver volume at more than a year
after the surgical resection [7, 8]. Hence, it is questionable
whether the findings from the simulation and analysis of
the rodent-based models are applicable to the human con-
dition. Recently, time series data on volumetric changes in
liver have become available in a relatively large number of
patients that have undergone different levels of surgical
resection of the liver [18]. This data on the dynamic
changes in liver volume, presumably correlated with the
tissue mass, enables an opportunity to tune the network
model to match the time scales relevant to the human
liver regeneration, and analyze the resultant computa-
tional model for different “virtual patients” based on their
clinical tests and the effect on the regenerative outcome.
In this study, we build on our previous computational

model of rat liver regeneration [8] and tune the parameters
to the human time scale, by utilizing select data from a re-
cently available clinical data set [18]. We initially tuned the
model parameters based on constrained optimization. Sub-
sequently, we considered a range of parameter variations

corresponding to different “virtual patients” to analyze the
model-predicted response dynamics, and evaluated the dir-
ectional influence of each of the parameters on the liver
mass outcome following resection. Through this approach,
we identified a subset of virtual clinical cohort of patients
that exhibit recovery or failure, depending on the corre-
sponding parameter values. We analyzed sensitive parame-
ters individually and in combination to delineate the
parameter subspaces that correspond to three response
modes - full recovery, partial recovery, failure. We utilized
phase plane analysis [19, 20] to compute a threshold of re-
section that separates the recovery versus failure response
modes exploiting their basins of attraction. We assessed
how this failure threshold varies for different “virtual pa-
tients”. Phase plane analysis demonstrated that the vari-
ation in response of this cohort of patients yields distinct
phase planes with either one sink of failure or two sinks
corresponding to recovery and failure. This patient-specific
parameter-dependent shift in the multiplicity of the system
may help with decision making on whether liver surgery is
a viable option in certain cases. For the case of two sinks,
recovery and failure, our model-based analysis suggests the
level of resection that is likely to be safe.

Results
Tuning the model for human time scale of response
based on patient data
The computational model employed here is based on the
network model of Cook et al. [8] (Fig. 1a). In this scheme,
liver regeneration response to partial hepatectomy (PHx)
is driven by the metabolic load, which is considered as
an organ-scale parameter. Increase in metabolic load
per unit of liver mass following PHx (due to reduction
in remnant liver mass) elicits a cascade of signals lead-
ing to the activation of hepatic non-parenchymal cells
(Kupffer cells and hepatic stellate cells (HSCs)). Activated
Kupffer cells release IL-6 which activates JAK-STAT path-
way in hepatocytes. This results in the production of
immediate early genes (IE) which regulates the priming
of hepatocytes. Concurrent remodeling of extracellular
matrix (ECM) by MMPs secreted by HSCs releases matrix
bound growth factors, such as HGF (hepatocyte growth
factor), produced by HSCs and liver sinusoidal endothelial
cells and dispersed in the ECM in an inactive form.
Binding of GFs to surface receptors of primed hepato-
cytes induces intracellular MAPK cascade activation
and progression of hepatocytes through the cell cycle.
Although the Cook et al. [8] model characterizes the

important attributes of rodent liver regeneration, it fails
to capture the liver regeneration time scale accurately
in humans, largely attributed to the lack of availability
of human time series data when the original model was
tuned. We used our modified model and estimated the
human time scale relevant parameters using patient
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data from Yamamoto et al. [18] (see Methods). We uti-
lized liver volume time series data from a set of 27 pa-
tients that showed recovery following resection, with
sufficient number of time points in the regeneration
profile to permit model tuning and analysis of dynamics.
We pursued an optimization-based approach that allowed
variations in all the parameters to identify the tuning with
best fit to the clinical data. We compared the results of
our parameter tuning approach to that of Young et al.
[21] and Cook et al. [8] approaches for translating the
model parameters across species based on body mass. In
case of Young et al. [21], only the metabolic load (M) is
tuned, whereas Cook et al. [8] approach also modified the
relative cell mass growth constant (kG). We applied the
three parameter tuning approaches to each of the 27
patient time series data sets and compared the results.
An illustrative case of model-derived liver regeneration

profiles comparing the three parameter tuning approaches
is shown in Fig. 1b. In this case (patient ID 71), the two re-
generation profiles derived from scaling the metabolic
load qualitatively capture the clinically observed trend in

liver recovery, but do not match the observed time scale
and long-term recovery level. By contrast, the multi-par-
ameter optimization approach achieved a better fit to the
observed dynamics and long-term recovery level with a
lower residual error. The optimization approach resulted
in variations in multiple parameters, five of which were
significantly scaled in translating the rodent model to the
human case (Fig. 1c). Even when optimizing all the param-
eters for best fit to data, M and kG were two of the top
three parameters that were altered from baseline rat-based
parameters. Interestingly, the metabolic load value was
similar across the three approaches for translating the
rat model to the human case (Fig. 1c). The cell growth
parameter was also tuned similarly between Cook et al.
[8] approach and the multiparameter optimization (Fig. 1c).
In the latter case, three additional parameters were varied
in order to achieve the best fit: cell death sensitivity par-
ameter θapwas higher, and immediate early signaling pa-
rameters, KSTAT3

m and κJAK were lower in the human
case compared to the rodent model.

Fig. 1 a Network scheme of the liver regeneration model. b Comparison of approaches for translating the model across species. Regeneration
profile corresponding to patient ID71 [18] obtained via the three approaches: empirically scaling only the metabolic load based on species body
mass [21], scaling metabolic load based on body mass along with modifying the relative cell mass growth constant (kG) to 6.5675e-4 for human
case [8], and present multivariate optimization approach where all the model parameters were allowed to be tuned. c Relative variation of all the
33 parameters of the model scaled by Cook et al. [8] parameters for rat
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We compared the optimization-derived and the meta-
bolic scaling-based parameter values across the 27 pa-
tients. In the case of multiparameter optimization, the
parameters were tuned individually to each of the 27
time series profiles. In the case of metabolic scaling-
based tuning, we utilized the patient-specific BMI and
derived body mass based on the average height of Japa-
nese male and female, as appropriate (see Methods).
For the Cook et al. [8] case, the relative cell mass
growth constant (kG) was modified to 6.5675e-4, as per
Cook et al. [8]. Our results indicate that the metabolic
scaling parameter was tuned very similarly across all
three approaches, yet with dissimilar fit to data as noted
by the differences in the residual error (Additional file 1:
Table S1). We observe that the metabolic scaling ap-
proaches of Young et al. [21] and Cook et al. [8] cap-
ture the regeneration dynamics only in a subset of the
cases, and the multiparameter optimization improved
the fit to the patient time series data in most cases
(Additional file 1: Table S1). This improved fit in a subset
of the patient cases was achieved by variations in add-
itional parameters. A representative case of the model fit
to data where the optimization-based approach yielded
similar parameters as the metabolic scaling approach is
shown in Additional file 2: Figure S1. This is in contrast to
the ID 71 case shown in Fig. 1, where several parameters
were altered to translate the model from rat to human case.
Comparison of the optimization-based parameters across

patients show that metabolic load (M) and the relative cell
mass growth parameter (kG), and the cell death sensitivity

parameter (θap) were tuned with consistent up- or
down-scaling in all the patients (Fig. 2). Additional param-
eters were not altered consistently across all the patients,
suggesting patient-specific tuning may be required in some
cases, to go beyond the overall metabolic scaling and ad-
justment of cell death sensitivity, to better account for the
human liver regeneration dynamics. We evaluated whether
the parameters correlated with the available clinical data,
and found very few significant pair-wise correlations
between the parameter values and clinical variables
(Additional file 3: Figure S2). Hence, it is not immediately
clear if the patient-specific hepatocyte-intrinsic parameters
can be derived from the gross clinical measurements avail-
able presently. We note caution in generalizing these re-
sults to larger populations, considering the low number of
patients analyzed in the present data set. We analyzed the
correlations between the optimization-based parameters
to evaluate whether certain parameters were constrained
together when tuning the model across patients. The re-
sults shown in Additional file 4: Figure S3 illustrate that
majority of the parameters were not correlated with each
other (Bonferroni-adjusted p < 1e-5) at low correlation
values (absolute correlation < 0.5). This result suggests
that the variability across patients may not be highly
constrained by correlated variations in the underlying
parameters. While additional analysis can be performed
by fractionating the data into groups, e.g., sex-specific,
or age-specific, etc., we caution that the present sample
set may be too low to generalize the results to a larger
population.

Fig. 2 Heatmap of optimized model parameters scaled to that of rat parameters from Cook et al. [8]. The parameters metabolic load, cell death
sensitivity and relative cell mass growth constant show significant difference across species, with relatively consistent scaling needed across all
patients. Other parameters were more variable across patients and likely represent patient-specific liver cell-intrinsic differences
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In summary, our results point to the need for tuning
the cell death sensitivity parameter (θap) in addition to
tuning the metabolic scaling and the relative cell mass
growth parameters. These differences in model tuning
may be attributable to the differences in the temporal
resolution of the time series data that were used to de-
rive Young et al. [21] and Cook et al. [8] results versus
the Yamamoto et al. [18] data we employed in the
present study. We conducted subsequent analysis using
the parameter values derived from optimizing all the
parameters shown in Table 1.

Analysis of virtual patients by varying individual
parameters
We analyzed the individual effect of all the 33 model pa-
rameters on the long-term liver mass recovery fraction
after two and half years post hepatectomy. Starting with
the human time scale optimized parameter vector from
the previous section, we varied one parameter at a time
to develop a distribution of “virtual patients”. We simu-
lated the liver regeneration profiles for each patient over
the range of each varied parameter, while keeping the
remaining parameters at their optimized values. We use
the term “virtual patient” since all the parameter values
are not patient-specific, but rather that these parameters
take values within biologically reasonable bounds around
the human time scale optimized value. We use this ap-
proach rather than the local sensitivity analysis in which

a parameter is only marginally varied one at a time, since
we are interested in the directionality of the influence of
each parameter on the liver mass outcome over a wide
range of parameter values.
The model-predicted temporal profiles of liver mass

recovery fraction were used to classify the parameters
into two broad categories – those with a consistent ef-
fect on liver mass recovery fraction over the full range of
parameter variation, and those that could lead to either
mass recovery or liver failure, depending on the param-
eter value. The parameters that always lead to liver re-
covery with varying level of mass outcome (i.e., “gain”
controllers) are further divided into two groups, denoted
as sensitive and insensitive parameters. Sensitive param-
eters are of two types, one that helps in improving the
recovery of liver as the parameter value increases (such
as kIL6), and the other type that slows down the liver re-
covery upon increasing the parameter value (e.g., κIL6).
The insensitive parameters do not impact the liver mass
recovery significantly irrespective of the parameter value
within the varied range (e.g., kap). The parameters that
can lead to both recovery and failure, depending on the
parameter value, were also further divided into two
groups, denoted as sensitive and insensitive parameters.
The sensitive parameters were M (metabolic load) and
βap (cell death sensitivity), and the insensitive parameter
was θap (cell death threshold). Table 2 shows the differ-
ent class of parameters with the model parameters in
their respective categories.
The regeneration profiles for each class of parameters

are shown in Fig. 3. We observed that while variations
in either kGF (Fig. 3a) or κJAK (Fig. 3b) result in liver re-
covery, these parameters exert opposing directional in-
fluence on the liver recovery. κST3 (Fig. 3c) is the
insensitive parameter that leads to only recovery with
no directional influence on the model output. Meta-
bolic load M and the cell death parameter βap were the
sensitive parameters that can result in either liver failure
or recovery depending on the parameter values. In-
creasing the value of M, starting at a low value, sup-
ported liver recovery outcome up to a threshold (Fig. 3d).
Increasing M beyond a threshold value resulted in liver
failure in our simulations. Similarly, our simulations
suggest that low βap results in liver recovery, which de-
celerates recovery with increasing βap and leads to liver
failure at higher values of βap (Fig. 3e). θap leads to
liver recovery at low values and results in failure be-
yond a certain threshold. However, there is no direc-
tional influence of θap on the liver mass fraction across
the threshold.
We sought to characterize [8] the differences between

the present study and Cook et al. model [8] in terms of
the differences in parametric sensitivity. We performed a
similar analysis of directional influence of all the model

Table 1 Optimal values of the parameters corresponding to
patient ID71 from Yamamoto et al. [18]

Parameter Optimized value Parameter Optimized value

M 5.8206 kdeg 6.9843

kIL6 1.4528 κECM 32.9924

κIL6 0.6878 kGF 0.1014

VJAK 20,000 κGF 0.2016

KJAKM 9999.9999 kup 0.0589

κJAK 0.1695 kQP 0.0072

[proSTAT3] 1.9108 kPR 0.0045

VST3 749.9994 kRQ 0.0520

KST3M
0.1715 kprol 0.0232

κST3 0.0828 kreq 0.0912

VSOCS3 24,000.0000 θreq 7.9493

KSOCS3M
0.0006 βreq 2.9285

κSOCS3 0.3173 kap 0.0982

KSOCS3I
0.0153 θap 0.0321

VIE 249.9992 βap 0.0045

KIEM 17.9736 kG 0.0007

κIE 4.9595
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parameters on liver regeneration outcome in a cohort of
virtual patients using Cook et al. model [8]. Our results
indicate that majority of the parameters showed similar
effects on the liver response in Cook et al. model [8]
and in the present model (Additional file 5: Table S2).
Due to numerical difficulties in integrating the Cook et
al. model [8] for certain parameter values, the effects of
variation in the parameters M, kIL6, kprol, θap, βap were
evaluated in a more restricted range than the present
model. These issues were overcome in the present
model by consideration of senescent fraction in ac-
counting for overall tissue mass (parameter ε in model
equations below). [8]
Owing to the high sensitivity of our model to M and

βap (Fig. 2d-e) as well as physiological relevance of in-
creased hepatocellular metabolic activity and cell death
(linked to M and βap, respectively) in the context of
liver regeneration [22], we examined the effect of these
parameters on the liver mass fraction response to resec-
tion in a cohort of virtual patients.

Shift in the regeneration modes of virtual patients with
varying metabolic load and cell death sensitivity for
different levels of resection
We analyzed the impact of intrinsic perioperative fac-
tors, metabolic load and cell death sensitivity, as well as
the extrinsic factor of different levels of resection, on the
regeneration modes of a cohort of virtual patients. We
examined the model-predicted temporal response of an
individual patient’s liver mass post hepatectomy by fo-
cusing on the effect of variation in specific parameters
that can cause liver failure or recovery, depending on
the parameter values. Our parameter correlation analysis
indicated that the metabolic load (M), cell death sensi-
tivity (βap) parameters did not vary in a correlated man-
ner with any of the model parameters across the patient
data set (Additional file 4: Figure S3). Hence, in the
present manuscript, we generate and analyze virtual pa-
tient cohorts that span the entire range for the subset of
parameters considered without excluding any parameter
subspaces, following similar practice in literature [23].

Table 2 Model parameters categorized according to the effect on liver response profile, leading to recovery alone, or causing either
recovery or failure depending on the parameter value

Only recovery Both recovery and failure

Sensitive Insensitive Sensitive Insensitive

Improves recovery Decelerate recovery

kIL6; ½prosSTAT3�;
κSOCS3; KSOCS3I ; VIE ;
kdeg; kGF ; kQP; kPR;
kprol ; βreq; kG

κIL6; KJAKM ; κJAK ;
KST3M ; VSOCS3;
KSOCS3M ; KIEM; κIE ;
κECM; κGF ; kup;
kRQ; kreq

VJAK ; VST3; κST3;
θreq; kap

M, βap θap

Fig. 3 Regeneration profile showing directional change in the recovery for representative parameters belonging to different classes. Parameter
value increases in the order of color scheme shown in the color bar. a, b, c Only recovery occurs, which improves with increasing kGF
(a), deteriorates with increasing κJAK (b), and is insensitive to increase in κST3 (c). d, e, f Both recovery and failure occur, and are sensitive to changes in
M (d) and βap (e), insensitive to changes in θap
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We studied the regeneration modes of normal, sup-
pressed and liver failure in virtual patients. Initially, we
varied the two parameters (M and βap) individually using
a Sobol sample of size 1000, with the remaining 32 pa-
rameters fixed at the human time scale optimized values
(Table 1). Simulations indicate that patients with low
metabolic load show suppressed growth (Fig. 4a), as the
stimulus for regeneration is not strong enough to trigger
proliferation in all the cells. By contrast, high levels of
metabolic load leads to liver failure due to excessive
injury and resulting cell death. These results predict
that in order to achieve normal liver regeneration and
growth, the metabolic load should neither be too high
leading to liver failure, nor be too low resulting in sup-
pressed growth. Similar analysis performed for the cell
death sensitivity parameter βap predicted that lower
value of βap results in normal growth, whereas higher
values lead to liver failure due to excessive cell death
(Fig. 4b).
Subsequently, we simulated a cohort of virtual patients

to analyze the combined effect of variation in M as well
as βap on liver regeneration. We generated a cohort of
1000 virtual patients based on simultaneous variations
in the parameters, M and βap, while the remaining 31
parameters were fixed at their optimized values. Simu-
lations revealed that the parameter space can be parti-
tioned into three distinct regions corresponding to
different response modes (Fig. 4c). At low values of
both the critical parameters, resection leads to a sup-
pressed response mode. At high values of either or
both of these critical parameters, resection leads to
liver failure. It is likely that liver failure occurs in the
case of high metabolic load as the remnant cells are
unable to meet the high functional requirements. The
intermediate region corresponds to normal growth
enveloped by the suppressed growth mode. These model
predictions indicate that complete liver mass recovery
requires a balance between the two intrinsic periopera-
tive factors (metabolic load and cell death sensitivity).
To evaluate the impact of these intrinsic perioperative

factors on the liver regeneration in rats we analyzed the
combined effect of variations in metabolic load and cell
death sensitivity (M and βap) in our model for 33.3%
hepatectomy with the rat specific parameters from
Cook et al. [8]. We found that the distribution of the
suppressed, normal and failure response modes in the
parameter space of M and βap is similar in the rat to
that in human case, even though the specific values of
these parameters are different for the two species (Add-
itional file 6: Figure S4). Suppressed mode was observed
for low metabolic load and cell death sensitivity, while
failure mode occurred at the other extreme of high
values for these factors. The results suggest that normal
recovery mode likely depends on a balance between
metabolic load and cell death sensitivity in both rat and
human liver resection scenarios.
We next analyzed the impact of an extrinsic periopera-

tive condition - different levels of resection - on the re-
generation modes of the same cohort of virtual patients.
We considered a cohort of 1000 virtual patients based
on simultaneous variations in both metabolic load and
cell death sensitivity parameters, for different levels of
resection: 10, 33.3, 66.7, 75 and 90% (Fig. 5a-e), while
holding the remaining 31 model parameters fixed at the
optimized parameter values. Model simulations indicate
that for low level of resection, the parameter subspace
corresponding to the suppressed mode sharply separates
the normal growth and liver failure regions. With an
increase in the resection level, the suppressed mode
progressively spreads towards the virtual patients with
lower metabolic load and envelops the normal growth
region. This qualitative change of the suppressed re-
gion is such that a one-third resection results in sup-
pressed growth in a virtual patient with low metabolic
load, irrespective of the cell death sensitivity. However,
at increased resection levels, the extent of parameter
subspace corresponding to the suppressed regeneration
mode decreases with a corresponding increase in liver
failure cases. In addition, the extent of parameter sub-
space corresponding to full recovery shrinks (Fig. 5f ),

Fig. 4 a Effect of metabolic load on long-term liver mass fraction. b Effect of cell death sensitivity parameter on long-term liver mass fraction. c
Effect of simultaneous variation in both the metabolic load and cell death sensitivity parameters on liver recovery after 2/3rd PHx. Each marker
represents one virtual patient considered in the simulation
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eventually into a very small region for the 90% resection
case which may not be easy to attain in a real scenario. This
dynamic change of different response regions in the param-
eter space results in two distinct types of transitions to-
wards liver failure: (1) First type of transition corresponds
to a shift from normal/suppressed mode to liver failure,
which may be similar to the response of patients with
chronic liver disease, resulting in impaired regeneration. (2)
The second type corresponds to the direct transition from
normal recovery to liver failure mode, which may have par-
allels to the response in an acute liver injury scenario. In
the next section, we analyzed the effect of these two
critical parameters on the threshold of liver failure.

Determining the safe level of resection based on the
metabolic load (M), an intrinsic perioperative factor
We pursued the dynamical systems approach of phase
portrait analysis to evaluate the safe level of resection in
a cohort of virtual patients that differ in the level of
metabolic load, an intrinsic perioperative factor. We ex-
amined the effect of metabolic load on the temporal tra-
jectory of the balance of quiescent versus regenerating
hepatocytes for different levels of resection (Fig. 6). Each
phase plane corresponds to an individual virtual patient
with a specific metabolic load parameter, M. Each trajec-
tory in the phase plane represents the evolution of liver
mass with time for a given level of resection.
The phase portrait for the virtual patients under study

captures the two attractors of liver failure and liver re-
covery (Fig. 6a). The phase plane analysis demonstrated
that the trajectories for high levels of resection progress
towards the liver failure attractor, whereas trajectories for

low levels of resection converge to the attractor of liver re-
covery. The phase plane shows a clear demarcation be-
tween the safe and the unsafe level of resection for liver
surgery. Figure 6a-c shows the phase plane for increasing
values of metabolic load. The results indicate that the span
of the attractor for liver recovery progressively decreases
with increasing metabolic load, and finally vanishes, lead-
ing to liver failure irrespective of the level of resection.
This suggests a change in the multiplicity of the system,
which may have clinical implications in considering the
surgical options. We utilized the phase plane analysis to
examine the threshold of liver failure for a given virtual
patient. Our analysis indicates an inverse monotonic rela-
tionship between threshold of liver failure and metabolic
load, such that higher the metabolic load lower is the
level of maximum resection that can still lead to recov-
ery, i.e., higher requirement for safe level of remnant liver
mass post resection (Fig. 6d).
In parallel, we analyzed the effect of the intrinsic peri-

operative factor of cell death sensitivity (βap) on the
threshold of failure. Our results indicate that cell death
sensitivity has a significant effect on the safe level of resec-
tion (Additional file 7: Figure S5A-C), with a similar in-
verse monotonic relationship between the level of cell
death sensitivity and threshold of failure (Additional file 7:
Figure S5D).

Determining the safe level of resection based on
variations in both metabolic load and cell death
sensitivity (M and βap)
Thus far, we analyzed the threshold of liver failure (con-
versely, the safe level of resection) in a cohort of virtual

Fig. 5 Parameter space depicting regions of distinct regeneration modes for different levels of resection: a 10% PH; b 33.33% PH; c 66.67% PH; d
75% PH; e 90% PH. Each marker represents a virtual patient. f Changes in the extent of parameter space corresponding to the full mass recovery
with varying levels of resection
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patients based on individual variations in either meta-
bolic load (M) or cell death sensitivity (βap). Both these
parameters had a similar effect on the threshold of fail-
ure of the virtual patients. In this section, we investi-
gated how the threshold of failure changes in virtual
patients based on simultaneous variations in these two
intrinsic perioperative parameters. We simulated the dy-
namic model by varying the two parameters (M and βap)
using a Sobol sample of size 50 × 50, and the remaining
parameters were fixed at human optimized value for
two-thirds resection (Fig. 1b; Table 1). Sobol sampling of
size 50 × 50 corresponds to metabolic load and cell death
sensitivity such that each value of metabolic load is
paired with all the values of cell death sensitivity and
vice-versa. This approach yielded a cohort of 2500 vir-
tual patients.
Based on the simulation results from 2500 virtual pa-

tients, we developed a map of the threshold of failure as
a function of metabolic M and cell death sensitivity βap
(Fig. 7a). Low values of both the parameters resulted in
a high threshold of failure (i.e., larger resections are

safe), and conversely high values of these two parameters
diminished the threshold of failure to low levels (i.e., only
small resections remain safe). The Fig. 7a map shows a
clear separatrix between the two regions corresponding to
recovery and failure. We analyzed the phase planes corre-
sponding to distinct locations in the Fig. 7a map. The
phase plane corresponding to a location on the separatrix
is shown in Fig. 7b. For this case, a resection of up to 58%
led to liver recovery. By contrast, the phase portrait for a
lower level of cell death sensitivity parameter, at same
metabolic load as in Fig. 7b, yielded a threshold of failure
of 79% (Fig. 7c). Increasing the cell death sensitivity for
the same level of metabolic load as in Fig. 7b, shifted the
system into the zone without a safe level of resection
(Fig. 7d). Correspondingly, holding the cell death sensitiv-
ity at the same level as in Fig. 7b, and altering the meta-
bolic load shifted the threshold of failure between the two
regions demarcated by the separatrix. The phase plane of
the virtual patient with the lower metabolic load yielded a
threshold of failure at 87% resection (Fig. 7e), whereas the
virtual patient with the higher metabolic load exhibited

Fig. 6 Phase portrait for quiescent (Q) and replicating (R) cell fractions with varying levels of metabolic load parameter M. All other parameters
were set to the optimal levels given in Table 1 The filled circle markers in a-c represent different levels of resection. The red dashed curves
represent trajectories for the critical level of resection at and above which failure occurs. a M = 4, yields a threshold of liver failure at 87%
resection. b M = 12, yields a threshold of liver failure at 56% resection. c M = 22, for which there is no safe level of resection. d Influence of
metabolic load on the threshold of liver failure. Red cross markers in panel d represent the threshold of failure for the corresponding phase
planes a-c
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liver failure for even a small level of resection (Fig. 7f).
These results demonstrate that, the phase portrait with a
high threshold of failure (green zone of the Fig. 7a map)
contains two attractors, corresponding to liver failure and
liver recovery modes. By contrast, the phase plane with a
low threshold of failure (red zone of Fig. 7a map) con-
tained only one attractor, corresponding to that of liver
failure. These results demonstrate the utility of the phase
transition map for determining the safe level of resection
for a given patient.

Discussion
We started with a quantitative model of liver regener-
ation response to resection and fine-tuned the parame-
ters to account for a normal liver recovery profile at
human-relevant time scales. We built on this initial
simulation and analyzed the distribution and modes of
response of a virtual patient cohort to varying level of
resection, which potentially account for differences due to
disease etiology, patient demographics, and perioperative
conditions. Notably, the range of parameter variation cov-
ered a full span of an individual virtual patient’s potential
response along three distinct modes: accelerated growth,
slower recovery, and failure. Our approach differs from
that of a population of models (POM) approach [24], in
which the objective is to account for the distribution of re-
sponses in clinical data, and the response of a virtual pa-
tient is accepted or rejected based on a specified tolerance

limit. By contrast, our approach is targeted at characteriz-
ing the entire range of responses to analyze the distinct
modes of response across all virtual patients. Such an un-
biased approach has been pursued in other studies with
informative results on parameter subspaces that distin-
guish qualitatively different patient responses [23]. Our
Sobol sampling-based wide range of simulations led us to
identify subsets of critical parameters and their combina-
tions that govern the transitions in the response of virtual
patients to varying levels of resection. Our approach to ac-
counting for dynamics of human liver regeneration re-
sponse to resection is different from that of Yamamoto et
al. [18] study from which we utilized the liver volumetric
data to tune the computational model parameters. Yama-
moto et al. [18] model was based on modification of a lo-
gistic model whose response is largely governed by the
sign of the initial rate of response to resection (positive
value leading to recovery, and negative value leading to
failure). This simplified representation allowed the devel-
opment of a discriminant function to correlate the rate of
liver regeneration to the pre- and perioperative clinical
factors, and then predicted the outcome based on a binary
classification of the initial rate of liver regeneration being
positive or negative. By contrast, we utilized a multi-scale
network model that contains a relatively more detailed
representation of molecular interactions and cellular
functional states, and tuned the parameters of the model
to account for the observed timescales of human liver

Fig. 7 a Heatmap showing influence of metabolic load and cell death sensitivity parameters on the threshold of liver failure in terms of fraction
of resection that is safe. Black cross markers represent the virtual patients for the corresponding phase portraits in panels b-f. b Phase plane for
metabolic load (M) = 2.293 and cell death sensitivity (βap) = 0.071, yielding a threshold of failure at 58% resection. This scenario corresponds to the
critical transition from high threshold to low threshold of liver failure on the heatmap in panel a. c M= 2.293 and βap = 0.053, yields a threshold
of failure at 79% resection. d M= 2.293 and βap = 0.085, yields a virtual patient for whom all levels of resection lead to failure. e M= 1.139 and
βap = 0.071, yields a threshold of failure of 87%. f M= 3.447 and βap = 0.071, yields a virtual patient for whom all levels of resection resulted in a
failure. The circular markers in the phase portraits represent different levels of resection and the red curves denote the critical level of resection
above which the system progresses towards the failure mode
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regeneration. We analyzed the influence of key parameters
on the outcome based on the level of resection, and exam-
ined the quantitative relationship between variations in
two key parameters and the threshold of failure.
Our study considered a cohort of virtual patients

based on two critical parameters: metabolic load and
cell death sensitivity. These two model-predicted crit-
ical parameters are perioperative factors and have the
potential to be estimated from patient-specific clinical
information. For instance, metabolic load can be empir-
ically related to mass, body mass index [25], and further
modified based on other factors such as age, gender,
etc. of the patient [26, 27]. We expect that cell death
sensitivity can be related to disease etiology, patient’s
medical history, and perioperative conditions such as
blood loss (Yamamoto et al. [18]). It is reasonable to
expect that certain patients may be more sensitive to
injury than others depending on the advanced versus
earlier stage of the underlying liver disease. In addition,
aging also has a significant impact on cell death sensi-
tivity [28, 29]. On the contrary, healthy liver donor
transplant is likely less sensitive to increase in meta-
bolic demand per unit of tissue and cell death sensitiv-
ity as compared to liver of a patient with underlying
chronic disease or a patient being operated to treat a
metastatic tumor. Understanding the combinatorial ef-
fect of these two intrinsic parameters, which likely vary
from patient-to-patient, on the mode of response to in-
jury can help with better characterization of the peri-
operative conditions under which liver surgery can lead
to a successful recovery or failure.
The determination of threshold of liver failure through

a phase portrait approach is analogous to detection of
tipping point in a complex dynamical system. Tipping
point is a “point of no return” that results in a transition
from the state of normal functioning to a catastrophic
state [30]. Examples of tipping point are widespread,
such as extinction of species in ecological systems, and
heavy load on electrical grids or internet, etc. Once such a
catastrophic state is attained, the system collapses and
there is no going back. In the case of resection, the tipping
point corresponds to the threshold of resection beyond
which the liver cannot recover and will always progress to-
wards reduced mass and failure. Our analysis suggests that
the tipping point after resection is dependent on a com-
bination of the level of metabolic load and the extent of
cell death sensitivity [31].
We emphasize that the network modeling approach

presented in this study is a post hoc analysis of the dy-
namics of human liver regeneration. Additional work
on identifying patient-specific parameters and develop-
ing parameter signatures corresponding to different pa-
tient groups based on demographics, disease etiology,
etc., so that the dynamic modeling can serve as a pre

hoc predictive tool that can aid in clinical decision mak-
ing. Availability of detailed perioperative clinical informa-
tion opens new opportunities for developing a categorical
(e.g., classification-based) or a quantitative relationship
between these physiological parameters (M and βap)
and patient-specific clinical parameters [18], aiding
generalization of the dynamic modeling approach. For
example, if the model prediction suggests a likelihood
of liver failure following resection, interventions such
as portal vein embolization to induce regeneration and
enhance pre-resection liver mass [32], preoperative
dietary restriction [33] and nutritional changes [34] to
reduce the risk of ischemia-reperfusion injury, as well
as preoperative reduction in systemic inflammation [35,
36], so as to modulate the metabolic load and cell death
sensitivity parameters and thereby shift the likely re-
sponse to the region of full recovery of liver mass. In
addition, the phase portrait technique can be employed to
further aid in predicting the likely safe level of resection.
Thus far, the computational modeling efforts by us

and others have considered liver as a uniform tissue in
a single lumped compartment [6, 8, 9]. Opportunities
exist for computational modeling approaches that ex-
plicitly consider multiple lobes of differing size with po-
tentially distinct responses to resection [37]. In such a
scenario, the metabolic load and cell death sensitivity
parameters may need to be considered as heteroge-
neous across liver tissue. Non-invasive imaging tech-
niques, which are regularly employed in the clinic to
obtain whole organ physiological and functional param-
eters, can aid in evolving the dynamic models in such
potentially fruitful directions.

Conclusions
In the present study, we have extended and fine-tuned a
network model of liver regeneration to predict the dy-
namics of human liver response to resection. Analysis of
the computational model helped us identify two crucial
factors associated with the metabolic load and cell death
post resection, which can control the dynamics of liver
regeneration response. Our simulations indicate that the
balance between these two factors is critical to drive the
response towards liver recovery or failure. We evaluated
the distribution of responses in a cohort of virtual pa-
tients, and analyzed the responses using phase plane
analysis to identify how the threshold of liver failure var-
ies as a function of the model-predicted critical factors.
Our analysis demonstrates a model-based approach to
estimate the safe level of resection to increase the likeli-
hood of recovery. These results serve as a basis for fu-
ture efforts focused on relating the two model-predicted
critical factors to patient-specific pre- and perioperative
clinical parameters to aid in clinical decision making.
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Methods
Computational model
We employed the mathematical model of Cook et al.
[8] which is an extension of the model proposed by
Furchtgott et al. [6]. This model describes the hepato-
cyte growth after partial hepatectomy. In this model,
hepatocytes enter the cell cycle and is assumed to exist
in one of the three states quiescent (Q), priming (P) or
replicating (R) via a cascade of signals from cytokines
and growth factors [38, 39]. We assume the liver to be
a lumped system, and consequently, the molecular changes
in hepatocytes are considered to be spatially homogeneous
throughout the remnant liver mass in the present lumped
parameter model.
The dynamic response to partial hepatectomy is mod-

eled as governed by 11 ordinary differential equations.
Three of these variables represent the hepatocyte pro-
portions in the three distinct functional states (quies-
cent, primed, and replicating). Seven of the remaining
equations describe the dynamics of molecular factors
that take into account the molecular regulation of hepa-
tocytes, e.g., cytokines signals from Kupffer cells for
priming of hepatocytes, and growth factor signals from
hepatic stellate cells. The last equation accounts for the
relative cell mass to incorporate hypertrophy along with
hyperplasia in the model. In this work, the model pro-
posed by Cook et al. [8] was modified to account for
senescent, non-replicating cells by modifying the meta-
bolic load per unit cell number (M / N). This variable
was replaced by metabolic load per unit of replication-
competent and senescent cells (M / (N+ε)), where N
represents cells that can grow via hyperplasia and hyper-
trophy and ε represents cells that do not grow but are
still functional. For the simulations in the present study,
we have assumed 1% cells as functional but not capable
of replication, and so ε = 0.01. This modification reduces
the numerical error encountered in simulations corre-
sponding to liver failure scenarios. The model equations
are given as below:

Cellular states:

dQ
dt

¼ −kQP IE½ �− IE0½ �ð ÞQþ kRQ ECM½ �R
þ kreqσreqP−kapσapQ ð1Þ

dP
dt

¼ kQP IE½ �− IE0½ �ð ÞQ−kPR GF− GF0½ �ð Þ
P−kreqσreqP−kapσapP

ð2Þ

dR
dt

¼ kPR GF½ �− GF0½ �ð ÞP−kRQ ECM½ �R
þkprolR−kapσapR

ð3Þ

Molecular factors:

d IL6½ �
dt

¼ kIL6
M

N þ ε
−

V JAK IL6½ �
IL6½ � þ KJAK

M

−κIL6 IL6½ � þ k1

ð4Þ

d JAK½ �
dt

¼ V JAK IL6½ �
IL6½ � þ KJAK

M

−κJAK JAK½ � þ k2 ð5Þ

d½STAT3�
dt

¼ VST3½ JAK �½proSTAT3�2
½proSTAT3�2 þ KST3

M ð1þ ½SOCS3�=KSOCS3
I Þ

−
V IE½STAT3�

½STAT3� þ KIE
M

−
VSOCS3½STAT3�

½STAT3� þ KSOCS3
M

−κST3½STAT3� þ k3

ð6Þ
d SOCS3½ �

dt
¼ VSOCS3 STAT3½ �

STAT3½ � þ KSOCS3
M

−κSOCS3 SOCS3½ � þ k4

ð7Þ

d IE½ �
dt

¼ V IE STAT3½ �
STAT3½ � þ KIE

M

−κIE IE½ � þ k5 ð8Þ

d GF½ �
dt

¼ kGF
M

N þ ε
−kup GF½ � ECM½ �

−κGF GF½ � þ k7

ð9Þ

d ECM½ �
dt

¼ −kdeg IL6½ � ECM½ �−κECM ECM½ � þ k6 ð10Þ

Relative cell mass:

dG
dt

¼ kG
M

N þ ε

� �
−kGM ð11Þ

where,

ε ¼ 0:01 ð12Þ

σap ¼ 0:5 1þ tanh
θap− N þ εð Þ=M

βap

 ! !
ð13Þ

σreq ¼ 0:5 1þ tanh
θreq− GF½ �

βreq

 ! !
ð14Þ

Verma et al. BMC Systems Biology            (2019) 13:9 Page 12 of 15



N ¼ Qþ G P þ Rð Þ ð15Þ

k1 ¼ V JAK

1þ K JAK
M

−kIL6
M

Nss þ ε
þ κIL6 ð16Þ

k2 ¼ κJAK−
V JAK

1þ KJAK
M

ð17Þ

k3 ¼ −
VST3 proSTAT3½ �2

proSTAT3½ �2 þ KST3
M 1þ 1=KSOCS3

I

� �
þ V IE

1þ KIE
M

þ VSOCS3

1þ KSOCS3
M

þ κST3

ð18Þ

k4 ¼ −
VSOCS3

1þ KSOCS3
M

þ κSOCS3 ð19Þ

k5 ¼ −
V IE

1þ KIE
M

þ κIE ð20Þ

k6 ¼ kdeg þ κECM ð21Þ

k7 ¼ −kGF
M

NSS þ ε
þ kup þ κGF ð22Þ

NSS ¼ 0:99 ð23Þ
Here, the parameters k1 … k7 are defined such that the

rate of change of molecular species over time is set to
zero under normal functioning of the liver, i.e. a steady
state, prior to resection. These parameters correspond
to homeostatic in- and out-fluxes in the liver at steady
state, and are not altered during the liver regeneration
process. NSS is the steady state of the non-senescent
liver mass before resection. NSS and ε together constitute
the steady state of the total liver mass prior to surgery.

Initial conditions:

Q0 ¼ remnant liver fraction;P0 ¼ 0;R0 ¼ 0

½IL60� ¼ 1; ½ JAK 0� ¼ 1; ½STAT30� ¼ 1;

½SOCS30� ¼ 1; ½IE0� ¼ 1; ½GF0� ¼ 1; ½ECM0� ¼ 1

G0 ¼ 1
N0 ¼ Q0 þ G0ðP0 þ R0Þ ¼ Q0

ð24Þ

Simulation and parameter optimization
The Matlab code used for model simulation in this study
is available as supplemental information in Additional file 8.
Simulations were performed in Matlab using ode15s. The
initial guess values of the parameters for optimization
were based on the values given in Cook et al. [8] for hu-
man population. The parameters of the model were opti-
mized using the sparse regularization technique of elastic

net, which is a combination of ridge regression and Lasso
[40, 41]. We sampled the parameter space using Sobol
sampling [42, 43] with a few parameters varied over a
ten-fold range and the remaining parameters varied within
a two-fold range around the initial value (Additional file 9:
Table S3). The parameter ranges were so chosen to avoid
the numerical integration error since the system of equa-
tions for the model is stiff. The Matlab code for parameter
optimization is available as supplemental information in
Additional file 10.

Metabolic scaling from rat to human based on body mass
For the comparative analysis of parameter tuning we
considered two alternative approaches to multivariate
optimization. We calculated the metabolic load (M) based
on the empirical scaling relationship between M and body
mass, as published in Young et al. [21] and Cook et al. [8].
In the case of Young et al. [21], the M value is calculated
as:

M ¼ 23:409 x Body Mass−0:118 ð25Þ

In the case of Cook et al. [8], the M value is calculated
as:

M ¼ 47:315xBodyMass−0:1825 ð26Þ

where Body Mass is in grams in Eqs. (25) and (26).
In addition to M, we also modified the relative cell mass

growth constant (kG) to 6.5675e-4 when simulating the
model according to the parameter tuning published by
Cook et al. [8] to translate from rat to the human case.
For each patient, the body mass was calculated from

the available body mass index (BMI) data from Yama-
moto et al. [18]. The BMI values were converted to body
mass values based on average height of Japanese adult
men (1.72 m) and women (1.58 m) [44], as follows:

Body Mass ¼ 1000xBMI xheight2 ð27Þ

where BMI is in kg/m2, Body Mass is in grams and
height is in meters.

Virtual patient cohort generation
In order to identify the critical factors controlling both
the mechanism of liver recovery and failure, we gener-
ated in silico cohorts of virtual patients [23, 45] starting
with specific patient data (ID71) from Yamamoto et al.
[18] and introducing wide variation in specific parame-
ters as detailed in the Results. We utilized a Sobol sam-
pling approach that yields a space-filling sample with
little bias [43]. The model-predicted critical factors were
first varied one at a time and then in combination to
analyze their influence on the individual patient liver re-
sponse to surgical resection. The Matlab code for virtual
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patient cohort analysis is available as supplemental infor-
mation in Additional file 11.

Decision boundary and threshold of failure
The decision boundary demarcating the normal liver
growth from the other classes of liver response were drawn
using a support vector machine approach with a third
order polynomial kernel using fitcsvm function in Matlab
with BoxConstraint in the range of 1 to 104, for different
levels of resection [46]. For each virtual patient, the thresh-
old of failure was calculated by evaluating the response to
varying level of resection, ranging from 5 to 90%. The re-
sponse was considered as liver failure if the liver mass frac-
tion was below 0.1 at the 2 year time point post-surgery.
Responses of a virtual cohort of patients were simulated
for different levels of resection to identify the threshold of
resection beyond which any given virtual patient under-
goes liver failure.

Response mode analysis
The in silico generated regeneration profiles of differ-
ent virtual patients are classified as normal growth
when the liver mass fraction at 2.5 years post-surgical
resection is within 0.9–1.1 and as suppressed mode for
fraction below 0.9 for recovered patients. Liver failure
modes are those where the liver mass fraction is below
0.1 after a 2 year post surgery. The unresponsive mode
corresponds to the case where the virtual patient does
not show any change in the liver mass fraction after
surgery.

Clinical data set
The data used for the present work has been obtained
from Yamamoto et al. [18], which contained information
on liver volume post liver resection in 196 patients. We
analyzed the data to identify the subset of patients who
recovered fully i.e., the patients whose final liver volume
was in the range of 90 to 100% of the preoperative liver
volume. There were a total of 101 patients whose liver
volume recovered fully. These patients were further cat-
egorized based on the temporal profile of liver growth.
Some patients showed delayed liver growth, while others
exhibited suppressed but continuous liver growth.

Model reproducibility
Simulations presented in the current work were repro-
duced independently by a laboratory colleague, not asso-
ciated with the study, who developed new Matlab code
based on the model equations and parameter values in-
cluded in this manuscript. See Additional file 12: Figure
S6 for details. The original and reproduced model are
provided in the Additional files 1 and 13.

Additional files

Additional file 1: Table S1. Comparison of the metabolic load calculated
by the three different approaches of Young et al. [21], Cook et al. [8]
and present multivariate optimization approach with the corresponding
sum square errors for fit to the liver volume time series data from
Yamamoto et al. [18]. (PDF 29 kb)

Additional file 2: Figure S1. Comparison of the three alternative
approaches of Young et al. [21], Cook et al. [8] and present multivariate
optimization for model tuning to fit liver volume time series data
corresponding to patient ID74 from Yamamoto et al. [18]. (PDF 235 kb)

Additional file 3: Figure S2. Pairwise correlation between optimized
model parameters with clinical data of the 27 patients from Yamamoto
et al. [18]. (PDF 268 kb)

Additional file 4: Figure S3. Correlation between the optimization-
based parameters across 27 patients. (PDF 337 kb)

Additional file 5: Table S2. Classification of model parameters of Cook
et al. [8] model based on their directional influence on liver response.
(PDF 161 kb)

Additional file 6: Figure S4. Comparison of the impact of intrinsic
perioperative factors, metabolic load (M) and cell death sensitivity (βap)
between rat and human liver regeneration scenarios. (PDF 478 kb)

Additional file 7: Figure S5. Determining the safe level of resection
based on cell death sensitivity (βap), an intrinsic perioperative factor.
(PDF 392 kb)

Additional file 8: Matlab code to generate the regeneration profiles and
phase plane portrait for predicting the threshold of failure. (M 11 kb)

Additional file 9: Table S3. Description of model parameters with their
bounds considered in the optimization. (PDF 174 kb)

Additional file 10: Matlab code to optimize the model parameters
using elastic net technique. (M 10 kb)

Additional file 11: Matlab code for virtual patient cohort analysis. (M 11
kb)

Additional file 12: Figure S6. Model reproducibility. Using the model
equations and parameters given in the main text. (PDF 484 kb)

Additional file 13: Matlab code used to reproduce the results of the
original model implementation. (M 19 kb)
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