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Abstract

Background: Identification of Hürthle cell cancers by non-operative fine-needle aspiration biopsy (FNAB) of thyroid
nodules is challenging. Resultingly, non-cancerous Hürthle lesions were conventionally distinguished from Hürthle
cell cancers by histopathological examination of tissue following surgical resection. Reliance on histopathological
evaluation requires patients to undergo surgery to obtain a diagnosis despite most being non-cancerous. It is
highly desirable to avoid surgery and to provide accurate classification of benignity versus malignancy from FNAB
preoperatively. In our first-generation algorithm, Gene Expression Classifier (GEC), we achieved this goal by using
machine learning (ML) on gene expression features. The classifier is sensitive, but not specific due in part to the
presence of non-neoplastic benign Hürthle cells in many FNAB.

Results: We sought to overcome this low-specificity limitation by expanding the feature set for ML using next-
generation whole transcriptome RNA sequencing and called the improved algorithm the Genomic Sequencing
Classifier (GSC). The Hürthle identification leverages mitochondrial expression and we developed novel feature
extraction mechanisms to measure chromosomal and genomic level loss-of-heterozygosity (LOH) for the algorithm.
Additionally, we developed a multi-layered system of cascading classifiers to sequentially triage Hürthle cell-containing
FNAB, including: 1. presence of Hürthle cells, 2. presence of neoplastic Hürthle cells, and 3. presence of benign Hürthle
cells. The final Hürthle cell Index utilizes 1048 nuclear and mitochondrial genes; and Hürthle cell Neoplasm Index
leverages LOH features as well as 2041 genes. Both indices are Support Vector Machine (SVM) based. The third
classifier, the GSC Benign/Suspicious classifier, utilizes 1115 core genes and is an ensemble classifier incorporating 12
individual models.

Conclusions: The accurate algorithmic depiction of this complex biological system among Hürthle subtypes results in
a dramatic improvement of classification performance; specificity among Hürthle cell neoplasms increases from 11.8%
with the GEC to 58.8% with the GSC, while maintaining the same sensitivity of 89%.
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Background
About one-third of adults have a thyroid nodule [1–3].
Physicians use thyroid ultrasonography to prioritize thy-
roid nodules whose size and ultrasonographic features
warrant fine needle aspiration biopsy (FNAB) for the
possibility of a clinically significant thyroid lesion [4–7].
An estimated 10 thyroid FNAB occur in the United
States for each thyroid cancer diagnosed, suggesting that
about 540,000 thyroid FNAB will occur in 2018 [8–10].
The small cytological FNAB sample is evaluated by light
microscopy, and those with sufficient content are cate-
gorized by one of several nomenclature systems in order
to estimate risk of malignancy [11, 12]. Nodules with be-
nign FNAB results typically undergo clinical and thyroid
ultrasound observation as the risk of cancer is < 5%,
while nearly all of those with greater cancer risk historic-
ally were treated with surgery [13]. Those included the
cytologically indeterminate Bethesda categories III and
IV, which have an estimated risk of cancer of 11–29%
[14]. Recent advances in molecular testing of cytologic-
ally indeterminate nodules have dramatically reduced
diagnostic surgery among them [15, 16]. Still, cytologic-
ally indeterminate thyroid nodules with a significant
Hürthle cell population occur in about 10% of all FNAB
specimens [17], pose substantial cytological and molecu-
lar challenges [18], and are the focus of this research.
Hürthle cells, also known as oncocytes or oxyphil cells,

are follicular-derived epithelial cells with acidophilic cyto-
plasm containing abundant granular (mitochondria-rich)
cytoplasm [19]. Unless the cytopathologist is convinced
that the Hürthle cells are part of a non-neoplastic process,
such as Hashimoto thyroiditis [20], the specimen is typic-
ally categorized as cytologically indeterminate [Suspicious
for Hürthle Cell Neoplasm (included within Bethesda IV),
or when less Hürthle cell cellularity is present, Atypia of
Undetermined Significance/Follicular Lesion of Undeter-
mined Significance (included within Bethesda III)] [21].
While most cytologically indeterminate Hürthle cell
FNAB are from benign thyroid nodules, these have histor-
ically been recommended for diagnostic surgical resection
[20] because of a 9–39% risk of malignancy [18, 22, 23].
Insights into Hürthle cell carcinomas are growing,

with recent investigations reporting alterations in nu-
clear and mitochondrial genomes and enriched genomic
instability, which differ from the genomic profiles of
non-Hürthle neoplasms [24, 25]. Still, mitochondrial and
classic DNA mutations, and other cytological, radio-
logical, and laboratory approaches have shown low sen-
sitivity in detecting carcinomas among Hürthle cell
FNAB, and imperfect specificity in differentiating benign
from malignant nodules [20, 26, 27]. In 2011, the
Afirma® gene expression classifier (GEC) was developed
as a cancer “rule-out” test for cytologically indeterminate
nodules with the intention that GEC benign samples

with a low risk of malignancy could undergo clinical obser-
vation similar to cytologically benign nodules [15, 16, 28].
While many FNAB contain Hürthle cells from non-
neoplastic nodules, it was also recognized that differentiat-
ing Hürthle adenomas (HCA) from Hürthle carcinomas
(HCC) was a major challenge [29]. With an overall goal of
an accurate benign GEC test result, a Hürthle cassette was
inserted upstream of the main GEC classifier. The Hürthle
cassette erred on the side of caution by identifying all sam-
ples with strong Hürthle cell neoplastic mRNA signatures
as suspicious, while allowing the remainder to pass
through to the main GEC classifier for final evaluation as
molecularly benign or suspicious. The impact of this
process is seen in the 2012 clinical validation study in
which only 19% of HCA received an overall benign result,
compared to 58% of non-Hürthle adenomas [15]. In prac-
tice, centers whose Hürthle FNAB included more non-
neoplastic samples, or samples that passed through the
Hürthle cassette, received an overall benign result among
Hürthle FNAB in about one-third of their samples [30, 31],
whereas others reported benign results less often [32, 33].
While the accuracy of the benign result among Hürthle
FNAB remained high, the low benign call rate diminished
the cost-effectiveness of the test amongst this sample type
[33].
Recently, the GEC test was migrated from a microarray

mRNA expression platform to a next-generation RNA se-
quencing platform, which provided access to RNA tran-
scriptome expression and sequencing of nuclear and
mitochondrial RNA; and detection of genomic copy num-
ber, including loss-of-heterozygosity (LOH). We coupled
this increased genomic content with enhanced bioinfor-
matics and machine-learning (ML) strategies to maintain
high test sensitivity with improved overall test specificity.
A key objective was to improve the specificity in classifica-
tion of FNAB containing Hürthle cells. This enhanced test
is the Afirma Genomic Sequencing Classifier (GSC) [34].
Here, we describe the development and validation of a
Hürthle cell Index (HI) to detect FNA samples with
Hürthle cell features in all FNA samples tested with an
additional Hürthle cell Neoplasm index (NI) to further
score only HI positive cases and separate them into neo-
plastic and non-neoplastic categories. These two indices
enable the test to function without input from physician
cytological interpretation and automatically interfaces
with the core GSC classifier to render an overall GSC be-
nign or suspicious result on every FNAB specimen. The
result is a dramatic improvement of specificity among
Hürthle cell neoplasms from 11.8% with the GEC to
58.8% with the GSC, while maintaining the same sensitiv-
ity of 89% [34]. This improvement in specificity substan-
tially increases number of highly accurate benign result
among Hürthle cell FNAB, safely saving patients with
these challenging nodules from diagnostic thyroid surgery.
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Methods
Study design
Three different types of thyroid samples were utilized
for this study. The first group (Cyto-Hürthle) included
FNAB for developing Hürthle cell and Hürthle cell Neo-
plasm indices, where detailed cytologic features were cu-
rated by expert thyroid cytopathologists using microscopic
examination from FNAB. Hürthle cell-specific cytology
class labels were assigned based on the presence or absence
of Hürthle cells and potentially neoplastic features. The sec-
ond group was comprised of FNAB for developing the
Afirma Benign/Suspicious (B/S) classifier, where histopath-
ology diagnoses were available. Two subsets were separately
analyzed, as described in [34]: (1) a subset of samples used
for training the Afirma GSC and (2) 191 samples used for
the validation of Afirma GSC. The third group used fresh,
frozen thyroid surgical tissues with histopathology diagno-
ses, including 12 Hürthle cell and 43 non-Hürthle cell
cases, for examining copy number variation (CNV) and
LOH using the Affymetrix CytoScan platform.

Identifying cytopathology samples for review
The Veracyte database was queried to identify 285 FNAB
where Hürthle cell features were noted in the initial cyto-
logical reading of the case. An additional 272 FNAB where
no Hürthle cell features were noted were also selected.
These cases were subject to blinded re-review by a panel
of 3 cytopathologists. Features examined were: cellularity,
proportion of Hürthle cells, Hürthle cell morphology,
Hürthle cell maturation spectrum, and presence or ab-
sence of colloid. Based on these features, four classes of
samples were generated (See Additional file 1: Figure S1
for representative images): 1. Hürthle cell positive, Neo-
plasm positive (H +N+); 2. Hürthle cell positive,
Neoplasm negative (H +N-); 3. Hürthle cell negative,
Neoplasm positive (H-N+); 4. Hürthle cell negative, Neo-
plasm negative (H-N-). This analysis yielded 318 samples,
including 119 Hürthle cell-negative and 199 Hürthle
cell-positive samples. Of the 199 Hürthle cell-positive
samples, 27 were identified as Bethesda II and were there-
fore labelled Neoplasm-negative, while 71 were Bethesda
IV and were therefore labelled Neoplasm-positive. Sam-
ples were de-identified prior to cytopathology re-review
prior to RNA Access library preparation.

Affymetrix CytoScan
Thyroid tissue DNA was extracted with the AllPrep
Micro kit (Qiagen, Hilden, Germany) and quantitated
with the Pico Green dsDNA kit (Thermo Fisher) on a
Tecan Infinite Pro 200 plate reader (Tecan, Männedorf,
Switzerland). DNA (125 ng) was used as input into the
CytoScan HD array kit (Affymetrix, Santa Clara, CA)
and the samples were processed according to the
manufacturer’s protocol. Cel files were input into the

Affymetrix Chromosome Analysis Software (ChAS) and
Copy Number and SNP outputs were analyzed for LOH
and other CNVs.

RNA library preparation and next-generation sequencing
Samples were processed as described [34]. Briefly, 15 ng of
total RNA was input into a Microlab STAR (Hamilton,
Reno, NV) automated version of the TruSeq RNA Access
Library Preparation Kit (Illumina, San Diego, CA). Librar-
ies were sequenced on the NextSeq 500 (Illumina, San
Diego, CA) using paired-end 2 × 76 cycle reads.

RNA sequencing pipeline, feature extraction, and quality
control
RNA-seq data were processed as described [34]. Raw
sequencing data was aligned to human reference genome
assembly 37 using STAR aligner. Normalized expression
levels were obtained using variance stabilizing trans-
formation (VST) from the DESeq2 package [32]. The
gene-wise dispersion parameter was estimated by the
‘local fit’ method. Genome-wide variants were identified
using the GATK variant calling pipeline. Samples that
did not satisfy the minimum in-house sequencing QC
metrics were excluded from downstream analyses.

Feature engineering
Loss-of-heterozygosity (LOH) statistic
We developed a LOH statistic at the chromosome and
genome level using genome-wide variants. The statistic
quantifies the magnitude of LOH by calculating the pro-
portion of variants that have a variant allele frequency
(VAF; fraction of reads carrying the alternative allele)
away from 0.5 (< 0.2 or > 0.8) after pre-filtering of vari-
ants with a VAF exactly at one. For the genome-level
LOH statistic calculation, the mitochondrial genome and
X and Y chromosomes were excluded. The details of the
LOH statistic calculation are shown in the formulas
below, where “n_loss_het” is the number of variants with
a VAF far away from 0.5 (< 0.2 or > 0.8), and “n_all_het”
is the total number of potentially heterozygous variants.
LOH statistic was calculated both for each chromosome
(referred as chromosome-level LOH) and for the entire
genome (referred as the genome-level LOH).

LOH ¼ n loss het
n all het

n loss het ¼
XN

i¼1

1 if 0 < vaf < 0:2 or 0:8 < vaf < 1
0

n all het ¼
XN

i¼1

1 if 0 < vaf < 1
0

Fifty-four tissue samples have LOH measured by both
Affymetrix CytoScan and RNA-seq. Concordance
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between these two methods is shown in Additional file 1:
Figure S2. These data correlated well on the samples
with high level LOH (> 0.2 by Affymetrix CytoScan), all
of which were Hürthle samples.

Mitochondrial features
Mitochondrial genes were captured during RNA Access
library preparation and the same experimental proce-
dures and bioinformatic sequencing pipelines were
applied as described in previous sections. In total, there
are 13 protein coding genes, and transcripts from all 13
were captured by the sequencing assay. Exploratory data
analysis revealed all 13 genes showed differential expres-
sion levels between Hürthle negative and positive
groups. Therefore, all mitochondrial genes were included
in the gene feature set to undergo feature selection in
downstream classifier development.

Hürthle cell index (HI) development
A total of 318 FNA samples (199 Hürthle cell + and 119
Hürthle cell -) were used to develop a Hürthle cell Index
(HI), which is a binary classifier, determining if a sample
is Hürthle cell + or Hürthle cell -. Ten-fold cross valid-
ation was performed to estimate the training perform-
ance, and the final model was built on all samples.
Classifier development comprised three sequential steps:
(1) differential expression analysis on 21,162 genes, using
a statistical software package, edgeR [35], (2) selection of
top-ranked genes with a FDR-adjusted p-value < 0.05
and expression fold-change (log2 scale) > 1.5, (3) opti-
mizing parameter setting of multiple state-of-the-art ma-
chine learning algorithms with nested cross-validation.
The algorithms we tested include support vector ma-
chine (SVM), elastic net, random forest, as well as SVM
with asymmetrical cost to account for class imbalance.
Hyperparameter tuning was performed in the inner layer;
while the performance evaluation was performed in the
outer layer holding out 10% of samples for each fold. SVM
was selected due to its optimal cross-validated perform-
ance. The cost-parameter tuning for SVM was performed
on a grid of (1e-04, 0.001, 0.01, 0.05, 0.1, 1, 5, 10). The best
parameter selected for the final model was 0.001, and the
associated number of support vectors was 106. Based on
these parameters, the final SVM model was established
using the ‘svmLinear’ method from the ‘caret’ R package
[36] with all training samples and 1408 genes selected
from the differential expression analysis.

Hürthle cell neoplasm index (NI) development
Among the 199 Hürthle cell samples used for HI develop-
ment, 98 were further grouped into Neoplasm+ (n = 71)
and Neoplasm- (n = 27) and used for Neoplasm Index
(NI) training. NI is a binary classifier, determining if a
Hürthle cell + sample is Neoplasm+ or Neoplasm-.

Algorithm training for the NI was carried out similarly to
the training for the HI but included novel LOH statistics
as features. For the final model, 2041 genes were selected
from the differential expression analysis. In addition, 15
chromosome-level LOH statistics (chromosomes 1, 2, 3, 4,
5, 6, 8, 9, 11, 13, 14, 15, 16, 18, and 19) and genome-level
LOH were included as features for model training. The
SVM was then built similarly to HI training on the same
cost-parameter grid. The best parameter selected for the
final model was 0.001, and the associated number of sup-
port vectors was 51.

Integrating Hürthle and Hürthle neoplasm indices into
the Afirma GSC B/S classification workflow
The Afirma GSC classification workflow (Fig. 1a) begins
with four upstream classifiers handling special thyroid
FNA entities (Parathyroid Adenoma (PTA), Medullary
Thyroid Carcinoma (MTC), BRAF V600E, and RET/
PTC1 and RET/PTC3 fusions). It then uses the ensemble
B/S model to classify a majority of samples as GSC
benign or suspicious, as described previously [34]. The
HI and NI are integrated with the ensemble model to
increase overall classification performance (Fig. 1b).
There are three mechanisms for arriving at the GSC Be-

nign versus Suspicious binary outcome for a given sample:

(1) The result is GSC Benign if the ensemble B/S score
is lower than the nominal threshold; otherwise

(2) The result is initially GSC Suspicious but can be
reassigned to a benign call by “Hürthle-adjustment”
if the sample is predicted as Hürthle cell Index-
positive (HI+), and Neoplasm Index-negative (NI-),
and the ensemble B/S score is lower than the
Hürthle-adjusted threshold; otherwise

(3) The result is GSC Suspicious.

The three types of outcomes are described with math-
ematical formulae as follows. For a given sample i, we
denote the scores from HI and NI, and the ensemble B/
S classifier as Hi, Ni, and BSi, respectively. We denote
the thresholds for HI and NI as tH and tN, respectively.
For the ensemble B/S score, two thresholds exist; one is
the nominal threshold, tBS_nominal, and the other is an in-
creased threshold to handle Hürthle cell-positive,
Neoplasm-negative cases. The latter is referred to as a
“Hürthle-adjusted” threshold and denoted as tBS_Hürthle.
The binary call outcome of the sample will be:

(1) GSC Benign, if BSi < tBS_nominal; otherwise
(2) Initially GSC Suspicious, but reassign to GSC

Benign if Hi > tH, and Ni < tN,and tBS_nominal ≤ BSi <
tBS_Hürthle; otherwise

(3) GSC Suspicious
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The integration of HI and NI into Afirma GSC work-
flow aims to “rescue” truly benign Hürthle cell-containing
samples by actively reassigning these samples to GSC
benign that would otherwise have been called GSC
Suspicious.

Determining thresholds during algorithm development to
maximize overall performance
Multiple factors were considered in determining thresholds
for individual HI and NI, as well as the Hürthle-adjusted
B/S threshold. First, cross-validation training performance

Fig. 1 The Afirma GSC Algorithm Workflow. a A diagram of the Afirma GSC workflow with the validation cohort outcomes listed. b Nested
strategy for Hürthle classification. Samples are first examined by the HI classifier. HI+ samples are passed to the NI classifier. NI- samples are
subject to an adjusted threshold for the main B/S classifier
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of HI and NI were evaluated against the cytology label.
Second, we examined the concordance of predicted
Hürthle cell and Neoplasm status with the histopathology
diagnosis using samples from the Afirma GSC B/S training
set. Finally, the potential gain in the overall Afirma GSC
performance due to Hürthle-adjustment was assessed. Due
to the complexity of including two types of datasets (one
focused on cytologic features, and the other on histopath-
ology labels) and integration of three separate classifiers,
complex dynamic parameter optimization was engaged
with extensive multi-dimensional grid search to examine
the tradeoff in the sensitivity and specificity for each classi-
fier alone, and in combination. The final thresholds were
chosen by optimizing overall Afirma GSC B/S specificity,
while maintaining a high sensitivity (> 90%), by enabling
high performance in both HI and NI.

Results
Identifying mitochondrial features in Hürthle positive
samples
One prominent microscopic feature observed in Hürthle
cell-positive samples, visualized by both cytopathology
and histopathology, is the inherent increased intracyto-
plasmic mitochondria in Hürthle cells [19]. We sought
to determine if there was a genomic signature associated
with the high mitochondrial content noted in Hürthle

cells. Analyzing differential expression between Hürthle
cell positive and Hürthle cell negative samples revealed
that all 13 mitochondrial transcripts were observed with
an FDR-adjusted p-value of < 0.05 (Fig. 2). Therefore, the
elevated number of mitochondria observed microscopic-
ally can be detected genomically using RNA Sequencing.

Identifying LOH features in Hürthle positive, neoplasm
positive samples
We next sought to identify genomic features associated
with Hürthle cell positive, neoplasm positive samples. Pre-
vious reports have identified copy number changes in
Hürthle subtypes [26, 37, 38]. We performed genome-wide
DNA copy number analysis on thyroid tissues and
observed extensive LOH in many Hürthle tissues, while
relatively little LOH was observed in non-Hürthle tissues
(See Fig. 3a). Interestingly, the LOH was primarily, but not
exclusively, enriched in Hürthle cell carcinomas (See
Additional file 1: Figure S3 for example of LOH in various
tissues).
Based on these DNA findings, we sought to recapitu-

late the LOH signal in RNA-seq data, utilizing SNPs
called from expressed genes. Because RNA-seq data is
limited to the exome, only chromosome-wide and
genome-wide LOH were examined. We compared the
CytoScan DNA data to RNA-seq data for the tissues

Fig. 2 Mitochondrial expression in cytopathology Hürthle positive (H+) and negative (H-) cohorts. Shown are the 13 mitochondrial transcripts
present in RNA-seq data. Each transcript shows a boxplot of expression values for Hürthle negative (H-) and Hürthle positive (H+), respectively
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described above and found that the genome-wide LOH
signal is similar between two platforms (Additional file
1: Figure S2). Examination of LOH data from RNA-seq
at the chromosome level shows that LOH is predomin-
antly observed in Hürthle cell positive samples (Fig. 3b),
although not all Hürthle cell positive samples show ele-
vated LOH. Next, the LOH signal was examined for

neoplasm positive versus neoplasm negative in the con-
text of Hürthle cell positive samples. Only Hürthle posi-
tive, neoplasm positive samples show extensive LOH
across multiple chromosomes (Fig. 3c). These data show
that the LOH signal can be detected in RNA-seq data,
and that it is strongly correlated with Hürthle cell posi-
tive, neoplasm positive samples.

Fig. 3 Loss of Heterozygosity in Hürthle positive samples. a Affymetrix CytoScan array data on Hürthle tissues vs. non-Hürthle normal tissues.
Each column represents one chromosome and each row represents one sample. The value in each cell is the proportion of the chromosome
displaying LOH for a given sample. The samples are sorted in descending order for genome-wide LOH. b Chromosome-level LOH data from
RNA-Seq Hürthle positive and Hürthle negative samples. Above the horizontal dashed line are Hürthle positive samples, below the dashed line
are Hürthle negative samples. c Chromosome-level LOH data from RNA-Seq Hürthle positive, Neoplasm positive or Neoplasm negative samples.
Above the horizontal dashed line are Hürthle positive, Neoplasm positive samples, below the dashed line are Hürthle positive, but Neoplasm
negative samples. For both (b) and (c) the LOH scale is to the right, with red indicating more LOH
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An expression-based classifier with mitochondrial
features to separate Hürthle from non-Hürthle
We used expression levels, including mitochondrial fea-
tures, to develop a classifier that separates Hürthle
cell-positive FNAB from Hürthle cell-negative FNAB
(Fig. 4a and b). Classifier score distribution was wider for
the Hürthle cell positive case, with a much tighter distri-
bution for Hürthle cell negative cases (Fig. 4c).
Cross-validation performance showed a high AUC (0.966)
with very high specificity (96.6%) and high (81.4%) sensi-
tivity (Fig. 4d).

An expression-based classifier with expressed LOH
features to separate Hürthle/neoplasm positive from
negative
We developed a classifier from 27 neoplasm-negative and
71 neoplasm-positive samples, all Hürthle cell-positive
(Fig. 5a and b). The neoplasm classifier score distribution
is wider for the neoplasm positive samples than the neo-
plasm negative samples (Fig. 5c), with all but two
LOH-positive samples classified as neoplasm positive
(blue triangles, Fig. 5c). Cross-validation performance re-
vealed a high AUC (0.946), with 96.3% specificity and
78.9% Sensitivity (Fig. 5d).

Integrating the Hürthle and neoplasm classifiers into the
Afirma genomic sequencing classifier algorithm workflow
The Afirma GSC includes multiple classifiers to identify
key factors related to thyroid nodule malignancies [34].
Figure 1a shows the overall Afirma GSC algorithm
workflow Fig. 1b shows a description of the Hürthle cell
and Neoplasm algorithm workflow.
We examined the HI and NI scores for the validation

cohort, using histopathology as truth, revealing that
most samples are correctly classified (Fig. 6a and b). All
9 HCC samples and 10/17 HCA samples are classified
as Hürthle cell positive (Fig. 6b). One HCC sample was
erroneously classified neoplasm negative (Fig. 6c). It is
noteworthy that this sample was a false negative in both
the GEC [15] and GSC [34] validation cohorts, and this
sample was characterized by several rounds of discord-
ant histopathological diagnoses. Five of ten HI positive
HCA samples were classified neoplasm negative (Fig. 6c).
Seven samples were rescued by the Hürthle-adjusted
threshold (Fig. 6b). Six samples were benign, including 2
HCA, 2 BFN, 1 CLT, and 1 FA. One sample was malig-
nant, thereby resulting in one false negative. Because the
HCC false negative was called benign by the B/S classi-
fier at the nominal threshold it was not subjected to the
Hürthle-adjusted threshold. Combining the B/S classifier
with the HI and NI resulted in a significant performance
gain in Hürthle subtypes, with specificity increasing
from 11.8% with the GEC to 58.8% with the GSC.

Discussion
Hürthle cells are follicular-derived epithelial cells with
acidophilic cytoplasm. These oncocytes, or oxyphil cells,
occur in multiple tissue types and are characterized by
abundant, mitochondria-rich cytoplasm [19]. Known as
Hürthle cells when found in the thyroid, this cellular
transformation exists along a continuum, and in the thy-
roid is thought to result from high oxidative stress and
reactive oxygen species [19]. How and if this process re-
lates to tumorigenesis is unknown. Almost all benign
and malignant thyroid neoplasms have a Hürthle cell
counterpart, with the exception of anaplastic thyroid
cancer [19]. Hürthle cells are associated with hyperplasia
(multinodular adenomatous goiter), chronic inflamma-
tion (Hashimoto’s thyroiditis), benign neoplasia (HCA)
and malignant neoplasia (HCC) [19]. Hürthle cells have
long challenged cytologists to accurately allocate such
FNAB specimens into definitively benign or malignant
categories [20]. To not miss cancer, most nodules not
categorized as benign have historically undergone surgi-
cal resection. Thus, Hürthle cell cytology has contrib-
uted to the costs, morbidity, and occasional mortality of
diagnostic thyroid surgery [16].
Here we present the detailed development of two clas-

sifiers to address the possibility that a cytologically inde-
terminate FNAB specimen would contain Hürthle cells.
The two classifiers interface with a third classifier (the
core GSC classifier), whose overall specificity was im-
proved compared to its predecessor (the GEC), and to-
gether this trio of classifiers automatically assess the
molecular signature of every FNAB specimen presented
to them.
Key to understanding how the two Hürthle classifiers

function is to recognize that Hürthle cells are found
among both neoplastic and non-neoplastic processes, and
that in the absence of neoplasia, the specimen should be
benign. The HI classifier first determines if the specimen
contains Hürthle cells. It does this using 1408 differen-
tially expressed genes, including 13 mitochondrial tran-
scripts. If this HI classifier is negative, then the core GSC
classifier renders a benign or suspicious result (Fig. 1). If
the HI classifier is positive for Hürthle cells, then the NI
classifier determines if the specimen is neoplastic, using
2041 differentially expressed genes and a novel LOH stat-
istic. If neoplastic, then the core GSC classifier renders a
benign or suspicious result. However, if the NI suggests
the absence of neoplasia, then the core GSC classifier uses
an adjusted threshold that allows more of these samples
to receive a GSC benign result. This adjusted threshold is
justified based on the absence of neoplasia. While the NI
sensitivity is high, it is not perfect, and a neoplastic speci-
men could be falsely deemed non-neoplastic. For this rea-
son, the specimen is not automatically given a final benign
result, but rather must still pass the core GSC classifier
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with an adjusted (more tolerant) benign versus suspicious
threshold, rather than having the threshold removed com-
pletely. Among the FNAB specimens derived from a pro-
spective, multicenter, and blinded cohort of cytologically

indeterminate thyroid nodules used to validate the GEC,
and subsequently the GSC, an additional 4% of samples
were given a final benign result due solely to the two
Hürthle classifiers. These “rescued” samples represent

Fig. 4 Hürthle Classifier Cross Validation Performance. a Samples used in the Classifier development. Hürthle and Neoplasm labels are defined by
cytopathology. b Volcano plots of differential expression. Fold-change (log2 scale) is plotted on the x-axis, and FDR-adjusted p-values are plotted
on the y-axis. Mitochondrial genes are shown in purple. c Hürthle Index Score. Red dashed line indicates the cut-off for HI+ vs. HI-. The green
boxplot represents the score for cytopathology Hürthle negative samples and the purple boxplot represents cytopathology Hürthle positive
samples. d ROC curve showing classifier performance. The red-dashed lines indicate performance at the selected cutoff
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19% of those deemed “Hürthle” by the HI classifier, and
44% of those deemed “not neoplastic” by the NI (Fig. 6b).
These results are similar to what we have seen subse-
quently in the Veracyte CLIA laboratory. In its first 6203

cytologically indeterminate specimens, 5779 specimens
passed all quality control requirements and received a
final result, including 3% BRAFV600E classifier positive,
0.6% parathyroid classifier positive, 0.4% RET/PTC1 or

Fig. 5 Neoplasm Classifier Cross Validation Performance. a Samples used in the Classifier development. Hürthle and Neoplasm labels are defined by
cytopathology. Note that all samples are Hürthle positive. b Volcano plots of differential expression. Fold-change (log2 scale) is plotted on the x-axis,
and FDR-adjusted p-values are plotted on the y-axis. Mitochondrial genes are shown in purple. c Neoplasm Index Score. Red dashed line indicates the
cut-off for NI+ vs. NI-. Cyan triangles indicate genome-wide LOH positive. b ROC curve showing classifier performance. The red-dashed lines indicate
performance at the selected cutoff
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RET/PTC3 fusion positive, and 0.3% medullary thyroid
cancer classifier positive. Of the remaining 5552 speci-
mens, 21% were positive by the HI classifier, 56% of them
were deemed negative by the NI classifier which invoked
the adjusted core GSC classifier threshold through which
14% of the HI positive but NI negative specimens received
a final benign result due to the adjusted threshold (unpub-
lished results). The impact of the coordinated trio of

classifiers described here is now being reported among in-
dependent real-world clinical experiences. In one report,
the authors state that 21% of their Bethesda III and IV cyto-
logically indeterminate FNAB were Hürthle cell-dominant.
Among them, only 18% of 107 cytologically Hürthle
cell-containing FNAB received a benign result by GEC,
compared to 67% of 18 Hürthle cell-containing FNAB with
GSC (p < 0.0001) [39]. Similar, independent experiences

Fig. 6 Hürthle and Neoplasm Scores from the Afirma GSC Validation Cohort. a HI classifier scores for the validation cohort. Red dashed line
indicates cutoff for HI+ vs. HI-. HI score distribution is plotted as boxplot with individual sample values for the four groups separately: Hürthle Cell
Carcinoma “HCC”, Hürthle Cell Adenoma “HCA”, non-Hürthle histopathology malignant “nonHürthle Malignant”, non-Hürthle histopathology
benign “nonHürthle Benign”. b The combination of the main B/S, Hürthle, and Neoplasm Indices. Gray points are HI- samples. Purple points are
HI+, NI+. Green points are HI+, NI-. Blue dots are HI+, NI- samples that were subject to the adjusted cutoff. c NI classifier scores for HI+ samples
from the validation cohort
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support this substantial increase in the GSC benign call rate
and accuracy of this classifier trio [40, 41].
The strength of this work includes the incorpor-

ation of expert cytopathology to establish “truth” la-
bels for training the two Hürthle classifiers. The
decision cut-off for the HI classifier results in very
few non-Hürthle cell samples being falsely identified
by the Hürthle cell index as “Hürthle”, but a larger
fraction of truly Hürthle cell samples being missed.
These HI false negative samples lose the opportunity
to be potentially rescued by the adjusted core GSC
classifier threshold. We consider this a safer mode of
failure. The high specificity of the NI classifier leads
to high accuracy in samples called neoplasm positive;
the lower sensitivity translates to approximately 30%
of truly neoplastic (but not necessarily malignant)
samples being falsely identified by as non-neoplastic
and therefore invoke the more tolerant GSC classifier
threshold. Despite this risk, we demonstrate in clinical
validation a preserved high sensitivity among our
Hürthle cell neoplasms when the entire system per-
formance is considered. Perhaps the greatest limita-
tion to differentiating benign from malignant Hürthle
cell nodules is the imperfection of gold-standard sur-
gical histology benign or malignant “truth” labels.
Low concordance of truth labels among these speci-
mens by expert surgical pathologists is well-known
[29, 42], and even perfectly trained classifiers can only
carry forward this imperfection, but they cannot cor-
rect it. Until improved “truth” labels are accepted,
this barrier to improved classification will remain. It
is noteworthy that we observed significant LOH
among a fraction of both histologically benign and
malignant Hürthle cell neoplasms. Whether or not
the genomic instability of LOH should represent a
pre-malignant, or carcinoma in-situ, is unknown and
their natural history is unknown since these neo-
plasms were all surgically resected in our training and
validation cohorts.

Conclusions
Three coordinate classifiers were developed to address
cytologically indeterminate Hürthle cell thyroid FNAB
using ML algorithms which harness the enriched gen-
omic content from RNA-sequencing, including mRNA
expression from differentially expressed nuclear and
mitochondrial genes, and a novel LOH statistic. As
an adjunct to clinical judgment, this trio of classifiers
empowers physicians to reduce unnecessary diagnostic
thyroid surgery among these most challenging cyto-
logical specimens: an action that directly improves
patient safety, saves healthcare costs, and enhances
quality of life.
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Additional file 1: Figure S1. Representative cytopathology images of
Hürthle and Neoplasm samples. (a) Hürthle negative, Neoplasm negative
sample. Bethesda II FNA. (b) Hürthle positive, Neoplasm negative sample.
Bethesda II FNA. (c) Hürthle negative, Neoplasm positive sample.
Bethesda IV FNA. (d) Hürthle positive, Neoplasm positive sample.
Bethesda IV FNA. Figure S2. Comparing genome-wide LOH measured by
CytoScan with LOH statistic from RNA-seq. Figure S3. Karyotype views of
CytoScan data. Karyoview from Affymetrix’s Chromosome Analysis Suite
(ChAS) software visualizing LOH (magenta), Gain (dark blue), Gain-
Mosaicism (light blue), Loss (red), Loss-Mosaicism (light pink) events
across 24 chromosomes. Chromosomes are shown in order from 1-22, X,
and Y. Events spanning > 100 Kb are shown, and are indicated as a small
mark (four-sided star for LOH, upward and downward triangle for gain
and loss, respectively). (a) Hürthle cell adenoma sample exhibiting all five
types of large aberrations: LOH on chromosomes (chr) 2, 3, 8, 9, and X; Gain
and Gain-Mosaicism on chr 5, 7, 18, 19, 20, and Loss and Loss-Mosaicism on
chr 1, 2, 3, 8, 9, 11, 13, 21, 22. (b) Hürthle cell carcinoma sample exhibiting
large LOH or Gain events: LOH and Gain events alternatively occur on
almost all chromosomes, except chr 14 where both events are present. (c)
Normal sample. No large aberrations observed; only small LOH events are
scattered around across the genome with limited Gain (chr 4 and chr 14)
and Gain-Mosaicism (chr 4). (PDF 1097 kb)
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