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Abstract

Background: Systematic fusion of multiple data sources for Gene Regulatory Networks (GRN) inference remains a
key challenge in systems biology. We incorporate information from protein-protein interaction networks (PPIN) into
the process of GRN inference from gene expression (GE) data. However, existing PPIN remain sparse and transitive
protein interactions can help predict missing protein interactions. We therefore propose a systematic probabilistic
framework on fusing GE data and transitive protein interaction data to coherently build GRN.

Results: We use a Gaussian Mixture Model (GMM) to soft-cluster GE data, allowing overlapping cluster memberships.
Next, a heuristic method is proposed to extend sparse PPIN by incorporating transitive linkages. We then propose a
novel way to score extended protein interactions by combining topological properties of PPIN and correlations of GE.
Following this, GE data and extended PPIN are fused using a Gaussian Hidden Markov Model (GHMM) in order to
identify gene regulatory pathways and refine interaction scores that are then used to constrain the GRN structure. We
employ a Bayesian Gaussian Mixture (BGM) model to refine the GRN derived from GE data by using the structural
priors derived from GHMM. Experiments on real yeast regulatory networks demonstrate both the feasibility of the
extended PPIN in predicting transitive protein interactions and its effectiveness on improving the coverage and
accuracy the proposed method of fusing PPIN and GE to build GRN.

Conclusion: The GE and PPIN fusion model outperforms both the state-of-the-art single data source models (CLR,
GENIE3, TIGRESS) as well as existing fusion models under various constraints.

Keywords: Gene regulatory network (GRN), Gene expressions, Gaussian mixture model (GMM), Protein-protein
interaction networks, Transitive protein-protein interactions

Background
Gene regulations describe the interactions among genes
during cellular activity. Through regulation, genes orches-
trate the level of synthesized mRNA and thereby control
the expression of other genes and the rates at which pro-
teins are produced, eventually deciding the state of the
cell. Gene expression (GE) microarrays provide quanti-
tative or semi-quantitative data on the cell state at a
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specific time and condition. By “reverse-engineering” GE
data, regulatory interactions among genes can be identi-
fied and gene regulatory network can be mapped using
computational methods [1, 2].

Vast majority of functional analysis approaches to mod-
elling microarray GE data assume that genes with similar
expression profiles have similar cellular functions [3–5].
A molecular pathway is a set of genes that activate
together to achieve a specific task and thus share simi-
lar expression profiles. In this paper, we use a data-driven
method - the model-based clustering - to model genes
in distinct pathways. Specifically, we model each pathway
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as a Gaussian model as it allows modelling correlations
among gene expressions in a data-driven way. It is better
suited for situations where the prior knowledge of the reg-
ulatory pathways is unknown. In addition, because genes
naturally participate in more than one regulatory path-
way, soft-clustering is used to allowed so that genes can
have memberships in multiple pathways. Hence, we adopt
the Gaussian mixture model (GMM) on GE data so that
different regulatory pathways can be identified.

The rationale behind clustering is that co-expressed
genes, i.e., genes in the same cluster are more likely to
be functionally related and belong to the same cluster.
However, regulatory processes of the genes in a cluster
could not necessarily be direct as it could refer to an indi-
rect regulation via proteins, metabolites, or ncRNAs. In
cases where two interaction partners are transcription fac-
tors or where two proteins are in the same complex, the
interactions are direct. In order to identify indirect reg-
ulations in GRN, evidences from multiple data sources
should be used. For example, medical literature, protein-
protein interaction (PPI) data, gene ontology, etc., have
all been used to supplement wet lab data in the inference
of GRN [6–9]. When more than one source are available,
an essential step is to optimally combine evidences from
multiple sources to derive a coherent GRN [10–12].

Since proteins are products of genes, protein interac-
tions provide useful evidence for gene regulation. PPIN
data have been fused with GE data for GRN inference
in previous studies [13–17]. Most of these works consid-
ered only binary links of PPIN: if the link is consistent
with the predicted edge from GE, the link is accepted
as a true regulation. This approach throws away valuable
information, so an accurate quantitative scoring scheme
is needed to evaluate consistency between PPIN and gene
regulation. On the other hand, existing PPINs are sparse
and many real protein interactions are missing in current
PPIN databases. Suggested by previous PPI prediction
works [18, 19], there exist a large number of interac-
tions between proteins in complexes, which have not yet
been observed or recorded in current PPIN. We there-
fore propose a heuristic to quantitatively extend sparse
PPIN by using transitive linkages. We then propose a
novel way to score protein interactions by combining
topological properties of extended PPIN and correlations
of GE. Our experiments demonstrate that transitive pro-
tein interactions indeed play an important role in pre-
dicting protein interactions. We fuse the extended PPIN
scores with GE data, using a Gaussian hidden Markov
model (GHMM) to identify gene regulatory pathways,
which are found to more consistent with PPIN than those
produced by GMM. We further refine PPIN confidence
scores by including gene interaction scores from GHMM,
which makes the PPIN score more consistent with the
existing GRN.

Since there exists no widely accepted model that uni-
versally fits GE data well [20–23], and different models
capture different GE properties leading to different or
complementary GRN structures [21], fusion of different
models should lead to better GRN. The GHMM identi-
fies regulatory pathways and obtain possible interacting
genes by considering linear correlations between genes
but misses conditional dependencies, i.e., non-linear rela-
tions, among genes in the same regulatory pathway. The
Bayesian network (BN) model is good at capturing these
conditional dependences but suffers from poor compu-
tational efficiency. We thus propose a systematic proba-
bilistic framework that fuse these two models and derive
coherent GRN closer to biological reality. Specifically, our
framework takes a coarse-to-fine approach: GHMM gen-
erates regulatory pathways (i.e., a coarse GRN having high
coverage) and obtains refined interaction scores, both of
which are then used to constrain the GRN structure of
a BN model (i.e., the Bayesian Gaussian mixture model).
This generates GRN that are of good coverage and high
precision. Furthermore, GRN structural constrains help
greatly reduce the search space for BGM model, thereby
reducing the overall computational complexity. Figure 1
shows the flow chart of our GRN inference process.

Methods
Soft-Clustering of GE by Gaussian mixture model
Gaussian mixture model
Since gene expression measurement can be viewed as
an expression of every gene over all the possible path-
ways, we employ a Gaussian mixture model (GMM) [24]
to describe gene expression (GE) data. For simplicity, we
assume that the expression of genes in a pathway fol-
lows a Gaussian model, and gene expression data are
generated by a finite mixture of underlying probability
distribution, that is, by multivariate normal distributions.
The key difference between our work and existing GMM
hard clustering [13, 24] of GE data lies in our assumption
that each gene can participate in multiple pathways. That
is, we allow soft-clustering membership for genes so that
they can participate in multiple pathways. When one gene
participates multiple pathways, it can have soft-clustering
membership values for different pathways, representing
its contributions of gene expressions in the Gaussian
model in different pathways.

Given a gene expression dataset, let I = {i}I
i=1 denote

the set of genes, L = {l}L
l=1 be the set of pathways, and

γi ∈ L denote the regulatory pathways in which gene i
participates, i.e., the pathway assignment for gene i. The
regulatory pathway assignments of gene set I is denoted
by the set � = {γi}I

i=1. The pathway assignment vari-
able γi follows a multinomial distribution parameterized
by vector � = {θl}L

l=1, with assignment probabilities
p(γi = l) = θl, θl ∈[ 0, 1] where

∑L
l=1 θl = 1. We assume
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Fig. 1 Overall Model. Step 1: A Gaussian mixture model (GMM) is used to soft-cluster gene expression (GE) data. Step 2: A heuristic is proposed to
quantitatively extend the sparse protein-protein interactions by using transitive linkages. A novel way is then proposed to score protein interactions
by combining topological properties of extended protein-protein interaction network (PPIN) and GE correlations. Step 3: A Gaussian Hidden Markov
Model (GHMM) is used to identify gene regulatory pathways and refine interaction scores, both of which are then used as structural priors to
constrain the model of GRN. Step 4: Lastly, the GRN from GE is refined using a Bayesian Gaussian Mixture (BGM) model by including the structural
priors derived from Step 3

that the set of weights � = {θl}L
l=1 follow a Dirich-

let distribution p(�) = Dir(α1, . . . , αL) with Dirichlet
weights having uniform priors.

Given gene expression data X = {xi}i∈I , each instance i
has J continuous-valued attributes xi = {xij}J

j=1, where xij
represents the gene expression value measured for gene
i in experiment j out of a total of J experiments. We
represent each pathway with a Gaussian model wherein
the tuple representing the gene expression levels of each
experiment (conditioned on a pathway) is a multivari-
ate sample. The probability of observing a given tuple
of gene expression levels conditioned on a pathway is
p(xi|γi = l) ∼ N(μl, �l), where μl is the mean vector and
�l is the J × J covariance matrix.

The pathway assignments are determined by p(�|X ) ∝
p(X , �). Assuming independence between genes, the joint
distribution over X and pathway assignments � is

p(X , �) =
I∏

i=1
p(xi, γi) =

I∏

i=1

L∑

l=1
p(xi, γi = l) (1)

Learning parameters of the Gaussian mixture model
Expectation Maximization (EM) algorithm [25] is used to
estimate the parameters of the joint likelihood in (1). The

EM algorithm generates a sequence of parameter approx-
imations that eventually maximizes the observed likeli-
hood. The parameters are initialized to random values.
The t-th iteration comprises the following two steps.

E-step: Compute the probability of gene {i : i = 1, . . . , I}
conditioned on regulatory pathway {l : l = 1, . . . , L} by
using current parameter estimates as:

p
(
xi|μt

l , �
t
l
) ∼ N

(
μt

l , �
t
l
)

;

τ t
il = p(xi, γi = l) = θ t

l p
(
xi|μt

l , �
t
l
)

∑L
l′=1 θ t

l′p
(
xi|μt

l′ , �
t
l′
) . (2)

This requires I × L computations.
M-step: Re-estimate the GMM parameters

{θl, μl, �l}L
l=1 for all L pathways as:

θ t+1
l = 1

I

I∑

i=1
τ t

il;

μt+1
l =

∑I
i=1 τ t

ilxi
∑I

i=1 τ t
il

;

�t+1
l =

∑I
i=1 τ t

il

(
xi − μt+1

l

) (
xi − μt+1

l

)′

∑I
i=1 τ t

il
.

(3)
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Once EM procedure converges, we accumulate the joint
probability of each pair of genes

(
i, i′

)
over all the path-

ways. This gives the pairwise interaction probability of
two genes Gi,i′ , which measures how likely both genes
belong to the same pathway (assuming that genes are
mutually independent):

Gi,i′ = p (xi, xi′ , γi = γi′) =
L∑

l=1
τilτi′l. (4)

where τil = p(xi, γi = l) be the joint probability of
gene i belonging to the l-th regulatory pathway. That is,
from genes’ pathway assignments matrix τ = {τil}I×L, we
obtain the first version of GRN as a multiplication of τ and
its transpose τT :

G = τ × τT . (5)

Note that G = {
Gi,i′

}
consists of the probabilities of

gene pairs belonging to the same regulatory pathways.
Each entry Gi,i′ denotes the interaction probability of gene
i and i′, estimated from GE data.

The number of mixture components L can be deter-
mined by the component-wise EM algorithm [25] auto-
matically, instead of trying all possible L ∈[ Lmin, Lmax] via
the time-consuming EM algorithm. The idea is to make
use of the non-increasing property of p(X , �|ML) with
respect to L, implying that the minimum message length
(MML) criterion MML(X , �,ML) also decreases with L.
Starting from L = Lmax, we run the EM algorithm and
compute the MML. At the next iteration, L is decremented
by eliminating the smallest or empty components (setting
the smallest θl as 0). The E and M steps are repeated to
compute an updated MML value at each iteration until
MML(X , �,ML) converges. In this way, not all values of
L need to be evaluated, saving unnecessary computations.

Structural inferences from PPIN
Implicit PPI derived from transitivity
Suggested by [18], there exist a large number of interac-
tions between protein complex components that are not
yet observed or recorded. Yamada et al. [19] showed that
PPIN evolutionary properties, e.g., shortest path, clus-
tering coefficient, give some clues for potential protein
interactions. We therefore propose a heuristic to augment
protein-interaction networks (PPIN) by assuming transi-
tivity among known protein interactions. The rationale
behind this heuristic is also the base for a lot of similarity-
based approaches of predicting GRNs, e.g., the relevance
networks based algorithms [26] assumed that “if A is sim-
ilar to B, then A interacts with B”. Hence, “if A is similar
to B, and B is similar to C, then A is similar to C, implying
that A interacts with C.” As such, we infer implicit interac-
tions based on the first-order transitivity assumptions of

protein interactions, i.e., if A interacts with B and B inter-
acts with C, we infer that A interacts with C. Suthram
et al. [27] designed methods to assign confidence scores
of predicted potential protein interactions from multiple
data sources, i.e., by combining GE data, literature, and
PPIN data. Inspired by their work, we assign confidence
scores of implicit protein-protein interactions (PPI) based
only on GE and PPIN data. We use a confidence scoring
scheme similar to that of [27]. The novelty of our score
lies in its combination of the shortest path score and the
Markov clustering score (a graph property) instead of the
clustering coefficient.

We extract the shortest path of length dii′ from pro-
tein/gene i to protein/gene i′ in protein interaction net-
work P whose gene set is I by using Dijkstra’s shortest
path algorithm [28]. Let E denote the set of shortest paths
dii′ < ∞. When the interaction dataset P is quite sparse,
we choose a larger PPI dataset of the same species, whose
gene set is a superset of I . Use of a larger PPI dataset
incorporates additional biological hints for the analysis.
By choosing the shortest path as a potential PPI, we obtain
a higher confidence in deriving inferred implicit interac-
tions. We also avoid the need to consider many paths by
introducing all the transitive PPIs. For example, we can
avoid the hassle of considering protein interactions in a
clique.

Scoring the shortest path
Implicit interactions are designed to have lower scores
compared to explicit interactions; scores are assigned
inversely proportional to the number of intermediaries,
i.e., implicit interactions with a larger number of inter-
mediaries have proportionately lower scores. The path
length dii′ indicates the strength of the implicit association
between gene i and i′. Let the confidence score cd ∈[ 0, 1]
be a non-increasing number series over path length d,
which quantifies the implicit protein interaction between
i and i′. Clearly, c1 should be 1 for 1-hop connections.
For d ≥ 2, we set cd = ζ d−1 where ζ is the probability
of extending the path by one hop. We assume that each
additional hop is independent of the previous hop.

Using the equivalence assumption, we deduce the closed
form approximation for ζ as follows. Suppose there are
paths of length d = 2, . . . , ∞ between proteins i and i′,
then there should be a direct interaction between protein i
and i′, i.e.,

∑∞
d=2 cd = 1. Thus, the solution to this infinite

summation
∑∞

d=1 ζ d = ζ
1−ζ

= 1 is ζ = 0.5. We therefore
assign a confidence score of cd = 0.5d−1 to each shortest
path of length d. This score decreases exponentially with
the number of hops, e.g., c2 = 0.5, c3 = 0.25, c4 = 0.125,
etc.

For a gene pair (i, i′) in I with a corresponding short-
est transitive path length dii′ , a confidence score of cdii′ is
assigned omitting

∑∞
pl>dii′ 0.5pl−1. In fact, this confidence
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score is a conservative estimate of the real confidence
score because it assumes that there exists path lengths
of length d > pl. In practice, there may exist only
one path between two genes. The shortfall is at most∑∞

pl=d>2 0.5pl−1 < 0.5. If there exist many paths of vary-
ing lengths (overwhelming evidence) between a genes
pair, then the confidence score becomes an underestimate.
On the other hand, if there exists only one path, which
is also the shortest path, then the confidence score is an
accurate depiction of the strength of regulation between
two genes.

We use the method of [27] to estimate PPI scores by
modeling protein interactions as a function of two ran-
dom variables: (1) the implicit PPI confidence score based
on the shortest path and (2) the Pearson correlation coef-
ficient of expression measurements for the correspond-
ing genes. Unlike the approach of [27], which learns the
weight of each random variable from a training set of
positive and negative examples, we simply use uniform
weights. Our formulation involves only two variables: the
implicit PPI confidence score and Pearson correlation
coefficient derived from GE data. Let W with elements
Wij denote the graph with connection strengths computed
from these two variables, then

Wij = ρij + cdij = ρij + 0.5dij−1, (6)

where ρij is the correlation of gene i and j in the
gene expression data, and dij is the shortest path length
between gene/protein i and j in the PPIN.

Until now, W collected the evidence from GE correla-
tion and transitive protein-protein interaction for predict-
ing direct gene-gene interactions. In fact, there are other
evidences for gene-gene interactions. Similar to [29] that
used a random walk model to consider the incompleteness
of current gene ontology (GO) or PPIN evidences, we pro-
pose a random walk model to allow collecting additional
evidence in a random fashion for predicting gene-gene
interactions.

Topological connectivity via random walk transitions
The random walk models including Markov clustering
algorithm [30] and PageRank [31] have been successfully
used to model the link structure of graphs. Likewise, we
extract the topological structure of the extended PPIN by
using a random walk model instead of modelling with a
small-world clustering coefficient [27].

Given an undirected graph W, random walk transition
matrix T is defined as

T =
⎧
⎨

⎩

c Wij
∑I

j=1 Wij
+ 1−c

I if Wij �= 0,
1−c

I otherwise.
(7)

where c ∈ (0.5, 1) is the fusion parameter (a.k.a. the
damping factor in PageRank, typically set to 0.85) that

determines the probability of the next transition from one
of the outgoing links versus the transition from going to
any random link.

Enright et al. [30] has shown that transition matrix
T converges quadratically to an equilibrium state rep-
resenting the topological connectivity of the graph. The
converged matrix, denoted by T̂ = limk→+∞ Tk , can be
computed by Markov CLustering (MCL) algorithm [30].
In our context, the converged matrix of extended PPIN
shows how likely protein pairs are related to one another.

Extended PPIN
Recall that the confidence score of how likely the pre-
dicted PPI occurs are inferred from the shortest path
evidences from existing database, which can be treated as
the confidence from biological knowledge. Here, the topo-
logical connectivities of the extended PPIN are inferred
from the graph structure or the topological properties
by random walk transitivity. We combine both of them
to refine the confidence score of how likely all pro-
tein pairs will interact with each other in the PPIN as
C = W + W ∗ T .

Combining W from (6) and the transition matrix from
(7), the final confidence PPI scores are arrived as follows.

Cij = 0.5 × Wij + 0.5 ×
I∑

k=1
WikT̂kj, (8)

where Wij denotes the confidence score derived from the
PPIN database and GE correlations and T̂kj represents the
converged random walk probability. Hence, W × T̂ yields
the confidence on the link structures of the original net-
work. The summation term actually compensates for the
confidence score Wij that could have been underestimated
in the previous step using the shortest path.

To summarize, score Cij starts from the values estimated
from PPIN and GE correlations and then updated with
converged values of a random walk model. Thus, the con-
fidence score takes into account topological properties of
GRN. The extended PPIN is derived from thresholding the
C scores.

Gaussian hidden Markov model
When genes collaborate to achieve a specific task, the
corresponding protein products generally interact [13].
The PPI serve as valuable hints to underlying regulations
among genes in GRN pathways. To fuse PPI and GE data,
we treat gene expressions as observations, pathways as
hidden states, and protein interactions as transitions in
a Gaussian Hidden Markov Model (GHMM) [24]. In the
GHMM, gene expression is the observed variable, the
pathway it belongs to is the hidden state, given a hidden
state (pathway), the expression of genes in the pathway fol-
lows a Gaussian model. The are gene-gene interactions are
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treated as transitions between their corresponding hid-
den states (pathways): if they are in the same pathway,
the gene-pathway assignments are reinforced; otherwise,
they are penalized. In this way, the GHMM combines the
extended PPIN in the gene-pathway assignments.

Hidden Markov random field (HMRF) models assume
that the conditional distribution of a variable obeys
Markov property, i.e., the probability of a variable only
depends on the neighbouring variables (see [32] for a
complete description of HMRF). In the present context,
HMRF graph is represented by a set of nodes where node
i represents observation xi with hidden variable γi and
the neighborhood graph is represented by constraints Cij,
each of which indicates the edge weight between node
i and node j. Specifically, the extended PPIN with con-
fidence score C is used as constraints (prior knowledge)
to the GHMM, i.e., they are considered neighbourhood
structural priors of the corresponding gene-gene associ-
ations. Figure 2 shows a sample GHMM model with PPI
priors.

The prior probability of a particular cluster assign-
ment � follows a Gibbs distribution [33] as p(�|C) =
1
Z exp

(∑I
i=1

∑I
j �=i −Cijδ(γj �= γi)

)
where δ(·) is the indi-

cator function and Z = ∑
� p(�|C) is the normal-

izing function, and Cij is the PPIN confidence score
between gene i and j. Exact inference of the poste-
rior requires the complete evaluation of p(�|X , C) ∝
p(X , �)p(�|C), where p(X , �) follows the Gaussian mix-
ture model defined in (1). The posterior [34] probabilities
for the multivariate Gaussian case are approximated as

τil = p(xi, γi = l|C)

= θlp(xi|μl, �l)
∑L

l′ θl′p (xi|μl′ , �l′)
exp

⎛

⎝
∑

j �=i
−Cij(1 − τjl)

⎞

⎠ ,
(9)

where θl is the mixture weight and p(xi|μl, �l) is the
probability density function of the component model.

Based on the above, we learn a GHMM by using
component-wise EM algorithm of “Soft-Clustering of
GE by Gaussian mixture model” section, from which
we derive the GRN from the pathway assignments:
G = τ × τT . The gene interaction score is then refined as
R = 0.5 × G + 0.5 × C where C is the confidence score of
PPIN in (8).

Bayesian Gaussian network model
The GHMM assumes that the genes in a pathway are
mutually and conditionally independent and do not con-
sider partial correlation of their mRNA expression levels.
To model this inter-gene dependency in a pathway, we
use a Bayesian network (BN), a directed acyclic graph
with local conditional distributions. Here, nodes represent
genes, proteins, and/or metabolites, while edges represent
molecular interactions such as protein-DNA and protein-
protein interactions, including indirect relationships like
those from inferred PPI.

BN are prone to overfitting of noisy or sparse training
data such as gene expression data. Overfitting could lead
to a vastly incorrect graph structure of GRN. Furthermore,
since protein levels are unobservable from microarray
data, vast majority of BN models of GRN proposed so far
only include mRNA levels of genes as nodes but do not
include protein levels. Thus, one way to reduce overfitting
the BN is to incorporate the prior knowledge extracted
from PPI. We thus propose a novel scoring scheme to feed
implicit protein interactions (derived from GHMM) as
structural priors into BN, thereby enhancing the robust-
ness of predicted GRN.

Another major limitation of BN is its exponentially
growing solution space with respect to the size of the
network and thus approximate solutions such as those
using Monte Carlo Markov Chain (MCMC) or genetic

Fig. 2 A sample Gaussian Hidden Markov Model (GHMM) model. The gene expression observation of gene i is denoted by Xi , the circles denote
hidden variables γi , and PPI confidence scores between genes i and j are denoted by Cij
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algorithms (GA) have been used. Such solutions are prone
to errors and suboptimal. Since gene regulations exist
among the genes in the same regulatory pathway, we con-
strain the parent set of each gene in the BN by first
detecting the pathways, thereby greatly reducing the solu-
tion search space for subsequent computations. In a GRN,
every gene appears in multiple pathways and therefore
the relationship between genes in each pathway cannot
be solved independently, i.e., by modelling each pathway
as an independent BN. We thus use a Bayesian Gaussian
Mixture (BGM) [35] that simply implements a BN with
Gaussian Mixture observations. Here, observations for
the Gaussian mixture reflect experimental observations,
i.e., the experiments/observations are hard-clustered by
using Gaussian Mixture Models. We thus use a MCMC
inference method to learn the BGM model with structural
priors derived from R scores in “Gaussian hidden Markov
model” section, as shown in Fig. 1.

The BN is defined by a graph G with a family of con-
ditional probability distributions and their parameters
Q = {qi}, which together specify the joint distribution
over the variables p (X |G,Q). The joint distribution in a
static BNs is factorized as p (X |G,Q) = ∏I

i=1 p(xi|πi, qi)
where each node xi depends only on its parent nodes πi.
The parameter matrix Q is comprised of I vectors where
each vector qi specifies a local probability distribution.

If we assume a Gaussian Bayesian Network (GBN),
the parameter vector qi = {

μπi , σπi

}
consists of

the mean and standard deviation of the local prob-
ability distributions p(xi|πi, qi) ∼ N

(
μπi , σπi

)
. If we

assume conditional independence among the J experi-
ments, then p (xi|πi, qi) = ∏J

j=1 p
(
xij|πi = xπi,j, qi

)
where

p
(
xij|πi = xπi,j, qi

) ∼ N
(
μπi,j, σ 2

πi,j

)
. Assuming param-

eter independence, prior distribution p(Q|G) of the
unknown parameters is expressed in terms of I local prior
distributions: p(Q|G) = ∏I

i=1 p(qi|G) = ∏I
i=1 p(qi|πi).

The marginal likelihood p(X |G) is thus the integral over
the parameter space:

p(X |G) =
∫

p(X ,Q|G)dQ

=
∫ ( I∏

i=1
p(xi|πi, qi)p(qi|πi)

)

dQ,
(10)

which can be rewritten as p(X |G) = ∏I
i=1 �(xi, πi),

where �(xi, πi) = ∫
p(qi|πi)p(xi|πi, qi)dqi.

GE data are generated under a variety of conditions
that may include time-series experiments, i.e., each exper-
iment may be a continuation of preceding experiments.
Thus, it is infeasible to assume independence among indi-
vidual experiments. Taking a step back, we assume the
experiments are generated from Gaussian mixtures and

adopt a Bayesian Gaussian mixture model to represent GE
data.

Suppose there are K mixtures
{

D(k)
}

where each mix-
ture D(k) = {x·,j}I∗m represents some m attributes of a
gene set I , and {θk} mixture weights of experiments in the
BGM, then we express

p(X |G) =
K∑

k=1
θkp

(
D(k)|G

)

=
I∏

i=1

K∑

k=1
θk�

(
D(k), xi, πi

)
,

(11)

where mixture weights {θk} are estimated with the EM
algorithm, assuming independence among genes. The-
oretical considerations and more details specifying the
GBN parameters estimation can be found in [36].

Constraining the set of parent candidates
The GHMM derived in “Gaussian hidden Markov model”
section can provide some structural constraints to BN
learning. First, parents of genes should hail from the same
regulatory pathway, i.e., if gene i belongs to some reg-
ulatory pathways, then other genes in these regulatory
pathways could be its potential parents. In this manner, we
generate a more accurate parent candidates set for each
gene in addition to using the relationship defined in GRN.
This is a nice middle ground between an exhaustive search
through all the genes for potential parents and the limited
set of GRN derived parents.

With the refined confidence score R assigned to every
gene pair, the parent candidate set is limited to only top-k
neighbours or top-N gene pairs as determined experi-
mentally. One simple way to determine k and N is to use
the average number extracted from a real GRN having a
comparable size.

Incorporating neighborhood confidence scores
From [33], the prior probability of a particular structure G
with constraints R = {Rij} follows a Gibbs distribution,

p(G|R) = 1
Z

exp

⎛

⎝
I∑

i=1

I∑

j �=i
−Rij

(
1 − Gij

)
⎞

⎠ (12)

where Z = ∑
G p(G|R) is a normalizing function.

By using Markov networks framework to represent the
correlations between neighbouring links, joint probability
of data X , given the BGM structure G and constraints R,
can be written as p(X ,G|R) = p(X |G)p(G|R). That is,

p(X ,G|R) = 1
Z

I∏

i=1

[ K∑

k=1
θk�

(
D(k), xi, πi

)
]

exp

⎛

⎝
I∑

j �=i
−Rji(1 − Gji)

⎞

⎠

(13)
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Learning BGM with constraints via MCMC
Given GE data X , fusing association scores R computed
from GHMM and fixed parameters Q, the structural pos-
terior probability is written as

p(G|X ,Q, R) = p(X ,G|Q, R)

p(X )

∝ p(X ,G|Q, R)

(14)

In the context of static BNs, different MCMC meth-
ods have been proposed for sampling Directed Acyclic
Graphs (DAG) from the structural posterior distribu-
tion. We adopt the structural MCMC approach of [35]
to sample our BGM structure G from posterior distribu-
tions p(G|X ,Q, R). The idea is to give preference to the
structures of higher posterior probability. The details of
MCMC method to learn DAG from BGM are described
in the supplementary materials. With model averaging
[37], i.e., we run MCMC structural learning for a maxi-
mum number of iterations and each predicted edge in the
GRN is assigned a confidence score that is measured by
the number of occurrences of predicted edges among the
generated graphs.

Experiments and results
Datasets
Our methods were tested on a dataset consists of 25 yeast
genes, similar to those used by similar studies on fusion of
GE and PPIN [6, 16]. The only difference is that we added
five more genes (CDC28, CLB6, CLN3, FUS3, FKH2) that
are highly connected to the 25 genes, based on current
biological databases and literature. The 30 genes network
involves in the cell-cycle regulation of yeast. A cell cycle
is comprised of four phases: (i) Gap 1 (G1) phase - the
checkpoint to ensure that the cell is ready for division, (ii)
Synthesis (S) phase - involving DNA replication, (iii) Gap 2
(G2) phase - a checkpoint to ensure that the cell is ready to
enter the next phase, and (iv) Mitotic (M) phase referring
to cell division.

We collected data from several resources in order
to construct a comprehensive target ground-truth net-
work: (i) GeneNetWaver (http://wwwmgs.bionet.nsc.ru/
mgs/gnw/genenet/) [38, 39] that includes 12873 transcrip-
tional regulations among 4441 yeast genes where 62 tran-
scriptional regulations are among our 30 cell cycle genes;
(ii) 141 literature-reported regulatory relations among the
30 target genes manually collected from [40, 41], etc.;
and (iii) Lee et al. [42] which proposed a integrated func-
tional association score from mRNA expression data,
PPIN, and literature mining edges of 5552 yeast genes.
The linkage score showed good performance on inde-
pendent benchmark datasets from KEGG (https://www.
genome.jp/kegg/), STRING (https://string-db.org/), Gene

Ontology (www.geneontology.org/), and experimentally-
determined subcellular localization. We collected the “Int-
Net” from [42] with a high likelihood of regulation score
above 0.5, which included co-expression regulations from
717 experiments for yeast (divided into 27 experimental
categories), protein-protein interaction experiments, and
literature mining of edges. From this network, 166 link-
ages are among the 30 target genes. In total, the ground-
truth network has 317 regulations among 30 cell cycle
genes.

The GE data was obtained from [43] that contains 77
experiments collected over 8 yeast cell cycles by using four
different synchronisation protocols. The PPI data for Sac-
charomyces Cerevisiae was downloaded from BioGRID
(http://thebiogrid.org/), that contains 6263 proteins and
210,996 interactions.

For comparison, true positives (TP), false positives (FP),
and false negatives (FN) of edges were computed by com-
paring the predicted pathways to the target ground truth
network. Various performance metrics including Preci-
sion, Recall, and F1-score were evaluated. To compare
with state-of-the-art methods of predicting GRN from GE
data, such as CLR [26], GENIE3 [44], TIGRESS [45], we
determined AUROC (The area under the receiver oper-
ating characteristic (ROC) curve) and AUPR (The area
under the precision-recall (PR) curve) scores as defined
in [44]. For these metrics, the best results that are signif-
icantly different (p-value < 0.05) from other methods are
shown in bold. We implemented t-test to check whether
the best result is significantly different from other meth-
ods; If the best result is not significantly different from the
next best ones, we choose the best results as one group
and the others as another group and then implemented
the unpaired t-test for the two groups.

Feasibility of extending PPIN
In “Structural inferences from PPIN” section, we
described a method to extend PPIN, using transitive
protein interactions and assigned confidence scores C to
the predicted protein interactions. We will demonstrate
the feasibility of predicting protein interactions from this
extended PPIN in this section.

To test how well extended PPIN (derived from C scores)
recover an incomplete PPIN, we randomly selected 200
yeast genes and assign 3008 PPIs from BioGRID among
them. We used 10-fold cross-validation on the PPINs of
these 200 randomly selected genes, by randomly remov-
ing 10% edges in the target PPIN, deriving extended PPIN
based on the remaining 90% edges, and then comparing
the extended PPIN with the target PPIN on the missing
10% edges. We repeated 10-fold cross-validation experi-
ments for 10 times to show the robustness of the method.
The results demonstrated that the extended PPIN (when
the cut-off threshold for C score is set as 0.5) effectively

http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/
http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://string-db.org/
www.geneontology.org/
http://thebiogrid.org/
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recover 346 out of the 383 removed edges on average. Fur-
ther, our extended PPIN based only on 90% PPIN edges
predicted the entire PPIN with an average F1-score of
43%, indicating the effectiveness of the method of extend-
ing PPIN (C score) and in its utility in predicting the
missing PPIN.

As BioGrid may contain functional linkages predicted
as protein-protein interactions, we also choose another
PPIN dataset to show the reliability of the method of
extending PPIN (C score) to predict real PPIs. The yeast
PPIN data from http://interactome.dfci.harvard.edu/S_
cerevisiae consists of the full set of physical interac-
tions that occur in a physiologically relevant dynamic
range between all its macromolecules, including protein-
protein, DNA-protein, and RNA-protein interactions. By
combing all the physical interactions, co-complex mem-
bership associations [46] and literature-curated interac-
tions, [47] collected in “Yeast Interactome Datasets” from
which we get 11995 interactions of 2234 yeast proteins
where only 100 PPIs are found among the same ran-
domly selected 200 yeast genes. The experiments of 10-
fold cross-validation on these 100 PPIs showed that our
extended PPIN (when the cut-off threshold for C score is
set as 0.55) effectively recovers the removed edges on aver-
age. It also shows that the extended PPIN based only on
90% PPIN edges predict the entire PPIN with an average
F1-score of 36.62% (average precision at 39.56% and aver-
age recall at 34.10%). This further validates the reliability
of the method of extending PPIN (C score) to predict the
real PPIs.

In the BGM with prior model, we added the prior infor-
mation into the likelihood of gene expression data of
the learned BN structure. If the GRN learned from GE
data is consistent with prior information, the likelihood
is reinforced; otherwise, the likelihood is penalized. Thus,
the GRN from the fusion model achieves the maximum
consistency between gene expression data and prior infor-
mation. We choose the informative BioGRID PPINs as
priors in our fusion model.

In order to show the effectiveness of predicting
gene regulations from extended PPIN, we evaluated the
extended PPIN alongside the original PPIN (denoted by
“raw PPIN”). As mentioned in “Structural inferences from
PPIN” section, we can extend PPIN either from a sub-
network or from the global network where the global

network is the PPIN for the whole genome of the same
organism and the sub-network indicates the subnet PPIN
defined by the genes in the target gene set. When the PPIN
was extended from subnet information, we only consider
transitive links among the target gene set. If the subnet
PPIN is quite sparse, we choose the global network to
make use of transitivity. However, extended PPIN from
global information may introduce more noise especially
when PPIN is spurious. We experimentally compared dif-
ferences in the performance of extending PPIN from the
sub-network (i.e., 30-gene PPIN for the benchmark) and
the global network (i.e., the complete PPIN from 6263
yeast genes) on the 30-gene benchmark network. Table 1
shows the performance with three PPINs: raw PPIN,
extended PPIN with subnet information, and extended
PPIN with global information on predicting the GRN of
the 30 benchmark genes. The cut-off thresholds to gener-
ate GRN from C score for the extended PPINs were set as
0.5 for a better trade-off between precision and recall as
seen in Fig. 3.

Comparing two extended PPINs, we see that the
extended PPIN with global information outperforms the
prediction with only subnet information on recall, sacri-
ficing some precision. This indicates that global informa-
tion may introduce more incoherent genes to make pre-
diction noisy. The observation that both local and global
information achieve comparable performance shows that
global information can complement subnet information
from sparse PPIN data. Clearly, if not much protein inter-
actions are lost in the target PPIN, extended PPIN with
subnet information is a good choice to balance the preci-
sion and recall, as illustrated by the best F1 performance
with extended PPIN from local information. We thus
choose extended PPIN with subnet information for the
30-gene benchmark network in subsequent experiments.

Comparing extended PPIN with the raw PPIN, we see
that the extended PPIN with subnet information yielded
a notable 20% improvement on recall compared to raw
PPIN at a hefty decrease of 12% in precision. This shows
the feasibility of deriving regulations by using the tran-
sitivity present in the PPIN. It is reasonable that raw
PPIN predicts GRN with the highest precision, indi-
cating how much protein interactions in the current
PPIN database are consistent with gene regulation data.
The extended PPINs provide better recall/coverage on

Table 1 Performance of predicting GRN with different PPINs on 30 yeast genes ground-truth network

Method TP FP FN Prec.(%) Rec.(%) F1(%) AUROC AUPR

Raw PPIN 165 95 152 63.46 52.05 57.19 0.698 0.591

Extended PPIN (subnet) 229 220 88 51.00 72.24 59.79 0.713 0.533

Extended PPIN (global) 240 260 77 48.00 75.71 58.75 0.696 0.500

Best performance measures that are significantly different are shown in bold

http://interactome.dfci.harvard.edu/S_cerevisiae
http://interactome.dfci.harvard.edu/S_cerevisiae
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(a) (b) (c) 

Fig. 3 Performance comparison of C and R scores from the subnet or the global information at various cut-off thresholds on 30 yeast genes
ground-truth network. a C scores (global) b C scores (subnet) c R scores (subnet)

predicting GRN even with the subnet information, giv-
ing the best F1-score, indicating the incompleteness of the
current PPIN database. The precision of extended PPIN
can be improved by raising the C score threshold but the
recall will then be decreased at the same time. Since our
approach is a coarse-to-fine framework to predict GRN
where the extended PPIN is used to limit candidate gene
interaction set (coarse step), a higher coverage or recall is
preferred. As such, we choose 0.5 as the cut-off threshold
that gave us a reasonable recall. The high false positive rate
from the extended PPIN can be reduced in the subsequent
“refinement” step. As subsequent experiments demon-
strate, our methods predict the final GRN with a high
precision. Therefore, what follows next are demonstrated
only with extended PPIN data.

Comparison of performances
We benchmarked the generated GRNs against the
ground-truth networks. All the methods except the BGM
generated networks with undirected edges. When com-
paring an undirected graph to a directed one, we con-
sidered an existence of a matched link regardless of its
direction. For comparison, all the networks generated by
the BGM were sampled and averaged for 10 models each
of which was learned from 1000 iterations of MCMC
structural moves. The performance of the BGMs were
further improved by increasing the number of models by
model averaging and the iterations of structural moves.

Since the generated graphs from C, R, and G assigned
confidence scores for the edges, i.e., probabilities of edge
existence, we chose a cut-off threshold and constructed
the GRN, based on the scores: if the edge score is higher
than this threshold, we confirm the existence of an edge;
and otherwise, the edge was rejected. From experiments,
as seen in Fig. 3, we found that the best cut-off thresholds
(for C and R scores) that maximize the F1-score (which

is also the best trade-off between precision and recall) of
GRN tend to be clustered around 0.5. For GRN struc-
ture G from clustering or the BGM, scores came from the
probability of genes belonging to the same pathway or the
model averaging where both reflected how likely genes
interact. We therefore intuitively fixed 0.5 as the thresh-
old to determine interaction edges. Thus, for consistency,
we set the cut-off thresholds for all our graphs to be 0.5.
The confidence scores were normalized between 0.0 and
1.0 before averaging. The thresholds can also be experi-
mentally fine-tuned to further improve the performances
of our methods. The vast majority of existing works on
prediction of GRN choose the cut-off of the confidence
score as a trade-off between sensitivity and specificity of
prediction [48].

Table 2 compares performances of building GRNs by
various methods. The first four methods (CLR, GENIE3,
TIGRESS, GMM) are recent state-of-the-art methods of
predicting GRN from GE. We use MATLAB implementa-
tions of CLR [26], GENIE3 [44], and TIGRESS [45]. The
other three methods (GHMM, R scores from GHMM,

Table 2 Performances of prediction of GRNs by various methods
on 30 yeast genes ground-truth network

Method TP FP FN Prec.(%) Rec.(%) F1(%) AUROC AUPR

CLR 190 312 127 37.85 59.94 46.40 0.555 0.388

GENIE3 128 202 189 38.79 40.38 39.57 0.546 0.395

TIGRESS 140 207 177 40.35 44.16 42.17 0.546 0.392

GMM 172 266 145 39.27 54.26 45.56 0.583 0.412

GHMM 258 329 59 43.95 81.39 57.08 0.664 0.461

R scores (GHMM) 250 262 67 48.83 78.86 60.31 0.705 0.501

BGM (R scores) 202 237 115 46.01 63.72 53.44 0.627 0.446

Best performance measures that are significantly different are shown in bold
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BGM with R scores) are fusion methods that use both the
GE and PPIN data as described in the “Methods” section.
As seen, all three fusion methods significantly outper-
formed (5–20% better in all metrics) the methods using
GE data only.

To show the effect of extending PPIN by incorporating
transitive edges, we also compared three fusion models
with and without extending the PPIN (i.e., by using only
raw PPIN data). The three fusion methods using extended
PPIN outperformed the methods using only raw PPIN.
This demonstrates the effectiveness of using extended
PPIN in GRN inference.

The GRNs obtained using GHMM and refined R scores
are undirected graphs, indicating gene interactions but
not specifically the directional regulations. To figure out
the directional dependencies among genes, a directional
model such as BGM is needed. The BGM model based
on R scores as constraints in fact gave the overall best
performance and thus deserves further investigation.

BGM with different priors
Using the same set of parent candidates and the BGM
model, we evaluated whether the BGM using refined con-
fidence scores R can hold its own when benchmarked
against other PPIN fusion methods. Specifically, we com-
pared its performance with two well-known methods.
Nariai et al. [14] tested if each added protein pair form a
protein complex by considering the complex as a virtual
node in the network. The method computes the prin-
cipal component analysis (PCA) model of the protein
pairs from original observations and checks if the pro-
tein complex contributes to a higher likelihood. If a higher
likelihood is obtained, the complex (pair) is accepted and
otherwise rejected. Imoto et al. [15] updated PPIN when-
ever the learned GRN produced different structure. Each
inconsistent edge in the learned DAG is perturbed by
either removing or reversing its direction. If a perturba-
tion leads to a better likelihood, the perturbed PPIN is
accepted otherwise it is rejected.

Both methods needed significantly more operations
than the basic models and increased already substantial
computational complexity. Further, they tend to converge
to local optima given their greedy hill-climbing nature.

Nariai’s method can only increase the protein interactions
contributed by a protein complex if the PCA projection of
the complex performs better than using raw data. Imoto’s
method is overly-optimistic as it assumes that the learned
DAG is correct. However, the MCMC method is known
to only simulate a DAG; it may accept a large number of
incorrect edges in one iteration and could accept all of
them as updated PPIN in the subsequent iteration. Hence,
updating the PPIN based on a learned DAG is unreliable.

To show the utility of each component in the fusion
model, we compared the performance of the BGM
by using priors from the GMM only, the PPIN only
or the GHMM, as shown in Table 3. For the priors
from PPIN, we also tested two existing fusion methods
with the same priors. We described different compo-
nents of our method as follows: “BGM (GMM)” denotes
the BGM with parental constraints from GMM and
predicts GRN only from GE data without PPIN data;
“BGM (C scores)” denotes the BGM constrained with
C scores from extended PPIN; “Nariai et al. (GHMM)”
and “Imoto et al. (GHMM)” use parental constraints from
the GHMM with extended PPIN to learn GRNs in BGM
with corresponding fusion method; “BGM (R scores)”
uses the extended PPIN in the GHMM fusion model
and then R constraints for the BGM. For comparison,
we also included a BGM without any constraints as the
baseline.

The results in Table 3 show that the priors from GHMM
significantly improve TPs (highest recall) with comparable
F1 scores (higher coverage at the slight expense of pre-
cision) compared to the methods using priors only from
the PPIN. This indicates that GE clustering help to predict
more TPs but at a lower precision. It also demonstrates
that the use of the GRN structure from the GMM and
extended PPIN in the prediction of GRN. These results
further validate the utility of each component in the fusion
model. Results in Table 3 show that with same structural
constraints, the fusion BGM (with R scores) beats both
the BGM proposed by Nariai et al. and by Imoto et al.
This means that the R scores are effective measure of the
reliability of PPIN edges. Table 3 also shows the running-
time of different algorithms implemented with MATLAB
on a machine with an Intel Xeon E5-1620 3.6GHz CPU

Table 3 Performance of GRNs generated from the BGM with different priors on 30 yeast genes ground-truth network

Method TP FP FN Prec.(%) Rec.(%) F1(%) AUROC AUPR Time(sec)

BGM 139 201 178 40.88 43.85 42.31 0.553 0.390 636

BGM (GMM) 185 293 132 38.70 58.36 46.54 0.555 0.383 606

BGM (C scores) 170 150 147 53.13 53.63 53.38 0.653 0.490 518

Nariai et al. (GHMM) 176 273 141 39.20 55.52 45.95 0.570 0.408 1174

Imoto et al. (GHMM) 184 293 133 38.57 58.04 46.35 0.565 0.401 1150

BGM (R scores) 202 237 115 46.01 63.72 53.44 0.627 0.446 608

Best performance measures that are significantly different are shown in bold
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and 8GB RAM. As seen, the priors given by our con-
fidence scores lead to computationally more efficient
procedures.

Discussion & conclusion
We proposed an automated method to detect gene reg-
ulations by fusing GE data and PPI data. Gene expres-
sion data is first soft-clustered into regulatory pathways
by a GMM where the number of regulatory pathways
is automatically determined via a component-wise EM
algorithm. Transitive protein interactions are derived
using a novel confidence score and PPIN are refined
and extended. The extended PPIN are then fused with
the GMM derived from GE data, using a GHMM. This
improves the biological relevance of the clustering results
and also refines the confidence score of indirect gene
regulations/protein interactions. Using refined PPI confi-
dence scores, together with regulatory pathways obtained
from the GHMM as structural constraints, a BGM model
was used to capture direct gene regulations by using an
effective and efficient MCMC procedure. Fusion of the
BGM model with GHMM as structural priors generated
more accurate GRN compared to those produced by the
GHMM and the BGM models. We have experimentally
shown that our procedures are more effective than two
existing well-known methods for fusing GE and PPIN
data.

Furthermore, the fusion framework reduces the over-
all time complexity of building GRN with Bayesian net-
works. The GHMM uses a component-wise EM algo-
rithm to soft-cluster genes into pathways at a complexity
O

(
I2 × L2) (where L denotes the number of components

and I denotes the number of genes), indicating that the
method scales well on large networks (large I). The BGM
structural constraints, i.e., the parent of each node must
itself be a node from the same regulatory pathway, help to
significantly reduce the search space, i.e., from O

(
II) to

approximately O
(
(I/L)I). In fact, for larger I, the reduc-

tion can even be more pronounced.
Our approach shows the importance of systematically

fusing multiple sources of biological evidences in infer-
ring useful and reliable GRN. In fact, our framework can
be extended to fuse more than two data sources, such as
gene ontologies, biological pathways (KEGG), transcrip-
tion factors (known regulators), information mined from
literature, and other multi-omics data [4, 5, 10–12]. Our
methods may be easily extended by further considering
dependencies among the experiments [35] and are worth
investigating further.
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