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Abstract

Background: Biological experiments have confirmed the association between miRNAs and various diseases. However,
such experiments are costly and time consuming. Computational methods help select potential disease-related miRNAs
to improve the efficiency of biological experiments.

Methods: In this work, we develop a novel method using multiple types of data to calculate miRNA and disease
similarity based on mutual information, and add miRNA family and cluster information to predict human disease-
related miRNAs (FCMDAP). This method not only depends on known miRNA-diseases associations but also accurately
measures miRNA and disease similarity and resolves the problem of overestimation. FCMDAP uses the k most similar
neighbor recommendation algorithm to predict the association score between miRNA and disease. Information about
miRNA cluster is also used to improve prediction accuracy.

Result: FCMDAP achieves an average AUC of 0.9165 based on leave-one-out cross validation. Results confirm the 100,
98 and 96% of the top 50 predicted miRNAs reported in case studies on colorectal, lung, and pancreatic neoplasms.
FCMDAP also exhibits satisfactory performance in predicting diseases without any related miRNAs and miRNAs without
any related diseases.

Conclusions: In this study, we present a computational method FCMDAP to improve the prediction accuracy of
disease related miRNAs. FCMDAP could be an effective tool for further biological experiments.

Keywords: Disease-related miRNA, Leave-one-out cross validation, miRNA family information, miRNA cluster
information, Nearest neighbor recommendation algorithm

Background
MicroRNAs (miRNAs) are small endogenous non-coding
RNAs with length of about 22 nt and can regulate gene
expression mainly through post-transcription [1]. The lat-
est version of miRBase consists of 1881 human miRNAs,
and most of them regulate more than 60% of human
protein-coding genes. miRNAs regulate target genes
through biological processes, such as cell growth, prolifer-
ation, differentiation and apoptosis. miRNAs play a critical
role in the development of various diseases including

cancers [2]. Takamizawa et al. [3] found that the expres-
sion level of let-7 decreases in lung neoplasms in vivo and
in vitro, resulting in shortened post-operative survival of
the patients. Moreover, let-7 is a potential therapeutic
miRNA for prevention of tumorigenesis. Lung neoplasms
are characterized by several key oncogene mutations, in-
cluding p53, RAS, and MYC; some of which may be dir-
ectly related to the decreased expression of let-7 and may
be inhibited by introducing this miRNA [3]. miRNAs can
be used as biomarkers to identify cancer tissure origin of
unknown primary origin [4, 5]. Therefore, identification of
disease-related miRNAs would benefit research on patho-
genesis and diagnosis.
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Many disease-related miRNAs have been identified
through biological experiments. Researchers have col-
lected data from existing literature to build miRNA-re-
lated databases, such as miRBase [6], miRGen [7],
miRTarBase [8], miRWalk [9], microRNA.org [10], miR-
Cancer [11], HMDD [12], miR2Disease [13], dbDEMC
[14], and PhenomiR [15]. These databases provide solid
data foundation for study of miRNAs. However, method-
ologies for screening of miRNA-disease associations are
costly and time consuming. In this regard, computa-
tional methods are used to predict miRNAs that are
most likely associated with a disease and provide experi-
mental targets for biological experiments to save cost
and time.
Computational methods are classified into two main

categories, namely, network-based methods and ma-
chine-learning-based methods [16]. Network-based
methods predict unknown miRNA-disease associations
by constructing different computational models using
miRNAs and disease-related data resources to construct
miRNA and disease similarity networks [17]; the ob-
tained data are then combined with experimentally vali-
dated (or known) miRNA-disease networks. Jiang et al.
[18] proposed a miRNA-prediction algorithm for the
hypergeometric distribution scoring system, and the
scores are ranked to select candidate disease- related
miRNAs. Chen et al. [19] proposed WBSMDA method,
which integrates the With-Score of miRNA and diseases
similarity and the Between-Score of unknown miRNA-
disease associations to predict potential miRNA-disease
associations. However, the two methods make assump-
tions about probability distribution, and their prediction
performances will be affected when the data resources
are inconsistent with the assumptions. Xuan et al. [20]
proposed HDMP method by considering weighted k
most similar neighboring miRNAs and combining
miRNA functional similarity to predict miRNAs associ-
ated with human diseases. RWRMDA [21] and MIDP
[22] methods use random walk to calculate similarity of
miRNAs and diseases. However, these methods cannot
predict related miRNAs for diseases without any related
miRNAs or new diseases (isolated diseases). Zou et al.
[23] proposed KATZ to calculate the prediction score of
different walking lengths between miRNAs and diseases
through social network analysis. However, the perform-
ance of KATZ is poor because the known associations
are sparse. KATZ also cannot predict related diseases for
miRNAs without known related diseases or new miR-
NAs (isolated miRNAs). However, KATZ cannot be used
to predict related miRNAs for isolated diseases.NCPMDA
[24] develops network consistency projection to calculate
potential miRNA–disease association score from miRNA
and disease vector space projection scores. Li et al. [25]
proposed a network similarity integration method (NSIM)

for predicting potential miRNA-disease associations.
However, NSIM are overly dependent on known
miRNA-disease associations. HGIMDA [26] utilizes a het-
erogeneous graph iterative algorithm based on known
miRNA–disease associations to predict miRNA–disease
associations. However, HGIMDA is difficult to use in
selecting parameters.
Machine learning-based methods aim to predict reli-

able miRNA-disease association by extracting effective
features or solving specific optimization problems by
using powerful machine-learning algorithms. Xu et al.
[27] built a support vector machine (SVM) classifier by
using four topological features based on the miRNA
target-dysregulated network to predict potential miR-
NAs related to prostate cancer. The main disadvantage
of Xu’s method is the impossibility to obtain negative
samples, thereby decreasing the prediction performance.
Chen and Yan [28] proposed RLSMDA method that uses
regularized least squares to predict miRNA-disease asso-
ciations. This method is based on semi-supervised learn-
ing and avoid using negative samples but adjust
parameters intricately. Li et al. [29] proposed MCMDA
method using the matrix completion algorithm. Luo et
al. [30] proposed CPTL method using the transduction
learning collective prediction model to predict
miRNA-disease associations. However, these methods
cannot be applied to predict potential miRNAs for iso-
lated diseases.
These above methods use only a single piece of infor-

mation related to miRNAs or diseases, such as associ-
ation of miRNAs and diseases verified by biological
experiments, resulting in overestimation [31]. Therefore,
researchers have investigated different types of miRNA-
and disease-related a priori biological information to
construct miRNA–disease associations through inter-
mediaries. For example, Mørk et al. [32] developed a
miRNA–protein–disease heterogeneity-related network,
namely, miRPD, which uses protein-related associations
as a bridge to link miRNAs and diseases. However, the
prediction accuracy of miRPD is unsatisfactory because
of its high false positive/negative rates. Xu et al. [33]
used the network of interactions between miRNAs and
target genes derived from matched miRNA and mRNA
expression data and the network of interactions between
specific miRNAs and diseases to sequence and identify
miRNAs most likely associated with multiple diseases.
Liu et al. [31] integrated miRNA-target gene and
miRNA-lncRNA multiple data sources, established dis-
ease and miRNA similarity subnets, and predicted
miRNA-disease associations in heterogeneous networks
by using random walk with restart. Zeng et al. [34] used
gene functional information, four main parameters of
miRNAs and miRNA-disease associations to construct a
bilayer networks. Then they used structural consistency
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as an indicator to estimate the link predictability of the
bilayer networks, and used structural perturbation
method (SPM) to predict potential miRNA-disease asso-
ciations. SRMDAP [35] builds miRNA and disease simi-
larity subnetworks by using the SimRank algorithm and
density-based clustering recommender model based on
known miRNA-mRNA interaction data, disease-gene
data, and miRNA-disease association data. However,
these methods lead to incomplete calculation of similar-
ity and low prediction accuracy.
In our work, we propose a novel computational

method, namely, FCMDAP, by using miRNA family and
cluster information to improve the prediction accuracy
of disease-related miRNAs. FCMDAP uses information
entropy and mutual information (MI) to measure
similarity between miRNAs based on miRNA–mRNA
interaction and adds miRNA family information to
reconstruct a miRNA similarity network. FCMDAP ob-
tains functional similarity between diseases based on dis-
ease–gene interaction and semantic similarity between
diseases based on disease directed acyclic graph (DAG).
FCMDAP then integrates functional and semantic
similarity to disease similarity. Based on the k-most simi-
lar neighboring recommendation algorithm, FCMDAP
uses experimentally verified miRNA–disease association,
miRNA similarity, and cluster information to predict po-
tential miRNA–disease associations in miRNA space.
FCMDAP also uses experimentally verified miRNA–dis-
ease association and disease similarity to predict
potential miRNA–disease associations in disease space.
The two predicted association scores are linearly inte-
grated together. We implemented leave-one-out cross
validation (LOOCV) and achieved AUC of 0.9165. Ana-
lysis of miRCancer, dbDEMC, or PhenomiR databases,
confirmed the 50, 49, and 48 of top 50 predicted miR-
NAs in case studies of colorectal, lung, and pancreatic
neoplasms, respectively. The average AUC values of
FCMDAP to predict isolated diseases and miRNAs were
0.8417 and 0.8944, respectively. For isolated lung neo-
plasms, all of the top 50 predicted miRNAs were con-
firmed. For isolated hsa-mir-93, 9 of the top 10 diseases
were confirmed. In conclusion, FCMDAP outperforms
other methods.

Materials
Data
Data used in FCMDAP are obtained from five data sets:

(1) experimentally verified miRNA-disease related data
from HMDD v2.0 database (http://www.cuilab.cn/
hmdd, Jun-14-2014 Version) [12]. After filtering in-
valid data with disease name error or wrong miRNA
name and removing redundant miRNA-disease asso-
ciations, we obtained 5048 experimentally verified

miRNA-disease associations including 475 miRNAs
and 334 diseases as the benchmark dataset [see
Additional file 1]. We use M = {m1,m2, ,mnm} to
represent the miRNA set and D = {d1, d2, , dnd} to
represent the disease set, where nm is the number of
miRNAs, and nd is the number of diseases. We also
use the matrix AS to represent the known association
of miRNAs and diseases. When miRNA i associates
with disease j, AS(i, j) is 1. Otherwise, AS(i, j) is 0.

(2) experimentally verified miRNA-mRNA interactions
from miRTarBase database (http://mirtarba-
se.mbc.nctu.edu.tw/, Release 6.0: Sept-15-2015)
[36]. We use these data to measure functional simi-
larity of miRNAs.

(3) experimentally verified disease-gene interaction
from DisGeNET database (http://www.disgenet.org,
Release 4.0: Oct-2016) [37]. We use these data to
measure functional similarity of diseases.

(4) data on the relationship of various disease from the
MeSH (http://www.nlm.nih.gov/, 2017 Version)
descriptor of Category C, which are descripted as
DAG. We use these data to measure semantic
similarity of diseases.

(5) information of the family and cluster of human
miRNAs from miRBase (http://www.mirbase.org,
Release 21) [6]. We established the miRNA family
information matrix FAM for the 475 miRNAs in
the benchmark. FAM(i, j) = 1 if miRNA i and j are
in the same family; otherwise, FAM(i, j) = 0. We
also established the miRNA cluster information
matrix CLU for 475 miRNAs. CLU(i, j) = 1 if the
distance between miRNA i and j is less than 20 kb
and we consider the two miRNAs in the same
cluster; otherwise, CLU(i, j) = 0.

miRNA similarity network
Information entropy and mutual information (MI) are
used to calculate similarity between miRNAs based on
the set of mRNAs interacting with miRNAs.
In events set X, information entropy is a measure of

the average information content that can be obtained if
one of the events actually occurs [38]. This parameter
can be defined as

H Xð Þ ¼
X
x∈X

p xð Þ log 1
p xð Þ

¼ −
X
x∈X

p xð Þ log p xð Þð Þ ð1Þ

where p(x) is the probability of x.
For two discrete random variables X and Y, their MI

can be described as
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I X;Yð Þ ¼
X

x∈X

X
y∈Y

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ ð2Þ

where p(x) is the marginal probability distribution func-
tion of X, p(y) is the marginal probability distribution
function of Y, and p(x, y) is the joint probability function
of X and Y.
If the mRNAs set of miRNA A isTA

m ¼ fTA
mð1Þ;TA

mð2Þ;
…;TA

mðmaÞg , and the mRNAs set of miRNA B is TB
m

¼ fTB
mð1Þ;TB

mð2Þ;…;TB
mðmbÞg (where ma and mb are

the target genes number of miRNA A and miRNA B, re-
spectively), then information entropy of TA

m can be cal-
culated as

H TA
m

� � ¼ −
Xma

i¼1
p TA

m ið Þ� �
log2 p TA

m ið Þ� �� �
p TA

m ið Þ� � ¼ n TA
m ið Þ� �

=N

(
ð3Þ

where N is the total number of the known miRNA–
mRNA interactions in the dataset. nðTA

mðiÞÞ is the
known number of interactions between the ith target
gene in the target gene set of miRNA A and all miRNAs.
pðTA

mðiÞÞ is the rate of the ith target gene in the target
gene set of miRNA A with the known miRNA-mRNA
interactions.
The similarity between miRNA A and miRNA B can

use the normalized MI of TA
m and TB

m denoted as

SM A;Bð Þ ¼ 2 � H TA
m∩T

B
m

� �
H TA

m

� �þ H TB
m

� � ð4Þ

where HðTA
m∩T

B
mÞ is the information entropy of the

intersection of TA
m and TB

m . When calculating the simi-
larity of miRNA A and miRNA B, both of their informa-
tion entropies and the common information entropies of
their mRNAs are considered. Also, the frequency of oc-
currence of the target mRNAs are considered. It mea-
sures the similarity between miRNAs by MI according
to the occurrence probability of target genes of miRNAs.
The target gene with higher probability is more universal
and carries less information, while the target gene with
lower probability is more specific and carries more infor-
mation. Obviously, the difference in target gene prob-
ability results in such a result. By comparing the
similarity data, we find that the metric is determined by
the above two factors, and the similarity between the
two miRNAs can be appropriately measured.

Disease similarity network
In building disease similarity network, we first calculate
the functional similarity of disease on the basis of dis-
ease-gene interaction dataset. We then calculate the se-
mantic similarity of disease on the basis of disease DAG.
Finally, we integrate both data into disease similarity to
build a disease similarity network.

Disease functional similarity of known disease–gene
interactions

If the interaction genes set of disease A is TA
d ¼ fTA

d ð1Þ;
TA

d ð2Þ;…;TA
d ðdaÞg , and TB

d ¼ fTB
dð1Þ;TB

dð2Þ;…;TB
dðdbÞ

g is for disease B (where da and db are the target genes
number of disease A and disease B, respectively), then
the information entropy of TA

d can be calculated as

H TA
d

� � ¼ −
Xda

i¼1
p TA

d ið Þ� �
log2 p TA

d ið Þ� �� �
p TA

d ið Þ� � ¼ n TA
d ið Þ� �

=N

(
ð5Þ

where N is the total number of known disease–gene in-
teractions in the dataset, nðTA

d ðiÞÞ is the known number
of the interactions between the ith target gene in the tar-
get gene set of disease A and all diseases, and pðTA

d ðiÞÞ
is the rate of the ith target gene in the target gene set of
disease A with known disease–gene interactions.
The functional similarity between disease A and

disease B can use the normalized MI of TA
d and TB

d de-
noted as

SDF A;Bð Þ ¼ 2 � H TA
d∩T

B
d

� �
H TA

d

� �þ H TB
d

� � ð6Þ

where HðTA
d Þ and HðTB

dÞ are the information entropies
TA

d and TB
d of disease A and disease B, respectively. Hð

TA
d∩T

B
dÞ is the information entropy of the intersection of

TA
d and TB

d . When calculating the functional similarity of
disease A and disease B, both the information entropy of
the diseases and the common information entropy of
their genes are considered.

Disease semantic similarity
Disease semantic similarity DD are built from disease
DAG as reported in the literature [39].

DD A;Bð Þ ¼
P

t∈TA∩TB
DA tð Þ þP

t∈TA∩TB
DB tð Þ

2 � min DV Að Þ;DV Bð Þð Þ ð7Þ

where DD(A, B) is the semantics similarity value be-
tween disease A and disease B in disease DAG. For the
meaning of the symols, please refer to the literature [39].

Integrating disease similarity
We integrate disease functional similarity and semantic
similarity to obtain disease similarity.

SD A;Bð Þ ¼ γ∙SDF A;Bð Þ þ 1−γð Þ∙DD A;Bð Þ ð8Þ

where γϵ(0, 1) is the balance factor to tune the contribu-
tion level from disease function similarity and semantic
similarity. The results are shown in Additional file 2.
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miRNA similarity network reconstruction
miRNA family information is obtained from miRBase
database. We establish the miRNA family information
matrix FAM for 475 miRNAs in the benchmark dataset.
FAM(A, B) = 1 if miRNA A and B are in the same family;
otherwise, FAM(A, B) = 0. We recalculate the miRNA
similarity by adding miRNA family information as follows

miRNAsim A;Bð Þ ¼ SM A;Bð Þ
� 1þ FAM A;Bð Þð Þ ð9Þ

We then reconstruct the miRNA similarity network.
The results are shown in Additional file 3.

FCMDAP prediction method
The flowchart of FCMDAP to predict disease-related
miRNAs is shown in Fig. 1.

miRNA space score calculation
Calculating the recommendation score of neighboring miRNAs
and disease
Wang et al. [39] proposed that miRNAs with the same
similarity tend to be related to diseases with the same
functions, and vice versa. In the miRNA space, the re-
lated score between miRNA and disease is associated
with the correlation score of the neighbor nodes with
the miRNA closest to the disease. Hence, if a similar
neighbor of a miRNA is related to a disease, then the
miRNA may be related to the disease. According to the

collaborative recommendation algorithm, the association
score of miRNA i and disease j is calculated based on
the similarity scores of the top k1 nearest neighbor
nodes of miRNA i and the association scores of these
nodes and disease j. We normalize the association score
of the top k1 most similar neighbor nodes of miRNA i
and disease j by using the following:

s1 i; jð Þ ¼
Pk1

k¼1SM1 i; kð Þ∙AS k; jð ÞXk1
k¼1

SM1 i; kð Þ
ð10Þ

where SM1 is the row vector of each miRNA in the
miRNA matrix miRNAsim and is sorted in descending
order. Hence, miRNAs that are more similar will be
ranked higher. SM1(i, k) is a component of miRNA i and
the kth closet similar neighbor nodes in the vector SM1.
If miRNA k is related to disease j, then we calculate the
sum of the related scores between miRNA i and miRNA
k and divide the sum of the related scores of the top k1
similar neighbor nodes of miRNA i.

Calculating the prediction score in the same miRNA cluster
Baskerville S. and Bartel D.P. [40] found significant coex-
pression among the proximal pairs of miRNAs (< 50 kb).
The closest miRNA cluster is usually expressed as a com-
mon regulatory unit of polycistronics, and intronic miR-
NAs are usually coexpressed with host genes, presenting

Fig. 1 The flowchart of FCMDAP
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complex miRNA expression patterns. Lu et al. [41]
performed statistical analysis and found that miRNAs in
46% of diseases have at least one neighboring member.
For example, all of the 6 miRNAs (miR-17, miR-18a,
miR-19a, miR-20a, miR-19b-1 and miR-92a-1) involved in
hematopoietic malignancies are located in the miR-17
cluster. This result shows that neighboring miRNAs may
be regulated by a common regulator under the same con-
ditions and interactions, and their dysfunction may lead to
the same disease. Wang et al. [39] confirmed that miRNAs
are more likely to associate with the similar disease when
clustered and located within 20 kb of genomic location.
We downloaded the information of the location of human
miRNAs in the genome from miRBase v.21, and clustered
miRNAs are selected within a distance of 20 kb. A miRNA
cluster matrix CLU is built for the 475 miRNAs in the
benchmark dataset. Basing on the collaborative recom-
mendation algorithm, we calculate the normalized related
scores between miRNA i and disease j as

s2 i; jð Þ ¼
Pn

k¼1SM2 i; kð Þ∙AS k; jð ÞXn
k¼1

SM2 i; kð Þ
ð11Þ

where SM2(i, k) is the similarity score of miRNA i and
miRNA k in the same cluster, and n is the number of
miRNAs in the same cluster as miRNA i. If miRNA k is
related to disease j, then we add the similarity score
miRNAsim(i, k) of miRNA i and miRNA k and divide the
sum of the similarity score of pairwise miRNAs in the
same cluster as miRNA i. From the formula, we can find
that the closer the miRNAs are in the same cluster with
disease j, the closer the relation of miRNA i with disease
j will be.

Integrating similarity score in miRNA space
In the miRNA space, the recommendation scores of
miRNA–disease associations are calculated by integrat-
ing the score of top k similarity neighboring miRNAs of
miRNA i and the recommendation score of miRNAs in
the same cluster as miRNA i with disease j. The formula
is as follows:

S miRNA i; jð Þ ¼ α � s1 i; jð Þ þ 1−αð Þ � s2 i; jð Þ ð12Þ

where α is a tradeoff factor. Experiments show that
FCMDAP gets the best performance when α is 0.5.

Calculating disease space score
In the disease space, we also use the k-nearest neighbor-
based recommendation algorithm to calculate the pre-
dicted association score between disease and miRNA. If
the k-nearest neighbor of a disease is related to a
miRNA, then the disease is related to the miRNA.

According to the collaborative recommendation algo-
rithm, for miRNA i with disease j, their recommendation
score is calculated by the normalized similarity score be-
tween the k2-nearest neighbors of disease j and miRNA
i. The formula is shown as follows

S disease i; jð Þ ¼
Pk2

k¼1AS i; kð Þ∙SD1 k; jð ÞXk2
k¼1

SD1 k; jð Þ
ð13Þ

where SD1 is the column vector of all diseases in disease
similarity matrix SD. These vectors are sorted in de-
scending order, and the most similar disease is ranked as
the highest. SD1(k, j) represents the k-th component of
the k-th nearest neighbor of disease j on the similarity
column vector SD of disease j.

Calculating the final prediction score of disease-related
miRNAs
The final prediction score of disease-related miRNAs of
miRNA i with disease j is obtained by integrating the
scores in miRNA space and disease space as follows

FC md i; jð Þ ¼ β � S miRNA i; jð Þ þ 1−βð Þ
� S disease i; jð Þ ð14Þ

where β is the factor used to balance the weight of two
spaces. Experiments show that the optimal performance
of FCMDAP can be obtained when the value of β is 0.8.
FCMDAP can predict isolated disease-related miRNAs

and isolated miRNA-related diseases. Isolated disease-re-
lated miRNAs/miRNA-related diseases are miRNAs/dis-
eases without any related diseases/miRNAs, such as
newly discovered miRNAs/diseases. When we use
FCMDAP to predict isolated disease-related miRNAs, all
miRNAs related to disease j do not exist, leading to the
prediction score S _miRNA(i, j) of 0. We calculate S _
disease(i, j) from two parts, namely, similarity score be-
tween miRNA i and other diseases and similarity be-
tween diseases. Thus, FCMDAP can predict the
association between isolated diseases and miRNAs.
When we predict isolated miRNA-related disease, dis-
eases related to miRNA i do not exist, leading S _ disea-
se(i, j)= 0. We can calculate S _miRNA(i, j) from the
relationship between other miRNA and disease j and the
similarity between miRNAs to predict the association of
miRNA i and disease j.

Results
Characteristics of the miRNA-disease association network
The benchmark data set include 5048 known miRNA–
disease associations of 475 miRNAs and 334 diseases.
The characteristics of these associations are shown in
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Table 1. The average degree of diseases and miRNAs are
15.11 and 10.63, respectively.

Performance evaluation of FCMDAP
The LOOCV of known miRNA-disease associations is
used to evaluate the performance of FCMDAP. For a
given disease d, each known association of disease d is
deleted in turn as a test sample, and the other known as-
sociations are used as training set. The remaining miR-
NAs without experimental evidence regarding their
relation with disease d comprise the candidate miRNA
set. The association prediction scores of these candidate
miRNAs and diseases are calculated and ranked. If the
rank exceeds a given threshold, then we consider
FCMDAP to successfully predict the association of
miRNA and disease. After changing the threshold, draw-
ing the receiver operating characteristic (ROC) curve
and calculating the area under the curve (AUC) value
are conducted to evaluate prediction performance.
The ROC plots indicate the relationship between the

true positive rate (TPR) and the false positive rate (FPR)
at different thresholds. If TP, FP, TN, and FN represent
true positive, false positive, true negative, and false nega-
tive, respectively, then TPR and FPR are calculated as

TPR ¼ TP
TP þ FN

ð15Þ

and

FPR ¼ FP
TN þ FP

ð16Þ

After one round of LOOCV, one association between
miRNA and disease was excluded, and the prediction
score was calculated by remaining associations. All
these scores were sorted and a special ranking position
was selected as threshold. TP and FP are the number of
experimentally verified and unverified associations
above the threshold, respectively. TN and FN are the

number of unverified and verified associationas below
the threshold, respectively.
We compared FCMDAP with SRMDAP, RLSMDA [28],

KATZ [23], and Liu’s method [31] in terms of prediction
performance, AUC value, and ROC shapes on the bench-
mark data set. The values of the four parameters of
FCMDAP are α = 0.5, β = 0.8, k1 = 50, and k2 = 30. The
optimal parameters of SRMDAP, RLSMDA, KATZ, and
Liu’s method are set as previously described. The compari-
son of the overall ROC curves and AUCs of all methods
are shown in Fig. 2. The average AUC value of FCMDAP
is 0.9165, which is 3.72, 5.81, 6.43, and 11.82% higher than
those of SRMDAP, RLSMDA, KATZ and Liu’s method,
respecitively. When the FPR is lower than 0.2, the ROC of
FCMDAP is more convex near the upper left corner,
indicating that the prediction accuracy is higher. There-
fore, FCMDAP shows higher prediction accuracy than the
other methods.
To obtain reliable judgment, we tested 18 human dis-

eases associated with at least 70 miRNAs. The results
are shown in Table 2. Table 2 shows that FCMDAP ob-
tained the highest AUC value of 0.8837 for pancreatic
neoplasms and the lowest AUC value of 0.7572 for hepa-
tocellular carcinoma. The average AUC value for the 18
diseases is 0.8195. The average AUC values for the 18
diseases obtained from SRMDAP, RLAMDA, KATA,
and Liu’s method are 0.8057, 0.6671, 0.6901, and 0.5178,
respectively. The average AUC value obtained by
FCMDAP is 1.38, 15.24, 12.94, and 30.17% higher than
those of the four methods, respectively. Hence,
FCMDAP exhibits better performance than SRMAPS,
RLSMDA, KATA, and Liu’s method.

Parameter effect
The five parameters in FCMDAP are α, β, γ, k1, and k2.
We focus on miRNA space. In the miRNA space, α bal-
ances the tradeoff between the recommendation score
from the neighboring miRNAs and the score from the
miRNA cluster. β is the entire space balancing factor
that sets different weights of recommendation scores
from the miRNA and disease spaces. To obtain optimal
parameters, we assign different values to α and β starting
from 0.1 to calculate the recommendation scores of
miRNA–disease association and evaluate the perform-
ance of FCMDAP by calculating AUC value. We repeat
this work by increasing α and β in steps of 0.1 and calcu-
lating the AUC value until α and β are both 1. We ob-
tain the best performance when α = 0.5 and β = 0.8, and
the AUC of FCMDAP is 0.9165. The results are shown
in Fig. 3.
As shown in Fig. 3, the ordinate is the average AUC

value, and the abscissa is the value at which β is magni-
fied 10 times. Each curve in the figure represents the
line connecting the points of the corresponding average

Table 1 Global characteristic of the known miRNA-disease
association network

Characteristic Number

No. of miRNA-disease association 5048

No. of miRNAs 475

No. of diseases 334

Avg. degree of miRNAs 10.63

Avg. degree of diseases 15.11

Max degree of miRNAs 112

Min degree of miRNAs 1

Max degree of diseases 208

Min degree of diseases 1
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Fig. 2 The ROC curve and AUC value of FCMDAP and other compared methods

Table 2 AUC value of compared five methods for 18 diseases

Disease names No. of related miRNAs FCMDAP SRMDAP RLSMDA KATZ Liu’s method

Carcinoma, Hepatocellular 208 0.7572 0.7639 0.6909 0.6881 0.4807

Breast Neoplasms 197 0.7733 0.7776 0.6814 0.6779 0.4147

Stomach Neoplasms 174 0.7658 0.7591 0.6635 0.6791 0.5498

Colorectal Neoplasms 143 0.7904 0.7929 0.6647 0.6895 0.4699

Melanoma 136 0.8300 0.7958 0.6584 0.6673 0.4804

Lung Neoplasms 128 0.8688 0.8874 0.7198 0.7675 0.5243

Heart Failure 120 0.7737 0.7538 0.6608 0.6622 0.5040

Prostatic Neoplasms 116 0.8185 0.8076 0.6704 0.7054 0.5440

Ovarian Neoplasms 112 0.8684 0.8732 0.7194 0.7705 0.5382

Carcinoma, Renal Cell 104 0.7878 0.7367 0.5815 0.6126 0.4932

Pancreatic Neoplasms 97 0.8837 0.8687 0.6829 0.7288 0.5355

Carcinoma, Non-Small-Cell Lung 94 0.8417 0.8322 0.6873 0.6981 0.5470

Glioblastoma 94 0.8383 0.7686 0.6421 0.6522 0.5644

Urinary Bladder Neoplasms 90 0.8214 0.7935 0.6231 0.6635 0.5475

Carcinoma, Squamous Cell 78 0.8640 0.8637 0.7179 0.7200 0.5398

Colonic Neoplasms 77 0.8278 0.8271 0.6582 0.6859 0.5490

Glioma 71 0.8679 0.8212 0.6727 0.7146 0.5591

Esophageal Neoplasms 70 0.7723 0.7789 0.6126 0.6383 0.4781

Average AUC value 0.8195 0.8057 0.6671 0.6901 0.5178
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AUC values when the same α value differs from the β
value. The average AUC value varies from 0.8712 to
0.9165. When α = 0.1, β = 0.1, the average AUC is the
minimum value of 0.8712. When α = 0.5, β = 0.8, the
average AUC is the maximum value of 0.9165. The gen-
eral trend is that the overall average AUC value increase
with increasing α, β. γ denotes the balance factor in the
disease similarity network based on disease functional
similarity in disease–gene interactions and disease se-
mantic similarity in disease DAG. k1 and k2 denotes the
number of neighboring miRNAs and neighboring dis-
eases in the recommendation algorithm, respectively.
The values of γ, k1, and k2 are set as 0.5, 50, and 30, re-
spectively, according to experience.

Case studies
Three important diseases (colorectal neoplasms, lung
neoplasms, and pancreatic neoplasms) were selected to
evaluate the performance of FCMDAP. The top 50
miRNA candidates of these three diseases were ana-
lyzed and verified using miRCancer (v. Oct. 2017),
dbDEMC (v. 2.0), and PhenomiR (v. 2.0) databases and
findings in the literature.
Colorectal neoplasms, the third most common cancer

worldwide, severely affects the human health. In this
regard, understanding colorectal-related miRNAs is im-
portant for diagnosis and prognosis of colorectal neo-
plasmsa. For example, patients with early colorectal
neoplasms can be discriminated from healthy people by
using serum miR-21, miR-29a, and miR-125b levels [42].

We used experimentally identified miRNA–disease associ-
ations as training samples to calculate the recommenda-
tion score of all candidate miRNAs through FCMDAP.
We then ranked them in descending order and selected
the top 50 miRNAs for verification. The top 50 candidate
miRNAs and the corresponding evidence of their associ-
ation with colorectal neoplasms are listed in Table 3. All
the top 50 miRNAs were confirmed by analysis of miR-
Cancer, dbDEMC, and PhenomiR databases.
Lung neoplasms is a malignant lung tumor caused by

uncontrolled growth of lung tissue cells. Lung tumor cells
can also rapidly spread from the lungs to other nearby tis-
sues or other parts of the body. According to the World
Health Organization’s 2014 World Cancer Report [43],
the number of patients with lung tumors worldwide
reached 1.8 million in 2012. Lung neoplasms are the main
cause of cancer-related death in men and women (other
than breast neoplasms). In the United States, the 5-year
survival rate for patients diagnosed with lung neoplasms is
only 17.4%, which is lower than that in developing coun-
tries. Thus, effective methods for early diagnosis and treat-
ment of lung neoplasms are important. Evidence indicates
the important role of miRNAs in the pathogenesis, migra-
tion, and spread of lung neoplasms. For example, Takami-
zawa et al. [3] first found that the expression levels of let-7
are often reduced in lung neoplasms in vitro and in vivo
in their study on 143 cases of lung neoplasms. The de-
crease in let-7 expression may affect the survival of pa-
tients that with lung neoplasms who were surgically
treated. Johnson et al. [44] found that let-7 acts as a tumor

Fig. 3 Average AUCs value affected by α, β
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suppressor in lung cells and negatively regulates the ex-
pression of the oncogene RAS. Hence, miRNAs can be
used to develop drugs for treatment of lung tumors.
In our work, we used experimentally identified miRNA–

disease associations as training samples to calculate recom-
mendation scores of all candidate miRNAs based on
FCMDAP. We then ranked them in descending order and
selected the top 50 miRNAs for verification. The top 50
candidate miRNAs and the corresponding evidence of their
association with colorectal neoplasms are listed in Table 4.
Among these miRNAs, 48 miRNAs were confirmed in
miRCancer, dbDEMC, and PhenomiR databases, and only
two miRNAs (hsa-mir-520 g, hsa-mir-147a) were not
confirmed. A recent study (PMID: 29033588) [45] showed
that hsa-mir-147a is related to lung neoplasms. In this
study, lncRNA HOXD-AS1 is specifically upregulated in
non-small-cell lung cancer (NSCLC) tissues and promotes
cancer cell growth by targeting miR-147a.
Pancreatic neoplasms are cellular masses caused by

uncontrollable pancreatic cell proliferation. The most

Table 3 The top 50 candidate miRNAs associated with colorectal
neoplasms predicted by FCMDAP and the confirmation for their
associations by miRCancer, PhenomiR or dbDEMC databases are
listed here. All of them have been confirmed

Rank miRNA Evidence

1 hsa-mir-106b miRCancer,dbDEMC,
PhenomiR

2 hsa-mir-29b miRCancer,dbDEMC,
PhenomiR

3 hsa-mir-15a miRCancer,dbDEMC,
PhenomiR

4 hsa-mir-100 miRCancer,dbDEMC,
PhenomiR

5 hsa-mir-192 miRCancer,dbDEMC,
PhenomiR

6 hsa-mir-208b dbDEMC

7 hsa-mir-24 miRCancer,dbDEMC,
PhenomiR

8 hsa-let-7f dbDEMC,PhenomiR

9 hsa-mir-101 miRCancer,dbDEMC,
PhenomiR

10 hsa-let-7 g dbDEMC,PhenomiR

11 hsa-mir-15b miRCancer,dbDEMC,
PhenomiR

12 hsa-mir-20b dbDEMC

13 hsa-mir-193b miRCancer,dbDEMC

14 hsa-mir-615 dbDEMC

15 hsa-mir-30c dbDEMC,PhenomiR

16 hsa-mir-223 miRCancer,dbDEMC,
PhenomiR

17 hsa-mir-130b miRCancer,dbDEMC,
PhenomiR

18 hsa-mir-296 miRCancer,dbDEMC,
PhenomiR

19 hsa-mir-98 dbDEMC,PhenomiR

20 hsa-mir-125a miRCancer,dbDEMC,
PhenomiR

21 hsa-mir-29c dbDEMC,PhenomiR

22 hsa-let-7d dbDEMC,PhenomiR

23 hsa-mir-205 miRCancer,dbDEMC,
PhenomiR

24 hsa-mir-23b miRCancer,dbDEMC,
PhenomiR

25 hsa-mir-10a miRCancer,dbDEMC,
PhenomiR

26 hsa-mir-128 miRCancer,dbDEMC,
PhenomiR

27 hsa-mir-744 dbDEMC

28 hsa-mir-484 dbDEMC,PhenomiR

29 hsa-mir-32 miRCancer,dbDEMC,
PhenomiR

30 hsa-mir-197 dbDEMC,PhenomiR

31 hsa-mir-151a dbDEMC

Table 3 The top 50 candidate miRNAs associated with colorectal
neoplasms predicted by FCMDAP and the confirmation for their
associations by miRCancer, PhenomiR or dbDEMC databases are
listed here. All of them have been confirmed (Continued)

Rank miRNA Evidence

32 hsa-mir-331 miRCancer,dbDEMC,
PhenomiR

33 hsa-mir-138 miRCancer,dbDEMC,
PhenomiR

34 hsa-mir-181d dbDEMC

35 hsa-mir-449a miRCancer,PhenomiR

36 hsa-mir-449c dbDEMC

37 hsa-mir-326 miRCancer,dbDEMC,
PhenomiR

38 hsa-mir-212 miRCancer,dbDEMC,
PhenomiR

39 hsa-mir-196b miRCancer,dbDEMC

40 hsa-mir-191 miRCancer,dbDEMC,
PhenomiR

41 hsa-mir-30d dbDEMC,PhenomiR

42 hsa-mir-214 miRCancer,dbDEMC,
PhenomiR

43 hsa-mir-204 miRCancer,dbDEMC,
PhenomiR

44 hsa-mir-99b dbDEMC,PhenomiR

45 hsa-mir-449b dbDEMC

46 hsa-mir-769 dbDEMC

47 hsa-mir-520 h dbDEMC

48 hsa-mir-181c dbDEMC,PhenomiR

49 hsa-mir-520 g dbDEMC

50 hsa-mir-361 miRCancer,dbDEMC
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common symptoms of pancreatic neoplasms include yel-
lowing of the skin, abdominal or back pain, unexplained
weight loss, and loss of appetite. Early pancreatic neo-
plasms are small and have no symptoms. Most pancre-
atic neoplasms are large when they are found and can
metastasize to other parts of the body. According to re-
ports, 411,600 people worldwide died of various pancre-
atic neoplasms in 2015. Pancreatic neoplasms most
often occur in developed countries; that is, these malig-
nancies rank as the fifth most common cancer in the
UK and the fourth most common cancer in the United
States [43, 46]. The prognosis of pancreatic neoplasms is
very poor, with 25% survival rate for 1 year after diagno-
sis and 5% survival rate for 5 years. Thus, effective
methods for early diagnosis, treatment, and prognosis of
pancreatic neoplasms must be developed. At present,
evidence supports the role of miRNA differential expres-
sion in the diagnosis, treatment, and prognosis of pan-
creatic neoplasms. For example, Sadakari et al. [47]
found that the relative expression levels of miR-21 and
miR-155 in tissues and pancreatic juice of patients with
pancreatic ductal adenocarcinoma are significantly
higher than those in patients with chronic pancreatitis;
thus, miR-21 and miR-155 in pancreatic juice may be a
potential biomarker for diagnosis of pancreatic ductal
adenocarcinoma. Lodygin et al. [48] reported that the
expression of miR-34a is silenced in several types of

Table 4 The top 50 candidate miRNAs associated with lung
neoplasms predicted by FCMDAP and the confirmation for their
associations by miRCancer, PhenomiR or dbDEMC databases are
listed here. 49 of them have been confirmed

Rank miRNA Evidence

1 hsa-mir-429 dbDEMC,miRCancer

2 hsa-mir-141 dbDEMC,PhenomiR,
miRCancer

3 hsa-mir-106b dbDEMC,PhenomiR

4 hsa-mir-520 g unconfirmed

5 hsa-mir-16 dbDEMC,PhenomiR,
miRCancer

6 hsa-mir-215 dbDEMC,PhenomiR

7 hsa-mir-217 dbDEMC,PhenomiR,
miRCancer

8 hsa-mir-376c dbDEMC,PhenomiR

9 hsa-mir-181d dbDEMC,PhenomiR

10 hsa-mir-20b dbDEMC,PhenomiR

11 hsa-mir-15a dbDEMC,PhenomiR,
miRCancer

12 hsa-mir-195 dbDEMC,PhenomiR,
miRCancer

13 hsa-mir-451a dbDEMC

14 hsa-mir-99a dbDEMC,PhenomiR

15 hsa-mir-193b dbDEMC,PhenomiR

16 hsa-mir-130b dbDEMC,PhenomiR,
miRCancer

17 hsa-mir-194 dbDEMC,PhenomiR,
miRCancer

18 hsa-mir-130a dbDEMC,PhenomiR

19 hsa-mir-373 dbDEMC,PhenomiR

20 hsa-mir-15b dbDEMC,PhenomiR,
miRCancer

21 hsa-mir-10a dbDEMC,PhenomiR

22 hsa-mir-378a dbDEMC

23 hsa-mir-122 dbDEMC,PhenomiR

24 hsa-mir-449a dbDEMC,PhenomiR,
miRCancer

25 hsa-mir-148b dbDEMC,PhenomiR,
miRCancer

26 hsa-mir-449b dbDEMC,PhenomiR,
miRCancer

27 hsa-mir-204 dbDEMC,PhenomiR

28 hsa-mir-615 dbDEMC

29 hsa-mir-383 dbDEMC,PhenomiR,
miRCancer

30 hsa-mir-340 dbDEMC,PhenomiR

31 hsa-mir-328 dbDEMC,PhenomiR

32 hsa-mir-151a dbDEMC

33 hsa-mir-152 dbDEMC,PhenomiR

34 hsa-mir-153 dbDEMC,PhenomiR,

Table 4 The top 50 candidate miRNAs associated with lung
neoplasms predicted by FCMDAP and the confirmation for their
associations by miRCancer, PhenomiR or dbDEMC databases are
listed here. 49 of them have been confirmed (Continued)

Rank miRNA Evidence

miRCancer

35 hsa-mir-320a dbDEMC,PhenomiR

36 hsa-mir-302d dbDEMC,PhenomiR

37 hsa-mir-630 dbDEMC,miRCancer

38 hsa-mir-296 dbDEMC,PhenomiR

39 hsa-mir-139 dbDEMC,PhenomiR

40 hsa-mir-149 dbDEMC,PhenomiR

41 hsa-mir-423 dbDEMC,PhenomiR

42 hsa-mir-23b dbDEMC,PhenomiR

43 hsa-mir-196b dbDEMC,PhenomiR

44 hsa-mir-147a PMID:29144017

45 hsa-mir-425 dbDEMC,PhenomiR

46 hsa-mir-99b dbDEMC,PhenomiR,
miRCancer

47 hsa-mir-324 dbDEMC,PhenomiR

48 hsa-mir-302c dbDEMC,PhenomiR

49 hsa-mir-421 dbDEMC,PhenomiR

50 hsa-mir-484 dbDEMC,PhenomiR
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cancers, including pancreatic neoplasms, due to CpG
methylation. By partially targeting CDK16, the
re-expression of miR-34a in MiaPaC2 cell line with pan-
creatic neoplasms induces cellular senescence and cell
cycle arrest. This observation indicates that miR-34a is a
neoplasm suppressor gene, which is inactivated by CpG
methylation and subsequent transcriptional silencing in
various tumors, such as pancreatic neoplasms. Thus,
miR-34a can be used as a therapeutic target for malig-
nant neoplasms, such as pancreatic neoplasms.
In our work, we also calculated the recommendation

score of all candidate miRNAs based on FCMDAP,
ranked them in descending order, and selected the top
50 miRNAs for verification. The top 50 candidate miR-
NAs and the corresponding evidence of their associa-
tions with pancreatic neoplasms are listed in Table 5.
Among the top 50 miRNAs, 48 miRNAs were confirmed
in the miRCancer, dbDEMC, and PhenomiR databases,
and only two miRNAs (miR-378a and miR-365a) were
not confirmed.

Predicting isolated diseases and isolated miRNAs
FCMDAP can predict isolated disease-related miRNAs.
In our work, we removed all experimentally verified
disease-miRNA associations for a given disease and
calculated the recommendation score by FCMDAP. We
also ranked the miRNAs according to their recommen-
dation scores. The average AUC of FCMDAP for
predicting an isolated disease is 0.8417. For lung

Table 5 The top 50 candidate miRNAs associated with pancreatic
neoplasms predicted by FCMDAP and the confirmation for their
associations by miRCancer, PhenomiR or dbDEMC databases are
listed here. 48 of them have been confirmed

Rank miRNA Evidence

1 hsa-mir-141 dbDEMC,PhenomiR,
miRCancer

2 hsa-mir-29a dbDEMC,PhenomiR,
miRCancer

3 hsa-mir-181a dbDEMC,PhenomiR,
miRCancer

4 hsa-mir-29c dbDEMC,PhenomiR,
miRCancer

5 hsa-mir-19b dbDEMC,PhenomiR

6 hsa-mir-93 dbDEMC,PhenomiR

7 hsa-mir-30a dbDEMC,PhenomiR

8 hsa-mir-1 dbDEMC,PhenomiR

9 hsa-mir-98 dbDEMC,PhenomiR

10 hsa-mir-106b dbDEMC,PhenomiR

11 hsa-mir-215 dbDEMC,PhenomiR,
miRCancer

12 hsa-mir-520 g dbDEMC

13 hsa-mir-7 dbDEMC,PhenomiR,
miRCancer

14 hsa-mir-9 dbDEMC,PhenomiR

15 hsa-mir-195 dbDEMC,PhenomiR

16 hsa-mir-19a dbDEMC,PhenomiR

17 hsa-mir-181d dbDEMC,PhenomiR

18 hsa-mir-193b dbDEMC

19 hsa-mir-125a dbDEMC,PhenomiR

20 hsa-mir-135a dbDEMC,PhenomiR

21 hsa-mir-205 PhenomiR,miRCancer

22 hsa-mir-26b dbDEMC,PhenomiR

23 hsa-mir-138 dbDEMC,PhenomiR,
miRCancer

24 hsa-mir-181c dbDEMC,PhenomiR,
miRCancer

25 hsa-mir-136 dbDEMC,PhenomiR

26 hsa-mir-133a dbDEMC,PhenomiR,
miRCancer

27 hsa-mir-320a dbDEMC,PhenomiR,
miRCancer

28 hsa-mir-20b dbDEMC

29 hsa-mir-449a dbDEMC

30 hsa-mir-615 dbDEMC,miRCancer

31 hsa-mir-140 dbDEMC,PhenomiR

32 hsa-mir-335 dbDEMC,PhenomiR,
miRCancer

33 hsa-mir-378a unconfirmed

34 hsa-mir-130b dbDEMC,PhenomiR

35 hsa-mir-365a unconfirmed

Table 5 The top 50 candidate miRNAs associated with pancreatic
neoplasms predicted by FCMDAP and the confirmation for their
associations by miRCancer, PhenomiR or dbDEMC databases are
listed here. 48 of them have been confirmed (Continued)

Rank miRNA Evidence

36 hsa-mir-423 dbDEMC,PhenomiR

37 hsa-mir-23b dbDEMC,PhenomiR

38 hsa-mir-373 dbDEMC,PhenomiR,
miRCancer

39 hsa-mir-149 dbDEMC,PhenomiR

40 hsa-mir-153 dbDEMC,PhenomiR

41 hsa-mir-30b dbDEMC,PhenomiR

42 hsa-mir-27b dbDEMC,PhenomiR

43 hsa-mir-22 dbDEMC,PhenomiR

44 hsa-mir-324 dbDEMC,PhenomiR

45 hsa-mir-185 dbDEMC,PhenomiR

46 hsa-mir-744 dbDEMC,miRCancer

47 hsa-mir-484 dbDEMC

48 hsa-mir-449b dbDEMC

49 hsa-mir-328 dbDEMC,PhenomiR

50 hsa-mir-148b dbDEMC,PhenomiR,
miRCancer
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neoplasms, FCMDAP identifies the top 50 miRNAs re-
lated to lung neoplasms (Table 6). All of the top 50 miRNAs
were confirmed by one or more databases (miRCancer,
dbDEMC, or PhenomiR). Hence, FCMDAP exhibits satis-
factory performance in predicting isolated diseases.
FCMDAP also shows satisfactory performance in pre-

dicting isolated miRNA-related diseases. In our work,
we removed all disease association information for a
given miRNA and calculated the recommendation score
for all diseases for a given miRNA by using FCMDAP.
We ranked these diseases and verified them in the data-
bases. The average AUC of the FCMDAP to predict iso-
lated miRNA is 0.8944. For hsa-mir-93, the top 10
related diseases predicted by FCMDAP are listed in
Table 7. Among the 10 diseases, eight were confirmed
to be related to hsa-mir-93 by dbDEMC or PhenomiR
databases. Adrenocortical carcinoma, which ranked 8,
was not confirmed by these two databases. Heart fail-
ure, which ranked 1, was confirmed to be related to
hsa-mir-93 in the literature. Ke et al. [49] found that
miR-93 is related to cardiomyocyte apoptosis, and
miR-93 can prevent cardiomyocyte apoptosis induced
by myocardial ischemia/reperfusion by inhibiting PI3K/
AKT/PTEN signaling.

Discussion
In this work, we developed FCMDAP to predict human
disease-related miRNAs. FCMDAP calculates the
similarity between miRNAs by using mutual informa-
tion based on the known miRNA-mRNA interaction in-
formation and adds the miRNA family information to

Table 6 The top 50 miRNAs associated with isolated lung
neoplasms predicted by FCMDAP and their evidence

Rank miRNA Evidence

1 hsa-mir-16 dbDEMC, PhenomiR,
miRCancer

2 hsa-mir-15a dbDEMC, PhenomiR,
miRCancer

3 hsa-mir-195 dbDEMC, PhenomiR,
miRCancer

4 hsa-mir-141 dbDEMC, PhenomiR,
miRCancer

5 hsa-mir-106b dbDEMC, PhenomiR

6 hsa-mir-429 dbDEMC, miRCancer

7 hsa-mir-296 dbDEMC, PhenomiR

8 hsa-mir-151a dbDEMC

9 hsa-mir-122 dbDEMC, PhenomiR

10 hsa-mir-451a dbDEMC

11 hsa-mir-130a dbDEMC, PhenomiR

12 hsa-mir-378a dbDEMC

13 hsa-mir-99a dbDEMC, PhenomiR

14 hsa-mir-302b dbDEMC, PhenomiR,
miRCancer

15 hsa-mir-152 dbDEMC, PhenomiR

16 hsa-mir-193b dbDEMC, PhenomiR

17 hsa-mir-708 dbDEMC

18 hsa-mir-625 dbDEMC

19 hsa-mir-204 dbDEMC, PhenomiR

20 hsa-mir-15b dbDEMC, PhenomiR,
miRCancer

21 hsa-mir-302c dbDEMC, PhenomiR

22 hsa-mir-194 dbDEMC, PhenomiR,
miRCancer

23 hsa-mir-320a dbDEMC, PhenomiR

24 hsa-mir-449a dbDEMC, PhenomiR,
miRCancer

25 hsa-mir-149 dbDEMC, PhenomiR

26 hsa-mir-129 dbDEMC, PhenomiR,
miRCancer

27 hsa-mir-20b dbDEMC, PhenomiR

28 hsa-mir-139 dbDEMC, PhenomiR

29 hsa-mir-302a dbDEMC, PhenomiR

30 hsa-mir-148b dbDEMC, PhenomiR,
miRCancer

31 hsa-mir-10a dbDEMC, PhenomiR

32 hsa-mir-328 dbDEMC, PhenomiR

33 hsa-mir-215 dbDEMC, PhenomiR

34 hsa-mir-99b dbDEMC, PhenomiR,
miRCancer

35 hsa-mir-302d dbDEMC, PhenomiR

36 hsa-mir-196b dbDEMC, PhenomiR

Table 6 The top 50 miRNAs associated with isolated lung
neoplasms predicted by FCMDAP and their evidence
(Continued)

Rank miRNA Evidence

37 hsa-mir-151b dbDEMC

38 hsa-mir-373 dbDEMC, PhenomiR

39 hsa-mir-345 dbDEMC, PhenomiR

40 hsa-mir-449b dbDEMC, PhenomiR,
miRCancer

41 hsa-mir-452 dbDEMC, PhenomiR

42 hsa-mir-339 dbDEMC, PhenomiR

43 hsa-mir-367 dbDEMC, PhenomiR

44 hsa-mir-342 dbDEMC, PhenomiR

45 hsa-mir-130b dbDEMC, PhenomiR,
miRCancer

46 hsa-mir-211 dbDEMC, PhenomiR

47 hsa-mir-92b dbDEMC, PhenomiR

48 hsa-mir-520c dbDEMC

49 hsa-mir-520d dbDEMC

50 hsa-mir-520a dbDEMC
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construct a miRNA space. FCMDAP integrates disease
functional similarity based on the disease-gene inter-
action and disease semantic similarity based on the
DAG from MeSH to construct a disease space.
FCMDAP integrates the association scores between
miRNA and disease from miRNA and disease spaces.
The association scores between miRNA and disease are
calculated based on the k most similar neighbor recom-
mendation algorithm, and miRNA cluster information
is added into miRNA space. Like NSIM and other
method, FCMDAP also predict unknown associations
by constructing miRNA network and disease network.
However, in the process, the similarity calculation
process of miRNA and disease are independent of each
other. Multiple types of data including miRNA-mRNA
interaction, miRNA family information, disease-gene
interaction, DAG from MeSH to calculate miRNA simi-
larity, and disease similarity are considered and the pre-
diction does not only depend on the known miRNA–
diseases associations, thereby improving the accuracy
of similarity calculations. Using the k most similar
neighbor recommendation algorithm and miRNA clus-
ter information makes the prediction results more rea-
sonable, and improves the predictive performance.
LOOCV and case research show that FCMDAP

exhibits excellent performance in predicting miRNA–-
disease associations. FCMDAP shows satisfactory per-
formance in predicting diseases without any related
miRNA information and miRNAs without any related
disease information. The average AUC of FCMDAP for
predicting isolated diseases and isolated miRNAs are
0.8417 and 0.8944, respectively. For isolated lung
neoplasms, the prediction accuracy reached 100% in
the top 50 predicted miRNAs. For the isolated
hsa-mir-93, the prediction accuracy reached 90% in the
top 10 diseases.

However, FCMDAP presents the following limitations.
miRNA similarity can be further improved if other biomol-
ecules that interact with miRNAs can be considered. As
FCMDAP is developed on experimentally verified miRNA–
disease associations, miRNA–disease associations can be
experimentally verified, thereby improving the performance
of FCMDAP.

Conclusion
In order to provide effective support for experimental
research on miRNAs, we proposed a computational
method FCMDAP to find potential disease-related miR-
NAs. FCMDAP exhibits excellent performance in pre-
dicting potential disease-related miRNAs. The FCMDAP
could extend to study on other biomeolecular networks
and help to decipher the study of complex human dis-
ease pathogenesis and diagnosis.
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Table 7 The top 10 diseasesrelated with hsa-mir-93 predicted
by FCMDAP and their evidences

Rank miRNA Evidence

1 Heart Failure PMID:27119510

2 Colonic Neoplasms PhenomiR, dbDEMC

3 Carcinoma, Squamous
Cell

PhenomiR, dbDEMC

4 Leukemia, Lymphocytic,
Chronic, B-Cell

PhenomiR

5 Mesothelioma dbDEMC

6 Pancreatic Neoplasms PhenomiR, dbDEMC

7 Hodgkin Disease dbDEMC

8 Adrenocortical Carcinoma unconfirmed

9 Glioblastoma PhenomiR, dbDEMC

10 Leukemia, Myeloid, Acute PhenomiR, dbDEMC
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