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Abstract

Background: Single-cell RNA sequencing (scRNAseq) data always involves various unwanted variables, which would
be able to mask the true signal to identify cell-types. More efficient way of dealing with this issue is to extract low
dimension information from high dimensional gene expression data to represent cell-type structure. In the past two
years, several powerful matrix factorization tools were developed for scRNAseq data, such as NMF, ZIFA, pCMF and
ZINB-WaVE. But the existing approaches either are unable to directly model the raw count of scRNAseq data or are
really time-consuming when handling a large number of cells (e.g. n >500).

Results: In this paper, we developed a fast and efficient count-based matrix factorization method (single-cell
negative binomial matrix factorization, scNBMF) based on the TensorFlow framework to infer the low dimensional
structure of cell types. To make our method scalable, we conducted a series of experiments on three public scRNAseq
data sets, brain, embryonic stem, and pancreatic islet. The experimental results show that scNBMF is more powerful to
detect cell types and 10 - 100 folds faster than the scRNAseq bespoke tools.

Conclusions: In this paper, we proposed a fast and efficient count-based matrix factorization method, scNBMF,
which is more powerful for detecting cell type purposes. A series of experiments were performed on three public
scRNAseq data sets. The results show that scNBMF is a more powerful tool in large-scale scRNAseq data analysis.
scNBMF was implemented in R and Python, and the source code are freely available at https://github.com/sqsun.
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Background
Single-cell RNA-sequencing (scRNAseq) analysis plays an
important role in investigating tumour evolution, and
is more powerful to characterize the intra-tumor cellu-
lar heterogeneity [1, 2]. Compared with traditional RNA
sequencing (i.e. bulk RNAseq) which measures the spe-
cific gene expression level within a cell population, scR-
NAseq quantifies the specific gene expression level within
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only an individual cell [3, 4]. scRNAseq is more likely
to understand the detailed biological processes of cell
developmental trajectories and cell-to-cell heterogeneity,
providing us fresh insights into cell composition, dynamic
cell states, and regulatory mechanisms [5–8].

However, there are still several big challenges we have
to carefully deal with before analyzing scRNAseq data
[9, 10]. The first challenge is that the scRNAseq data is
easy to involve some unwanted variables [11, 12], e.g.
batch effects, confounding factors, etc. Moreover, the scR-
NAseq data set has their own characterizes, such as gene
expression matrix is extremely sparse because of the quite
small number of mRNAs represented in each cell [13];
current sequencing technologies, e.g. CEL-Seq2 [14] and
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Drop-seq [15], etc, do not have enough power to quan-
tify the actual concentration of mRNAs (i.e. well-known
“dropout events”) [16]; the heavy amplifications may result
into strong amplification bias [17]; cell cycle state, cell
size or other unknown factors may contribute to cell-cell
heterogeneity even within the same cell type [18].

The second important feature of the scRNAseq data set
is of count nature [19]. In most RNA sequencing studies,
the number of reads mapped to a given gene or isoform is
often used as an intuitive estimate of its expression level.
To account for the count nature of the RNA sequencing
data, and the resulting mean-variance dependence, most
statistical methods were developed using discrete distri-
butions in differential expression analysis, i.e., PQLseq
[20], edgeR/DESeq [21, 22], and MACAU [23]. Therefore,
a nature choice of analyzing scRNAseq data is to develop
count-based dimensionality reduction methods. Although
several dimensionality reduction techniques have been
already applied to scRNAseq data analysis, such as princi-
pal component analysis (PCA) [24]; independent compo-
nents analysis (ICA) [25], and diffusion map [26]; partial
least squares (PLS) [27, 28]; nonnegative matrix factor-
ization (or factor analysis) [29, 30], gene expression levels
are inherently quantified by counts, i.e., count nature of
scRNAseq data [31, 32].

Therefore, developing the bespoke scRNAseq dimen-
sionality reduction method has been triggered within the

last two years. The first factor analysis method, ZIFA, is
trying to model the drop-out events via the zero-inflated
model, but the method does not take into account the
count nature of the data [33]; pCMF is trying to build
sparse Gamma-Poisson factor model within the Bayesian
framework, but such method does not include the covari-
ates [34]; ZINB-WaVE is trying to involve both gene-level
and sample-level covariates via a hierarchical model, but
the method is really time-consuming when sample size is
large [35, 36].

Here, in this paper, we propose a fast and efficient
count-based matrix factorization method that utilizes the
negative binomial distribution to account for the over-
dispersion problem of the count nature of scRNAseq data,
single-cell Negative Binomial-based Matrix Factorization,
scNBMF. The reason of choosing negative binomial model
instead of zero-inflated negative binomial model is that
not only the most scRNAseq data sets do not show much
technical contribution to zero-inflation (Fig. 1a), but also
can largely reduce the computation burden in estimating
drop-out parameters for each gene. With the stochas-
tic optimization method Adam [37] implemented within
TensorFlow framework, scNBMF is roughly 10 – 100
times faster than the existing count-based matrix fac-
torization methods, such as pCMF and ZINB-WaVE. To
make the proposed method scalable, we apply scNBMF to
analyze three publicly available scRNAseq datasets. The

Fig. 1 A simple example to show the parameter effect or optimizer effect of NMI and ARI in scRNA-seq data on clustering. a This figure shows the
relationship between mean gene expression levels and dropout rates. The black line indicates observed value, which is computed by the number of
unexpressed cells divided by the number of cells; The red line represents expected value, which is calculated by negative binomial distribution with
mean gene expression levels and dispersion parameter ψ(ψ = mean(ψi)) b This figure shows how optimizers affect the performance of different
methods on NMI and ARI. c-d These two figure indicate how the number of factors affect the NMI and ARI, respectively
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results demonstrate that scNBMF is more efficient and
powerful than other matrix factorization methods.

Materials and methods
scNBMF: model and algorithm
scNBMF is to fit the logarithm likelihood function of neg-
ative binomial model-based matrix factorization. Given
n cells and p genes, we denote Y as a gene expression
matrix, and its element yij is the count of gene i and cell
j. To account for the over-dispersion problem, we model
the gene expression level yij as a random variable follow-
ing the negative binomial distribution with parameters μij
and φi, i.e.,

yij ∼ NB(μij, φi)

where the rate parameter μij denotes the mean expres-
sion level for gene i and cell j; the parameter φi
represents variance of gene expression, typically means
gene-specific over-dispersion; NB is the negative binomial
distribution, i.e.

PrNB(yij|μij, φi)=
(

yij + φi − 1
yij

)(
μij

μij + φi

)yij( φi
μij + φi

)φi

.

For the rate parameter μij, we consider the following
regression model

log(μij) = log(Nj) +
∑K

k=1
WikXkj.

where Nj is the total read count for the individual cell j
(a.k.a read depth or coverage); Wik is the loadings while
Hkj is the factors represents the coordinates of the cells,
which can be used to identify cell type purpose; K is the
pre-defined number of components; When all φi → 0, the
negative binomial distribution will reduce to the standard
Poisson distribution.

Therefore, the log-likelihood function for gene i and
cell j is

LNB(μ, φ|Y ) =
p∑

i=1

n∑
j=1

logPrNB
(
yij|μij, φi

)

=
p∑

i=1

n∑
j=1

yijlog(μij) + φilog(φi)

− (yij + φi)log(μij + φi)

+ log
(

yij + φi − 1
yij

)
.

where μ denotes the mean gene expression matrix and its
element μij = elog(Nj)+∑K

k=1 WikXkj ; φ is a p-vector, and its
element φi represents the over-dispersion parameter for
gene i.

To make our model more interpretation for the biolog-
ical applications, we introduce a sparse penalty (LASSO)
on loading matrix W since some genes are expressed

while some are not in real-world biological processes.
Therefore, the objective function of optimization problem
becomes

L = LNB(μ, φ|Y ) + λ

p∑
i=1

‖Wi‖1

where ‖ · ‖1 is a l1-norm (i.e. LASSO penalty); λ denotes
the penalty parameter.

In the above model, we are interested in extracting the
factor matrix H for detecting the cell type purposes. We
first estimate the dispersion parameter φi) for each gene
via edgeR [21] with default parameter settings, then fit the
above model using Adam optimizer within TensorFlow.
For deep learning model, we set the learning rate of the
network as 0.001 and maximum iteration as 18000.

Compared methods and evaluations
To make scNBMF scalable, we compared seven existing
methods, i.e. PCA, Nimfa, NMFEM, tSNE, ZIFA, pCMF,
and ZINB-WaVE, in the experiments. Since PCA and
ZIFA are only for normalized gene expression data, we
normalized raw count data following previous recommen-
dations [38]. Typically, we transformed the count data
using base 2 and pseudo count 1.0, i.e., log2(Y + 1.0), into
continuous data. The performance of each method was
evaluated by the normalized mutual information (NMI),
defined in [39]

NMI(Le, L) =

K∑
k=1

Ke∑
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and the adjusted rand index (ARI), defined in [40]
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where Le and L are the predicted cluster labels and the
true labels, respectively; Ke and K are the predicted clus-
ter number and the true cluster number, respectively; nk
denotes the number of cells assigned to a specific cluster k
(k = 1, 2, · · · , K); similarly nt denotes the number of cells
assigned to cluster t(t = 1, 2, · · · , Ke); nkt represents the
number of cells shared between cluster k and t; and n is
the total number of cells.

Public scRNAseq data sets
Three publicly available scRNAseq data sets were col-
lected from three studies:
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• The first scRNAseq data set was collected from
human brain [41]. There are 420 cells in eight cell
types after excluded hybrid cells including, fetal
quiescent cells (110 cells), fetal replicating cells (25
cells), astrocytes cells (62 cells), neuron cells (131
cells), endothelial (20 cells) and oligodendrocyte cells
(38 cells) microglia cells(16 cells), and (OPCs, 16
cells), and remain 16,619 genes to test after filtering
out the lowly expressed genes. The original data was
downloaded from the data repository Gene
Expression Omnibus (GEO; GSE67835);

• The second scRNAseq data set was collected from
human pancreatic islet [42]. There are 60 cells in six
cell types after excluding undefined cells including
alpha cells (18 cells), delta cells (2 cells), pp cells (9
cells), duct cells (8 cells), beta cells (12 cells) and
acinar cells (11 cells) ,and 116,414 genes to test after
filtering out the lowly expressed genes. The original
data was downloaded from the data repository Gene
Expression Omnibus (GEO; GSE73727);

• The third scRNAseq data set was collected from the
human embryonic stem [43]. There are 1018 cells
which belong to seven known cell subpopulations
that include neuronal progenitor cells (NPCs, 173
cells), definitive endoderm derivative cells (DEDs),
endothelial cells (ECs, 105 cells), trophoblast-like
cells (TBs, 69 cells), undifferentiated H1(212 cells)
and H9(162 cells) ESCs, and fore-skin fibroblasts
(HFFs, 159 cells), and contains 17,027 genes to test
after filtering step. The original data was downloaded
from the data repository Gene Expression Omnibus
(GEO; GSE75748).

Results
Model selection
Our first set of experiments is to select the optimization
method for the log-likelihood function of negative bino-
mial matrix factorization model. Without loss of general-
ity, we choose the human brain scRNAseq data set. Five
optimization methods were compared to optimize the
neural networks, i.e., Adam, gradient descent, Adagrad,
Momentum and Ftrl. The results show that the Adam
significantly outperforms other optimization methods
regardless of what criteria we choose (Fig. 1b). Specifically,
for NMI, Adam, gradient descent, Adagrad, Momentum,
and Ftrl achieve 0.8579, 0.0341, 0.0348, 0.4859, and 0.1251,
respectively. Therefore, in the following experiments, we
will choose the Adam method to optimize the neural
networks.

Our second set of experiments is to select the number
of factors in the low dimensional structure of cell types.
Without loss of generality, we still choose the human
brain scRNAseq data set. We varied the number of factors
(k = 4, 6, 10, 15, and 20). The results demonstrate that

the number of factors does not impact PCA (Fig. 1c and
d; bule line). The other four methods show an increasing
pattern when the number of factors varied from 4 to 20
(Fig. 1c and d). Therefore, we choose the top 20 factors in
the following experiments.

Public scRNAseq data sets
Our third set of experiments is to apply scNBMF to three
scRNAseq real data sets, human brain, human pancreas
islet, and human embryonic stem. The cell type informa-
tion of the three data sets were reported by the original
studies. For the comparison, we compared seven other
methods, PCA, Nimfa, NMFEM, tSNE, ZIFA, pCMF and
ZINB-WaVE. For the evaluation, we extracted the low
dimensional structure with top 10 factors, and used k-
means clustering method in an unsupervised manner,
repeated 100 times to test how well each method can
recover the cell type assignments on NMI and ARI in the
studies.

The first biological data application is performed on the
human brain scRNAseq data set. Figure 2 demonstrates
the comparison results of tSNE with respect to seven com-
pared clustering methods. scNBMF shows the clearly cell
type patterns with the annotated cell type (Fig. 1h). Also,
we carried out the same analysis using PCA (Fig. 2a),
Nimfa (Fig. 2b), NMFEM (Fig. 2c), tSNE (Fig. 2d), ZIFA
(Fig. 2e), pCMF (Fig. 2f ), and ZINB-WaVE (Fig. 2g). For
NMI and ARI, scNBMF outperforms the other methods.
Specifically, for NMI criterion, PCA, Nimfa, NMFEM,
tSNE, ZIFA, pCMF, ZINB-WaVE and scNBMF achieve,
0.582, 0.494, 0.456, 0.712, 0.797, 0.787, 0.892, and 0.901,
respectively (Fig. 2i and Table 1); while for ARI criterion,
PCA, Nimfa, NMFEM, tSNE, ZIFA, pCMF, ZINB-WaVE
and scNBMF achieve, 0.339, 0.258, 0.264, 0.544, 0.721,
0.788, 0.916, and 0.933, respectively (Fig. 2i and Table 1).

The second biological data application is to investigate
the character of human pancreas islet scRNAseq data set.
This data set has a smaller number of cells - only 60 cells
in six cell types. Since all methods do not have enough
power to detect the cell type clustering patterns, we did
not show the tSNE plots for this data set. For NMI and
ARI, tSNE shows the highest performance, while scNBMF
achieves the second best performance (Table 1). Specif-
ically, tSNE achieves 0.973 and 0.652 on NMI and ARI,
respectively; while scNBMF is 0.716 and 0.472 on NMI
and ARI respectively.

The third biological data application is to investigate
lineage-specific transcriptomic features at single-cell res-
olution. To elucidate the distinctions between different
lineages, we performed eight matrix factorization meth-
ods, i.e., PCA (Fig. 3a), Nimfa (Fig. 3b), NMFEM (Fig. 3c),
tSNE (Fig. 3d), ZIFA (Fig. 3e), pCMF (Fig. 3f ), ZINB-
WaVE (Fig. 3g), and scNBMF (Fig. 3h). scNBMF demon-
strates more clearly their respective cell-type patterns
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Fig. 2 Performance evaluation on human brain scRNA-seq data. In this data set there are 420 cells in eight different cell types after the exclusion of
hybrid cells. Each kind of color represent a kind of cell type. a-h These eight figures display the clustering output of two dimension of tSNE using
eight matrix factorization methods(PCA, Nimfa, NMFEM, tSNE, ZIFA, pCMF, ZINB-WaVE, and scNBMF). f This figure shows NMI and ARI values which
are from eight compared methods

Table 1 Clustering comparison of the matrix factorization-based
methods in terms of Normalized Mutual information (NMI) and
Adjusted Random Index (ARI)

Method Brain Embryo Pancreas

NMI ARI NMI ARI NMI ARI

PCA 0.582 0.339 0.366 0.187 0.630 0.368

Nimfa 0.494 0.258 0.414 0.173 0.456 0.114

NMFEM 0.456 0.264 0.741 0.614 0.435 0.175

tSNE 0.712 0.544 0.658 0.538 0.793 0.652

ZIFA 0.797 0.721 0.888 0.748 0.641 0.429

pCMF 0.787 0.788 0.822 0.659 0.547 0.334

ZINB-WaVE 0.892 0.916 0.888 0.721 0.518 0.342

scNBMF 0.901 0.933 0.908 0.763 0.716 0.472

The number with bold indicates the best performance method and the number
with grey represents the second best performance method

compared with other methods. The cell type H1 and H9
show the tight overlapping pattern to indicate the rela-
tive homogeneity of human ES cells, such results are also
consistence with the previous results [43]. For NMI and
ARI, scNBMF outperforms other methods (Fig. 3i and
Table 1). Specifically, for NMI, PCA, Nimfa, NMFEM,
tSNE, ZIFA, pCMF, ZINB-WaVE and scNBMF achieve,
0.366, 0.414, 0.741, 0.658, 0.888, 0.822, 0.888, and 0.908,
respectively; For ARI, PCA, Nimfa, NMFEM, tSNE, ZIFA,
pCMF, ZINB-WaVE and scNBMF achieve, 0.187, 0.173,
0.614, 0.538, 0.748, 0.659, 0.721, and 0.763, respectively.

Computation time
The last set of experiments is to compare the com-
putation time of PCA, Nimfa, NMFEM, tSNE, ZIFA,
pCMF, and ZINB-WaVE. Without loss of generality, we
use human brain data set to show the computation time
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Fig. 3 Performance evaluation on human embryonic stem scRNA-seq data set, which contains 1018 cells in seven cell types. Different colors also
represent different cell types. a-h These five figure display the clustering output of two dimension of tSNE using five matrix factorization
methods(PCA, Nimfa, NMFEM, tSNE, ZIFA, pCMF, ZINB-WaVE, and scNBMF). f This figure shows NMI and ARI values which are from eight compared
methods

of the compared methods (Table 2). Nimfa, NMFEM,
ZIFA, pCMF, and ZINB-WaVE are the bespoke scRNAseq
methods. Compared with the count-based methods,
ZINB-WaVE and pCMF, scNBMF is roughly 100 folds
faster than ZINB-WaVE, and 10 folds faster than
pCMF. Even comparing the non-count based methods,
ZIFA, Nimfa, and NMFEM, scNBMF is still the fastest
method.

Conclusion
With rapid developing sequencing technology, a large
amount of scRNAseq data sets is easily obtained via dif-
ferent sources. Therefore, computation time is one of
these big issues for downstream analysis. On the other
hand, scRNAseq data have their own characterizes, i.e.,
count nature, noisy, and sparsity, etc. These have been

Table 2 Computation times (second) of the matrix
factorization-based methods on human brain scRNAseq data set,
k represents the number of factors

Method k=2 k=4 k=6 k=10 k=15 k=20

PCA 11.54 11.55 11.70 11.35 11.37 11.59

Nimfa 639.15 1990.66 2260.13 2490.05 2705.42 2924.87

NMFEM 1471.39 1628.2 1913.11 2248.18 2659.23 3027.5

tSNE 1.85 14.41 32.11 56.01 77.20 101.25

ZIFA 5331.25 5831.04 6347.08 6987.52 7338.26 7722.33

pCMF 12391.6 13517.12 14260.26 15111.55 15978.44 17158.42

ZINB-WaVE 71053.1 79402.17 90118.3 101072.9 115379.7 126575.2

scNBMF 456.12 478.90 541.31 717.88 1053.22 1563.75
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triggered the development of a fast and efficient count-
based matrix factorization method. In this paper, we
proposed a count-based matrix factorization (scNBMF)
method to model the raw count data, prevent los-
ing information from normalizing raw count data. On
three public biological scRNAseq data sets, scNBMF
provides powerful performance compared with other
seven methods in terms of NMI, ARI, and computation
time.

Zero-inflated distribution is more appropriate method
to account for dropouts, e.g. ZIFA and ZINB-WaVE.
In current study, we did not consider the zero-inflated
model because the tested data sets do not show too much
dropouts. However, this is a necessary step in analyz-
ing some scRNAseq data sets. Therefore, we will add
the zero-inflated distribution in the future version of the
scNBMF.

Biologically, if we incorporate all genes in scRNAseq
data analysis, probably it would be able to involve some
unwanted variables because not all genes are expressed in
biological processes. An interesting direction to improve
the performance of scNBMF is to select some informa-
tive genes first, this step can largely reduce unwanted
variables, and exclude some redundancy genes [44, 45]
in the downstream analysis. In addition, because gene
expression levels are highly affected by other gene spe-
cific annotations, such as GC-content, gene length, and
chromatin states [46]. If some interesting variables in the
statistical model, such as “drop-out” parameter, can be
inferred by annotation information, the method probably
will significantly improve the power of detecting cell types
from scRNAseq data.
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