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Abstract
Background: There is an increasing interest to model biochemical and cell biological networks,
as well as to the computational analysis of these models. The development of analysis
methodologies and related software is rapid in the field. However, the number of available models
is still relatively small and the model sizes remain limited. The lack of kinetic information is usually
the limiting factor for the construction of detailed simulation models.

Results: We present a computational toolbox for generating random biochemical network models
which mimic real biochemical networks. The toolbox is called Random Models for Biochemical
Networks. The toolbox works in the Matlab environment, and it makes it possible to generate
various network structures, stoichiometries, kinetic laws for reactions, and parameters therein.
The generation can be based on statistical rules and distributions, and more detailed information
of real biochemical networks can be used in situations where it is known. The toolbox can be easily
extended. The resulting network models can be exported in the format of Systems Biology Markup
Language.

Conclusion: While more information is accumulating on biochemical networks, random networks
can be used as an intermediate step towards their better understanding. Random networks make
it possible to study the effects of various network characteristics to the overall behavior of the
network. Moreover, the construction of artificial network models provides the ground truth data
needed in the validation of various computational methods in the fields of parameter estimation
and data analysis.

Background
Modeling and analysis of large biochemical networks is in
its infancy. Networks' intrinsic capabilities and behavior
arise both from the numerous network components and
their complex interactions, thereby making the modeling
task very challenging. In the field of computational sys-
tems biology, researchers modeling these networks often
aim at predicting the system behavior in response to a

given treatment. For example, lethality prediction for gene
deletions [1,2] and maximization of the yield of a meta-
bolic product [3,4] provide interesting applications.

Currently the structures of various biochemical networks
are under extensive research. Best known are the structures
of metabolic networks which are reconstructed on the
basis of genome annotation, and biochemical and physi-
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ological evidence [5]. Metabolic network models are
reconstructed e.g. for yeast Saccharomyces cerevisiae [1,6],
bacteria Escherichia coli [7,8] and Streptomyces coelicolor [9],
and a number of other organisms [10]. The structures of
other intracellular networks types than metabolic net-
works are poorer known. Gene regulatory networks are
explored in large scale in gene deletion studies [11-13]
and transcription factor binding experiments [14], but
various uncertainties relate to those studies. On the other
hand, much information is available for protein-protein
interaction networks and signal transduction networks
[15-17] but, for example, the modular composition of
proteins retards their reconstruction [18,19].

Besides structural information, the modeling of biochem-
ical network behavior needs information about reaction
kinetics, too. Reaction kinetics is much studied in bio-
chemistry but, unfortunately, it still remains mostly
unknown because of the difficult quantification of reac-
tion velocities, especially in vivo [20,21]. In some cases it
has been possible to construct kinetic models for reaction
pathways [22]. In these situations, both the network struc-
ture and reaction kinetics are known, and the network
model can be simulated using a system of ordinary differ-
ential equations (ODEs). However, in most cases the lack
of kinetic information prevents the construction of ODE
models or the model sizes remain very limited.

The usual approach to construct an ODE model for a bio-
chemical pathway is to collect the needed information
from literature piece by piece. The process is time consum-
ing, and uncertainties appear in model construction
because of natural complexity of cellular systems and the
varying conditions in which they are examined.

A complementary method to construct ODE models is to
adopt the available information, and then randomly gen-
erate the lacking information. These partially random
models have several applications. First, they provide the
ground truth data for objective evaluation of methods in
data analysis and parameter estimation. The fundamental
problem in those fields is that the goodness of the meth-
ods cannot be evaluated because data from real biological
measurements is always noisy and the correct values
remain unknown (see, e.g., [23-25]). Second, a researcher
can generate a practically unlimited number of networks
in which given features are varied. This makes it possible
to study interrelationship between network structure and
function, and to obtain statistical significance on the
results (see, e.g., [26]). Third, the approach allows gradual
model construction in which randomness is decreased
after more information becomes available. For example, if
the parameters of kinetic rate laws were previously drawn
from a distribution, their values can be fixed when they

become known. Thus, the model becomes more similar to
its biological example.

There are many software for time series simulation,
parameter estimation, and other analysis of biochemical
network models (see, e.g. [27-34]). To authors' knowl-
edge, however, there is no freely available an easily
extendable software toolbox for generation of random
ODE models for biochemical networks. The existing net-
work generation softwares [35,36] have different mode-
ling approaches and principles.

Implementation
Research objectives may set various requirements for
model generation. In the case of a metabolic network
model generation, the network structure and its stoichi-
ometry may be known, and only the kinetic laws have to
be generated. In contrast, in generation of genetic regula-
tory network models, network structures are usually
unknown, too, and their generation may be based on sta-
tistical rules. RMBNToolbox makes it possible to produce
network models for various situations. However, there are
infinitely different kinds of research objectives, and the
toolbox may not be able to fulfill all the needs a user has.
In order to help the user to implement her own functions
easily, the toolbox has a modular structure, and the source
code is freely available under GNU General Public
Licence. RMBNToolbox is implemented in the Matlab
environment [37] which provides a flexible environment
for its further development. The toolbox is comprised of a
set of Matlab functions which make the model construc-
tion possible when used together. It is illustrative to con-
sider the network generation task using a compact
mathematical framework. Especially for metabolic net-
works, the structural and kinetic information can be well
summarized using a time variant concentration vector c, a
time invariant stoichimetric matrix S, and a time variant
reaction rate vector v. Vector c contains concentrations for
all the m species (ci, i = 1, ... m). The m × n matrix S repre-
sents the network structure by storing stoichiometric coef-
ficients of all n reactions in its columns. The element S (i,
j) > 0 if reaction j produces species i, S (i, j) < 0 if reaction
j consumes species i, and otherwise S (i, j) = 0. The reac-
tion rate vector v describes reaction rates vj, j = 1, ... n.
Reaction rates vary according to kinetic laws which are lin-
ear or nonlinear algebraic functions. Typically, kinetic
laws determine the rates based on the amounts of species
participating to reactions as well as various reaction spe-
cific parameters. Altogether, an ODE model can be formu-
lated as

. (1)

The reaction rates vj, j = 1, ..., n are determined by kinetic
laws fj as

d

dt
S

c
v= .
Page 2 of 11
(page number not for citation purposes)



BMC Systems Biology 2007, 1:22 http://www.biomedcentral.com/1752-0509/1/22
vj = fj (cj, pj), (2)
in which cj includes concentrations of species taking part
in the reaction j, and pj contains the parameter values of
the kinetic law.

In addition to the basic scheme shown in Eqs. 1 and 2, the
model may contain other details such as assignment rules.
An assignment rule makes it possible to assign a specific
value for a variable independently from the system of dif-
ferential equations above. The value may depend on time,
species amounts, or whatever other model variables.

The generation of a biochemical network model using
RMBNToolbox has three main steps. First, a network
structure is determined. This includes defining both the
network components, i.e., species and reactions, and their
connections. As described in Section 'Network structure',
the toolbox supports structure generation by providing a
set of methods for random and deterministic approaches.
In the second step of the network model generation, net-
work kinetics are determined by setting kinetic laws for
reactions, parameter values therein, possible assignment
rules for species, etc. Section 'Network kinetics' describes
how the toolbox makes it possible to accomplish these
tasks. Before the network can be simulated, its initial state
must be defined. Section 'Initial state of the network' takes
a look at this task. Matlab scripts can be used to call the
toolbox functions so that all the structural, kinetic, and
state data are generated into the model. In practice, the
model is constructed into a data structure which mainly
exploits Matlab vectors, matrices, and their indexing. The
details of the data structure and toolbox functions are
described in the toolbox manual which is delivered along
with the toolbox. The usage of toolbox functions is
described in their help documentation. Figure 1 summa-
rizes the main phases of model construction as well as fur-
ther steps which are needed to export the generated model
into the format of Systems Biology Markup Language
(SBML).

Network structure
The toolbox provides various methods for constructing
network structures. The user can generate and import
graph models as well as stoichiometric models. RMBN-
Toolbox uses an incidence matrix representation to store
a directed bipartite graph which describes the network
structure. In the graph, species and reactions are nodes
connected with directed edges. Edges indicate the direc-
tion of mass flow or controlling activity. Next we intro-
duce the main approaches for setting up network
structures.

The toolbox provides functions that make use of statistical
rules in network structure generation. The user may spec-
ify the number of reactions, the number of species, and a

probability density function. The probability density
function defines the number of species that are connected
to each reaction. For example, it may be required that the
probabilities for reactions to have 1, 2 and 3 substrates,
are 50%, 30%, and 20%, respectively. The method is use-
ful when reactions have a known indegree distribution of
substrates or outdegree distribution of products which is
used as a determining feature for the structure generation.
In various network systems, the structure of the network
determines its stability. The toolbox offers a possibility to
specifically generate stable or unstable linear systems as
models for biochemical networks. Methods with different
structure generation principles are implemented for this
purpose. The first method generates network structures
and tests their stability until a network structure with a sta-
ble (or unstable) behavior is found. The other methods
generate network structures iteratively. One by one they
connect random species to random reactions and check
whether the network remains stable (or unstable). All the
methods examine the model stability using the eigenval-
ues of the constructed system matrix. Further theoretical
details are presented in an example of the Section
'Results'.

Phases of model constructionFigure 1
Phases of model construction. Structural, kinetic, and 
state information are prepared during model construction. 
Together with a library containing kinetic rate laws (Kineti-
cLawLibrary), the constructed model is converted to the for-
mat of SBMLToolbox. The model can be analyzed and 
exported in SBMLToolbox format, or it can be further con-
verted to the format of Systems Biology Markup Language.
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A network analysis study may be based on graph theoret-
ical approaches, too. A tree is a graph in which no loops
nor unconnected nodes exist. The toolbox makes it possi-
ble to generate trees as models of network structures. A
tree sets up a network sceleton to which more reactions,
species, or their connections can be added later on, or
which can be analyzed further as such.

In addition to random structure generation, the user can
specify any pre-defined network structure by providing a
bipartite graph in the form of an m × n matrix M. In that
case, the m rows represent species and n columns repre-
sent reactions, and the element M (i, j) equals one if spe-
cies i is connected to reaction j. If a reaction and a species
are not connected, then the respective element in M
equals zero. This approach makes it possible for the user
to easily generate any kind of network structure using her
own methods, and to process the model further using the
toolbox functions.

The toolbox supports the import of stoichiometric matri-
ces. The user may find the import feature especially useful
in the cases in which the structure of a metabolic network
is known, but kinetics not. Stoichiometric matrices S are
provided as m × n matrices (see, Equation 1), possibly
along with the names for the m species and n reactions.

Network kinetics
The main task in the generation of network kinetics is to
choose and set kinetic laws for reactions in the network
model (see, Eq. 2). RMBNToolbox has a function that ran-
domly chooses kinetic laws from KineticLawLibrary [38]
which contains many of the basic kinetic laws from bio-
chemistry textbooks [20,21,39]. Kinetic laws have differ-
ent forms depending on various features on their reaction
mechanisms, such as the numbers of substrates and prod-
ucts, compulsory or arbitrary binding order of multiple
substrates, and reversibility. Two features related to net-
work structure determine if a specific kinetic law can be set
for a specific reaction in the network model. First, the
numbers of subsrates and products must be the same in
the kinetic law and in the reaction it is applied to. Second,
the reversibility of the kinetic law must match with the
reversibility of the reaction. The choice of a kinetic law can
be made randomly among those kinetic laws which fulfill
these two requirements.

Kinetic laws have various parameters for which values
need to be determined. By default, the parameter values
are random numbers from uniform distributions. The
user can redefine the distributions, and she can set new
values separately for individual parameters if needed.

In addition to reactions, the amounts of species may be
determined by assignment rules. In this case, the user

writes an assignment rule as a Matlab M-file, and specifies
the variables which are used for its evaluation. With a sim-
ilar procedure, assignment rules can be set for parameters
of kinetic rate laws. Thus, assignment rules make it possi-
ble for species and parameter values to be functions of any
other variables.

Initial state of the network
An initial state has to be given for a network model before
its dynamical behavior can be simulated. This includes
defining the initial amounts for species, but also the val-
ues of other time-dependent variables which may exist.
The toolbox provides a function for this task. On the other
hand, there are many network analysis methods that do
not need the state information (e.g., flux balance analysis
[7]). For those cases, the user can generate and export
models without the state information.

Exporting network models in SBML format
The network models created with the help of RMBNTool-
box can be exported in the format of Systems Biology
Markup Language (Level 2, version 1) [40]. An increasing
amount of software tools support SBML for model
exchange, and therefore the user can choose her favourite
tool for further analysis of the generated models. RMBN-
Toolbox bases its SBML support on other software. The
network model generated by RMBNToolbox is converted
to the format of SBMLToolbox [34] which is another tool-
box working in Matlab. After kinetic laws are read from
KineticLawLibrary [38] and added to the model, SBML-
Toolbox makes it possible to export the model in SBML
format. The export is done with the help of the LibSBML
library which is written in ISO C and C++ [41].

Results
In this section we present examples of the intended use of
RMBNToolbox. In the first example we generate a large
model for a genetic regulatory network that can be used to
produce ground truth data for a microarray simulation
[25]. In the second example the structure and stoichiom-
etry of a metabolic network are known, and the kinetic
laws are randomly generated. Furthermore, the example
demonstrates how metabolic fluxes in a steady state can
be decomposed by elementary flux modes. The third
example studies network stability using a control theoretic
approach. The example generates small networks for
which the network structure determines the stability. All
the Matlab scripts that are used to generate the following
example networks can be found in the examples folder of
RMBNToolbox. All the generated example networks can
be downloaded as additional files of this article.

Gene regulatory network
In gene regulatory networks a set of genes produce pro-
teins called transcriptional regulators. Transcriptional reg-
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ulators bind to the promoter areas of genes, thereby
activating or inhibiting their transcription. Most of the
genes do not produce transcriptional regulators but their
functions may be related to other processes, such as
metabolism or cellular growth. Transcriptional regulators
are usually thought as the key to the cellular control. In
this example we produce a large network model with sim-
ple structural characteristics [see Additional file 1]. The
model mimics a gene regulatory network.

In the generated network there are 1000 transcription
reactions which produce one product each. The total of
200 of the products act as transcriptional regulators which
control the network by activating and inhibiting the tran-
scription reactions. Each of the transcription reactions has
one activatory and one inhibitory regulator which are
selected randomly from the 200 regulators.

The synthesis of the gene products is modeled similarly in
all cases. The modeling concentrates on the kinetics of
transcription and uses the rate law suggested in [23]. The
amount of the protein product, for which the gene is a
precursor, is assumed to be equal to the produced tran-
script. Because the number of gene copies is restricted and
only a limited number of regulators are able to bind
simultaneously, the kinetic law saturates both with the
amount of activator and inhibitor. The rate of transcrip-
tion is

where Vbasal is the rate of transcription in the absence of
activators and inhibitors, I and A represent the concentra-
tions of inhibitor and activator, KI and KA represent the
concentrations with which the inhibitor and the activator
have the effect of half of their maximal effects, and nI and
nA act as Hill coeffcients. The parameter values are random
numbers from the following uniform distributions: Vbasal
∈ U (5,10), KI ∈ U (2,3), KA ∈ U (1,2), nI ∈ U (1,2), nA U
(1,2). The initial concentrations I and A are random num-
bers from the uniform distributions I ∈ U (0, 1) and A ∈
U (0, 1).

The degradation kinetics of each gene product follows the
mass action law

r = k P, (4)
where k is a rate parameter and P is the concentration of
the gene product. Similarly to the kinetic laws of transcrip-
tion reactions, the parameter values are unique for each
degradation reaction. In this case, the value of parameter
k is drawn from the uniform distribution U (0.01, 0.02).

For a comparison, we additionally simulate a duplicate
network which mimics a gene deletion [see Additional file
2]. In the duplicated network, the production of a ran-
domly chosen regulator is stopped by setting the parame-
ter Vbasal of its transcription reaction to zero. Otherwise the
duplicated network is identical to the original network.

The behavioral differences are illustrated by a time series
simulation. After constructed, both networks are exported
in SBML format and SBML ODE Solver [42] is used to sim-
ulate them. Figure 2 gives an overview to differences in
simulation results. For each of the species, the figure
shows concentration differences between the two simula-
tions. For each time point t, the difference d (t) is calcu-
lated as

d (t) = c (t) - c* (t), (5)

where c (t) and c* (t) are concentration values of the spe-
cies in the first and in the second simulation, respectively.
Although most of the species act similarly in both simula-
tions, there are large and unforeseeable dynamic varia-
tions too. The effects of the inactivation of the regulator
do not fade away or relax to a constant but the inactiva-
tion seems to have complex behavioral consequences.

Simulation and stoichiometric analysis
In this example, a time series simulation is used to illus-
trate a result from stoichiometric network analysis. As pre-
sented in [43], any feasible steady state flux distribution of
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a metabolic network is a linear combination of so-called
elementary flux modes (EFM). We show using random
reaction kinetics that this holds in a small examplary met-
abolic network model. Extreme pathways [44] and ele-
mentary fluxes [45] are similar concepts to EFMs, and they
would be equally valid for this analysis.

In metabolic systems, the time derivates of metabolite
concentrations c can be written as presented in Equation

1, i.e.,  where S is the m × n stoichiometric matrix

with m metabolites and n reactions, and v contains the

reaction velocites with vi ≥ 0 for each irreversible reaction

i. Metabolites are classified to external for which it is
assumed that the environment always balances their con-
centrations cext, and internal for which the concentrations

cint are determined by the network. A network is then said

to be in a steady state if

i.e., there is no accumulation or depletion of internal
metabolites. Specific reaction velocities (flux distribu-
tions) are needed to maintain steady states.

Elementary flux modes describe such reversible and irre-
versible pathways in the network which maintain steady
states when working. In an elementary flux mode, each
reaction is assigned with its relative velocity compared to
other reactions in the same EFM. EFMs are minimal in the
sense that the active reactions in an EFM cannot be a sub-
set of the active reactions in another EFM. Elementary flux
modes can be calculated based on a stoichiometric matrix
and the respective reaction irreversibilities [43]. Let vector
e denote an elementary flux mode in which element ei = 0
if reaction i is inactive and ei ≠ 0 if the reaction i is active.
Further, let the set of all N elementary flux modes of the
network be in matrix E = [e1, e2, ..., eN]. Then any flux dis-
tribution v, which results a steady state into the network,
can be described as a linear combination of the EFMs as

v = E β, βj ≥ 0 if EFM j is irreversible (7)
where the vector β weigths each of the elementary fluxes
by a scalar. The weigths are non-negative for EFMs describ-
ing irreversible pathways.

Because the calculation of EFMs uses the steady state
assumption, Equation 7 has solutions for β only if v main-
tains a steady state. Usually the number of EFMs (columns
in E) is much larger than the number of reactions (rows in
E), and therefore unique solutions are rare for Equation 7.

However, we can test the existence of solutions by setting
up a linear programming problem

The objective function is set to find the maximum of the
sum of the weigths. Rather than the maximum value, we
are now interested in the existence of any solution. In the
following, we utilize the fact that the maximum can be
found only if any solutions exist.

A hypothetical example network, illustrated in Figure 3,
consists of three species and six reactions [46]. The net-
work structure is provided to RMBNToolbox as a stoichi-
ometric matrix. Initial amounts for metabolites, kinetic
rate laws for reactions, and their parameter values are cho-
sen randomly, because we aim at illustrating that an arbi-
trary steady state flux distribution is a linear combination
of elementary flux modes.

Program Metatool [47] is used to calculate the elementary
flux modes of the generated network. The network is
exported in SBML format [see Additional file 3] and sim-
ulated using SBML ODE Solver [42] until a steady state is
reached. During the simulation, the flux distribution v

and time derivates of species amounts  are sampled for

d

dt
S

c
v=

d

dt

c
0int = , (6)

max

,

1

v

T

such that

EFM  is irreversible

β
β

β
 

 

E

j

=
≥ 0 j

(8)

d

dt

c

Metabolic network and elementary flux modesFigure 3
Metabolic network and elementary flux modes. Spe-
cies are represented as circles and reactions as rectangles. 
Reaction stoichiometries are ones. The network has four 
elementary flux modes that are illustrated using small num-
bered squares with different colors. For example, mode 3 
uses reactions R6, R4, and R1.
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every second. Linear programming problems, as described
in Eq. 8, are solved for each flux distribution sample. Fig-
ure 4 shows the time derivates and the existence of

weights β for each sample. After a steady state is reached
(i.e., the time derivates of internal metabolites become
zero), then the flux distribution is a linear combination of

the elementary flux modes (i.e., the weigths β are found).

Network stability
Neither RMBNToolbox nor Systems Biology Markup Lan-
guage take care of the rationality of the generated network
models. Possible unstability of the generated model is a
typical issue the user has to consider. In this example we
look how to exploit control theory for generating models
which are unstable and biologically unreasonable and, on
the other hand, stable and biologically more reasonable.

In control theory, a system is stable if it has a bounded
response to a bounded input [48]. We concentrate on net-
work models which can be formulated as systems of first-
order linear differential equations. Their compact repre-
sentation form is

in which the vector c contains states of variables, and the
system matrix A determines the system properties. The
system is known to be stable if the eigenvalues of A have
nonpositive real parts, and every eigenvalue with zero as
the real part has an associated Jordan block of order one
[49,50].

Next we derive a model for which the user can determine
if this stability requirement is fulfilled or not. For this pur-
pose, the biochemical network model described by Equa-
tions 1 and 2 needs to be represented in the format of
Equation 9.

We begin the model reformulation from kinetic laws, i.e.,
Equation 2. Because the intended model in Equation 9 is
linear, we can utilize for its construction such kinetic laws
which are linear too. Kinetic laws of the form first-order
mass-action fulfill this need. For example, the kinetic law
for reaction j is vj = kj cj where kj is a reaction-specific rate
constant and cj is the concentration of the subsrate. Kinetic
laws of this form make it possible to represent the reaction
rate vector v of Equation 1 by a matrix-vector multiplica-
tion

v = Γc, (10)
where Γ is a diagonal n × m matrix storing rate constants
kj, for each reaction j = 1, ..., n, on its main diagonal.

Substituting this to Equation 1, it becomes

Multiplication of the time invariant matrices S and Γ
results to the m × m matrix A. The substition of A to Equa-
tion 11 brings the network model to the form presented
in Equation 9.

During the model construction, matrices S and Γ are ran-
domly generated after which they are multiplied to pro-
duce the matrix A. The eigenvalues of A are calculated, and
the values of their real parts are examined. The generation
is repeated until the eigenvalues indicate the required sta-
ble or unstable behavior of the model.

As the first example, we generate an unstable network
model [see Additional file 4] by requiring at least one pos-
itive eigenvalue for the system matrix A. The structure of
the generated network is depicted in Figure 5. We note
that the network includes two kinds of features that are
not reasonable in real biochemical networks and which
obviously cause instability for the model. The first unreal-
istic feature is that the mass balance does not hold: Species
S1 is decomposed in two parts, S2 and S3, in reaction R1.
Further, reaction R2 converts one S2 molecule back to two

d

dt
A

c
c,= (9)

d

dt
S S

c
v c= = Γ . (11)

Steady state requirement for elementary flux modesFigure 4
Steady state requirement for elementary flux modes. 
In a simulation the metabolic network gradually relaxes to a 
steady state in which the time derivates of internal species 
S1, S2, and S3 are zero. The existence of weights β is calcu-
lated for flux distributions sampled from the simulation time 
series. For illustration purposes, existence is coded with val-
ues 0 and 0.1 for nonexistence and existence, respectively. 
The weights β exist (i.e. a flux distribution can be decom-
posed using elementary flux modes) after a steady state is 
obtained.
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S1 molecules. This results that S1 can be decomposed to
S2 and S3 without loss of mass and, after each decompo-
sition, the amount of S1 becomes doubled. The second
problematic feature is the generation of dead-ends in the
model: Species S3 is produced by reaction R1, but it is not
consumed by any reaction. Therefore, the amount of S3
increases as long as there is a supply of S1. All this causes
unstable behavior for the model, as demonstrated by Fig-
ure 6 in which species amounts increase rapidly towards
infinity.

In the second example the generated network model
[Additional file 5] is stable. We note from Figure 7 that the
network does not have the two structural features which
appeared in the previous model. Instead, the structure is
more treelike and without feedback loops, thereby ena-
bling material flows through the network. Correspond-
ingly, the species amounts show relaxation towards
constant values in Figure 8.

Discussion
In network model generation, the user has to define vari-
ous network characteristics that include network compo-
nents, their connections, stoichiometries, kinetic rate
laws, etc. RMBNToolbox helps the user in these tasks by
providing functions that make it possible to create and
modify various structural and kinetic features. Many gen-
eration tasks are automated and, on the other hand, rand-
omization can be exploited efficiently. The most of the
features specified in Systems Biology Markup Language
are supported by the toolbox. The toolbox does not over-
see the rationality of the generated models, because an
unreasonable model in one context may be reasonable in
another one.

The model generation times are fair even for large models.
For example, the genetic regulatory network model pre-
sented in Section 'Results' has 1,000 species and 2,000
reactions. The model and the corresponding SBML file
were generated in appr. 40 seconds using a PC with 1GB
RAM and Pentium M 1,3 GHz processor. Small network
models, such as the one used in the stoichiometric analy-
sis example, are generated within one second.

Conclusion
We have presented a software called RMBNToolbox that
can be used to generate random models for biochemical
networks. The toolbox functions make it possible to gen-
erate network models with various user specified charac-
teristics. For example, network structure, stoichiometric
coefficients, kinetic laws and parameter values can be eas-
ily generated and manipulated. With the help of SBML-
Toolbox and LibSBML, the models can be translated into
the format of Systems Biology Markup Language. The gen-
erated network models can be simulated and analyzed
using any software that is able to use models provided in
SBML format. The toolbox can be easily extended and
modified, because it has a modular structure, it is imple-
mented in Matlab environment, and it is freely available
under GNU General Public Licence. Random network
models can be applied to various purposes in the field of
biochemical network modeling. Artificial models are
needed to produce noise free data in which the character-
istics are precisely known. Only that kind of data can be
used for objective evaluation of various data analysis and
parameter estimation methods. On the other hand, the
new information acquired from biochemical networks

Time series of unstable modelFigure 6
Time series of unstable model. Species amounts increase 
rapidly towards infinity in the simulation of the unstable 
model.
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can be included into the network model generation. This
makes it possible to refine the model gradually while pre-
serving the variations of the unknown parts of the net-
work. Further, it is possible to study various emergent
properties in network behavior, such as the effects of var-
ying network connectivity. For these kinds of purposes, a
sufficiently large number of network models is generated
and the features of interest are varied.

Availability and requirements
Project name: RMBNToolbox

Project home page: http://sourceforge.net/projects/rmbn
toolbox

Operating system(s): Platform independent

Programming language: Matlab

Other requirements: LibSBML 2.3.2 or higher, SBMLTool-
box 2.0.0 or higher

License: GNU GPL

Authors' contributions
TA designed and implemented the main data structures
and functions of the toolbox. O-PS and JN designed and
implemented the functions related to control theory. OY-
H initiated the study and participated to the coordination.
All authors read and approved the final manuscript.

Additional material

Additional file 1
Model for gene regulatory network. Gene regulatory network model pre-
sented in the first example (in SBML format).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-22-S1.xml]

Additional file 2
Model for gene regulatory network with a gene deletion. Modified gene 
regulatory network model presented in the first example (in SBML for-
mat).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-22-S2.xml]

Additional file 3
Model for metabolic network. Metabolic network model presented in the 
second example (in SBML format).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-22-S3.xml]

Time series of stable modelFigure 8
Time series of stable model. Species concentrations 
decrease to zero in the simulation of the stable model. This is 
because mass flows out of the network through reactions 
R4, R5, and R6. Species S4 remains longest in the network. 
Its concentration decreases below 0.05 mol/l after 2.91 * 105 

seconds (data not shown).
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