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Abstract

Background: Network concepts are increasingly used in biology and genetics. For example, the
clustering coefficient has been used to understand network architecture; the connectivity (also
known as degree) has been used to screen for cancer targets; and the topological overlap matrix
has been used to define modules and to annotate genes. Dozens of potentially useful network
concepts are known from graph theory.

Results: Here we study network concepts in special types of networks, which we refer to as
approximately factorizable networks. In these networks, the pairwise connection strength
(adjacency) between 2 network nodes can be factored into node specific contributions, named
node 'conformity’. The node conformity turns out to be highly related to the connectivity. To
provide a formalism for relating network concepts to each other, we define three types of network
concepts: fundamental-, conformity-based-, and approximate conformity-based concepts.
Fundamental concepts include the standard definitions of connectivity, density, centralization,
heterogeneity, clustering coefficient, and topological overlap. The approximate conformity-based
analogs of fundamental network concepts have several theoretical advantages. First, they allow one
to derive simple relationships between seemingly disparate networks concepts. For example, we
derive simple relationships between the clustering coefficient, the heterogeneity, the density, the
centralization, and the topological overlap. The second advantage of approximate conformity-based
network concepts is that they allow one to show that fundamental network concepts can be
approximated by simple functions of the connectivity in module networks.

Conclusion: Using protein-protein interaction, gene co-expression, and simulated data, we show
that a) many networks comprised of module nodes are approximately factorizable and b) in these
types of networks, simple relationships exist between seemingly disparate network concepts. Our
results are implemented in freely available R software code, which can be downloaded from the
following webpage: http://www.genetics.ucla.edu/labs/horvath/ModuleConformity/
ModuleNetworks

Background ture of cellular networks [2], to model biological signal-
Network terminology is used to study important ques-  ling or regulatory networks [1,3], to reconstruct metabolic
tions in systems biology. For example, networks are used  networks [4], and to study the dynamic behavior of gene
to study functional enrichment [1], to analyze the struc-  regulatory networks [5].

Page 1 of 20

(page number not for citation purposes)


http://www.biomedcentral.com/1752-0509/1/24
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17547772
http://www.genetics.ucla.edu/labs/horvath/ModuleConformity/ModuleNetworks
http://www.genetics.ucla.edu/labs/horvath/ModuleConformity/ModuleNetworks
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Systems Biology 2007, 1:24

Here we study the meaning of network concepts in rela-
tively simple networks, e.g. gene co-expression networks
and protein-protein interaction (PPI) networks. Specifi-
cally, we consider undirected networks that can be repre-
sented by a symmetric adjacency matrix A = [a;], where
the pairwise adjacency (connection strength) a; takes val-
ues in the unit interval, i.e., 0 < a; < 1. For an unweighted
network, the adjacency a; = 1 if nodes i and j are con-
nected and 0 otherwise. For a weighted network, 0 <a;< 1.
For notational convenience, we set the diagonal elements
to 1.

Fundamental network concepts

Other authors refer to network concepts as network statis-
tics or network indices. Network concepts include connec-
tivity, mean connectivity, density, variance of the
connectivity (related to the heterogeneity) etc. Network
concepts can be used as descriptive statistics for networks.
While some network concepts (e.g. connectivity) have
found important uses in biology and genetics, other net-
work concepts (e.g. network centralization) appear less
interesting to biologists. Before attempting to understand
why some concepts are more interesting than others, it is
important to understand how network concepts relate to
each other in biologically interesting networks. As a step
toward this goal, we explore the meaning of network con-
cepts in module networks, which are defined below.

In the following, we review fundamental network con-
cepts. Further details on the definitions and notations can
be found in the Methods section.

The node connectivity is given by

Connectivity; = k; = Zaij. (1)
j#i

In unweighted networks, the connectivity k; of node i
equals the number of directly linked neighbors. In
weighted networks, the connectivity equals the sum of
connection weights with all other nodes. Highly con-
nected 'hub' genes are thought to play an important role
in organizing the behavior of biological networks [6-9].
Connectivity has been found to be an important comple-
mentary gene screening variable for finding biologically
significant genes in cancer [10,11] and primate brain
development [12].

The line density [13] is defined as the mean off-diagonal
adjacency and is closely related to the mean connectivity.

zizj#aij _ Si(k) _ mean(k) (2)

Density = = =
sy n(n—1) n(n—1) n-1
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where the function S,(-) is defined for a vector v as S,(v)
= Ziulp =(w)r1.

The normalized connectivity centralization (also known
as degree centralization) is a simple and widely used index

of the connectivity distribution. By definition [14], the
normalized connectivity centralization is given by

Centralization =

n ( max(k)

n-— n-—

— Density )z M — Density.
n
(3)

A frequent question of social network analysis concerns
the causes and consequences of centralization in network
structure, i.e. the extent to which certain nodes are far
more central than others within the network in question.
The centralization index has been used to describe struc-
tural differences of metabolic networks [15].

Many measures of network heterogeneity are based on the
variance of the connectivity, and authors differ on how to
scale the variance [13]. Our definition of the network het-
erogeneity equals the coefficient of variation of the con-
nectivity distribution, i.e.

Heterogeneity = vvarlanc:(k) = nSz(kz) -1. (4)
mean(k) —\['s, (k)

This heterogeneity measure is scale invariant with respect
to multiplying the connectivity by a scalar. Biological net-
works tend to be very heterogeneous: while some 'hub'
nodes are highly connected, the majority of nodes tend to
have very few connections. Describing the heterogeneity
(inhomogeneity) of the connectivity (degree) distribution
has been the focus of considerable research in recent years
[6,16-18].

The clustering coefficient of node i is a density measure
of local connections, or 'cliquishness' [19,20]. Specifi-
cally,

_ zl:ﬁi z i) HilHmAmi

ClusterCoef; = % = 5 )
l {(zliiail ) _zlqtiaiz’ }

In unweighted networks, n; equals twice the number of
direct connections among the nodes connected to node i,
and 7; equals twice the maximum possible number of
direct connections among the nodes connected to node i.
Consequently, ClusterCoef; equals 1 if and only if all
neighbors of i are also connected to each other. For gen-
eral weighted networks with 0 < a;;< 1, one can prove 0 <
ClusterCoef;< 1 [21]. The relationship between the cluster-
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Hierarchical clustering dendrogram and module definition. A) Drosophila PPl network. The dendrogram results from
average linkage hierarchical clustering. The color-band below the dendrogram denotes the modules, which are defined as
branches in the dendrogram. Of the 1371 proteins, 862 were clustered into 28 proper modules, and the remaining proteins
are colored in grey; B) yeast PPl network; C) weighted gene co-expression network (yeast); D) unweighted gene co-expres-
sion network (yeast). To facilitate a comparison between the weighted and the unweighted gene co-expression networks, we
used the module assignment of C) in D). Note that the colors of C) tend to stay together in D), which illustrates high module
preservation.
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ing coefficient and modular structure has been investi-
gated by several authors [20,22-24].

The topological overlap between nodes i and j reflects
their relative interconnectedness [20,25]. It is defined by

TobOver] lij + a;

opOverlap;; 6
pOverlap; = n{kw T isay (6)
where I;; = 2., ; a;,a,;. In an unweighted network, [; equals

the number of nodes to which both i and j are connected.
In this case, TopOverlap; = 1 if the node with fewer connec-
tions satisfies two conditions: (a) all of its neighbors are
also neighbors of the other node, and (b) it is connected
to the other node. In contrast, TopOverlap;;= 0 if i and j are
un-connected and the two nodes do not share any neigh-
bors. By convention, TopOverlap;; = 1. One can prove that
0 <a;<1 implies 0 < TopOverlap;; < 1 [21].

The Topological Overlap Matrix Can Be Considered as Adjacency
Matrix

Since the matrix TopOverlap = [TopOverlap;] is symmetric
and its entries lie in [0, 1], it satisfies our assumptions on
an adjacency matrix. Roughly speaking, the topological
overlap matrix can be considered as a 'smoothed out' ver-
sion of the adjacency matrix. The elements of TopOverlap
provide an alternative measure of connection strength
based on shared neighbors. There is evidence that replac-
ing A by TopOverlap may counter the adverse effects of
spurious or missing adjacencies [25,26]. Since the adja-
cency matrices of the PPI networks in our applications
were very sparse, we replaced them by the corresponding
topological overlap matrices. In contrast, we used the
original adjacency matrix when analyzing gene co-expres-
sion networks since high specificity is desirable for meas-
uring interconnectedness in co-expression networks.

The topological overlap matrix can be used for module
definition

Our main interest lies in (sub-)networks comprised of
nodes that form a module inside a larger network. Since a
particular module network may encode a pathway or a
protein complex, these special types of networks have
great practical importance. Similar to the term 'cluster’, no
consensus on the meaning of the term 'module’ seems to
exist in the literature. In our applications, we use a cluster-
ing procedure to identify modules (clusters) of nodes with
high topological overlap. We follow the suggestion of [20]
to turn the topological overlap matrix TopOverlap into a
dissimilarity measure by subtracting it from 1, i.e. dissTop-
Overlap;; = 1 - TopOverlap;;.

We use dissTopOverlap;; as input of average linkage hierar-
chical clustering to arrive at a dendrogram (clustering

http://www.biomedcentral.com/1752-0509/1/24

tree) [27]. Modules are defined as the branches of the den-
drogram. For example, in Figure 1 we show the dendro-
grams of our network applications. Genes or proteins of
proper modules are assigned a color (e.g. turquoise, blue
etc). Genes outside any proper module are colored grey.
Our module definition depends on how the branches are
cut off the dendrogram. Several methods and criteria for
identifying branches in a dendrogram have been pro-
posed, see e.g. [20,21,28]. In practice, it is advisable to
study how robust the results are with respect to alternative
module detection methods. In our online R software tuto-
rial, we show that our findings are highly robust with
respect to alternative module definitions. In addition, we
use a functional enrichment analysis of the resulting mod-
ules to provide indirect evidence that the modules are bio-
logically meaningful. Our module detection approach has
led to biologically meaningful modules in several applica-
tions [9,10,12,20,28-30] but we make no claim that it is
optimal. Our theoretical results will apply to all module
detection methods that result in approximately factoriza-
ble networks.

Results

Conformity and factorizable networks

We define an adjacency matrix A to be exactly factorizable
if, and only if, there exists a vector CF with non-negative
elements such that

a;=CFCF; forall i#j (7)
If the non-negative solution of equation (7) is unique, it
is referred to as conformity vector CF and CF, is the con-
formity of node i. One can easily show that the vector CF
is not unique if the network contains only n = 2 nodes.
However, for n > 2 it is unique for a weighted network, see
our derivations surrounding equation (20).

We also define the concept of conformity for a general,
non-factorizable network. The idea is to find an exactly
factorizable adjacency matrix Ay = CF CF*- diag(CF?) + I
that best approximates A. Note that the diagonal elements
of Acpand A equal 1.

In the appendix, we define the conformity as a maximizer
of the factorizability function

Z zﬁ:l ij vl]
zizj;éi(aij)

decomposing an adjacency matrix are briefly discussed
below.

. Alternative methods of

Fp(v)=1-

In equation (43), we define a measure of network factor-
izability as follows
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la-n-ag: -0l
|a-1];

F(A) =1

The factorizability F(A) is normalized to take on values in
the unit interval [0, 1]. The higher F(A), the better Aqp- I
approximates A - I.

Modules can be approximately factorizable

Approximate factorizability is a very strong structural
assumption on an adjacency matrix. It certainly does not
hold for general networks. However, we provide empirical
evidence that many clusters (modules) of genes or pro-
teins in real networks are approximately factorizable.
Table 1 reports the mean values of F(A) for the applica-
tions considered in this paper. For example in the Dro-
sophila PPI network, the mean factorizability F(A) is 0.82
across 'proper’ modules defined as clusters in the network.
In contrast, the factorizability of the subnetwork com-
prised of non-module nodes is only 0.17. In the yeast PPI
network, the mean factorizability of proper modules is
0.85 while it equals only 0.20 for the grey module. In the
weighted yeast gene co-expression network, the mean fac-
torizability of proper modules equals 0.73 while it is only
0.18 for the improper module. Similarly in the
unweighted yeast gene co-expression network, the mean
factorizability of proper modules equals 0.62 while it is
only 0.11 for the improper module. A more detailed table
presenting network concepts in each module is also pro-
vided [see Additional file 1].

Our empirical results support the following
Observation 1 For many modules defined with a clustering

procedure, the subnetwork comprised of the module nodes is
approximately factorizable.

http://www.biomedcentral.com/1752-0509/1/24

This observation motivates us to study network concepts
in approximately factorizable networks.

Conformity-based network concepts

We refer to the standard network concepts known from
the literature as fundamental network concepts. In general,
fundamental network concepts are functions of the off-
diagonal elements of the adjacency matrix A. More pre-
cisely, we use network concept functions to define different
types of network concepts depending on the input matrix
(see Table 2 and equation (21)). For example, when
inputting an adjacency matrix with its diagonal elements
replaced by 0, one arrives at fundamental network con-
cepts (see Definition 5 in the Methods section). When
inputting the conformity-based (CF-based) adjacency
matrix A with its diagonal elements replaced by 0, one
arrives at CF-based network concepts (see Definition 6 in
the Methods section). The conformity vector can be used
to define the approximate CF-based matrix

Acr,app = CF CF7= [CFCF).

. . 2
Note that the i-th diagonal element of A¢y, ,,, equals CF”.
When Agp ,, is used as input of a network concept func-

tion, one arrives at an approximate CF-based concept (see
Definition 7 in the Methods section).

We will demonstrate that approximate CF-based concepts
satisfy simple relationships. Below, we show that these
simple relationships carry over to fundamental network
concepts in approximately factorizable networks.

In Definition 7, we provide a formula for calculating
approximate CF-based analogs of the fundamental net-
work concepts. Specifically, we find

Table I: Summary of fundamental network concepts in real network applications.

Fly Protein Yeast Protein Yeast (Weighted) Yeast (Unweighted)
Concept Proper Grey Proper Grey Proper Grey Proper Grey
Factorizability .82 (.086) .170 .85 (.100) 200 .73 (.084) .180 .62 (.130) 1o
Density 21 (.074) 017 .28 (.120) 026 .08 (.056) .005 40 (.150) .024
Centralization .18 (.091) .052 .20 (.055) .036 .10 (.026) .021 Al (.110) .140
Heterogeneity .35 (.130) 460 .36 (.140) 430 .56 (.066) .580 51 (.097) .830
Mean Cluster Coef. .28 (.110) .050 .36 (.120) 093 .13 (.072) .032 .72 (.087) .370
Mean Conformity 45 (.076) .130 51 (.120) .150 .26 (.084) .062 .63 (.100) .120

Each network contained several proper modules. Non-module genes were grouped into a single (improper) grey module. For each concept, we
report the mean and standard error across the proper modules. A more detailed table presenting network concepts in each module is also

provided [see Additional file 1].
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kCFappi = CFS,(CF),
. S,(CF ( S(CF) Y
Densityc,app = nl((n_i) :( 1(n )) )
Centralizationcprapp %(max(CF) _ 51(CF) )
n-— n— n

_ S (CF)(max( CP) - S,(CF) )
n n

. nS,(CF)
Heterogeneitycp q4pp = —2 1,
V(si(cr)y?
2
S,(CF
ClusterCoefcr appi = (% ] ,
1
TopOverlapcr, qpp i CRCF;(S,(CF) +1) )
PPy min(CE, CF;)S; (CF) +1- CECF;

(8)

where S,(CF) = X,(CF,)f. Note that the approximate CF-
based clustering coefficient does not depend on the i-
index. This is why we sometimes omit this index and sim-
ply write ClusterCoef . -

Approximate CF-based network concepts satisfy simple
relationships

Here we demonstrate a major advantage of approximate
CF-based network concepts: they exhibit simple relation-
ships. Using the fact that S;(kcp,,,) = S1(CF)?, and the
approximation n/(n - 1) = 1, equations (8) imply the fol-
lowing relationship

ClusterCoefc,qpp

1 ’
Densltycprapp

Heterogeneitycr qpp = \/ \/

or equivalently,

ClusterCoefc,qpp,i = (1+ Heterogeneityépl app )% x Densitycp,qpp-
)
Further, it is straightforward to derive a simple relation-
ship between approximate CF-based topological overlap,
connectivity and heterogeneity under the following mild
1 - CECF;
min(CE, CF;)S$; (CF)

assumptions:
S,(CF)

Specifically, we find

S,(CF) _ max(CHS, (CF), CE$, (CF)) 1S, (CF)

TuvaeTlach/upp,,j = maX(CFi/CFj) S,(CF) n S (CF)2
1 1

max(k ik ;
= —( Clappi: 7CE.app. )(1+Hetemgeneityépyapp).
n

(10)

http://www.biomedcentral.com/1752-0509/1/24

Table 2: Brief overview of different types of network concepts.

Input Matrix Type of Example: Connectivity
Concept
A-l fundamental Connectivity (A - I)
= 205
Acr- 1 = CF CF7- diag(CP?) CF-based Connectivity(Acr - 1)
=CF, izj#CFj
Acrapp = CF CF* approximate Connectivity(Acr,qpp)
CF-based = CF2.CF

==

A network concept arises by evaluating a network concept function on a
special type of input matrix. We assume that the diagonal elements of
the matrix A - [ are 0.

In the following subsection, we outline the conditions
when equations (9) and (10) hold approximately for fun-
damental network concepts in approximately factorizable
module networks.

Relating fundamental- to approximate CF-based concepts
In the Methods section, we provide a heuristic argument
for the following

Observation 2 In approximately factorizable networks, funda-
mental network concepts are approximately equal to their
approximate CF-based analogs,

FundamentalNetworkConcept ~ NetworkConcepty, -

The observation implies that in approximately factoriza-
ble networks, Connectivity ~ Connectivityr, ., and Density ~
Densitycr,,, etc. Observation 2 is illustrated for network
density, centralization, heterogeneity, and clustering coef-
ficients in Figure 2 (Drosophila PPI network), Figure 3
(veast PPI network), and Figure 4 (weighted and
unweighted yeast gene co-expression networks; density is
not included due to limited space). A consequence of this
observation is that the simple relationships satisfied by
approximate CF-based network concepts also apply to
their corresponding fundamental network concepts in
approximately factorizable networks. In particular, equa-
tions (9) and (10) imply the following

Observation 3 In approximately factorizable networks,
the following relationships hold among fundamental net-

work concepts

mean(ClusterCoef) ~ (1 + Heterogeneity?)2 x Density,

(11)
and
rnax(kl ’ k]) 2
TopOverlap;; ~ —————(1+ Heterogeneity”).
n
(12)
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Observation 3 is important since it highlights the fact that
seemingly disparate network concepts satisfy simple and
intuitive relationships in approximately factorizable net-
works. Equations (11) and (12) are illustrated in Figure 5
(Drosophila PPI network), Figure 6 (yeast PPI network),
and Figure 7 (weighted and unweighted yeast gene co-
expression networks; TOM plots are not included due to
limited space). Equation (12) has several important con-
sequences. To begin with, it illustrates that the topological
overlap between the most highly connected node and all
other nodes is approximately constant. Specifically, if we
denote the index of the most highly connected node by
[1] and its connectivity by ky; = max(k), then

TopOverlap | 1+ Hi ity? (13)
i =, (1 + Heterogeneity”).

As an aside, we briefly mention that TopOverlap,;}; has a
simple interpretation in terms of the hierarchical cluster-
ing dendrogram that results from using dissTopOverlap;; =
1 -TopOverlap; as input. In this case, TopOverlapyy); is
related to the longest branch length in the dendrogram.
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Figure 2

Drosophila PPl module networks: the relationship
between fundamental network concepts Network-
Concept(A - I) (y-axis) and their approximate CF-
based analogs NetworkConceptc; ,,, (x-axis). This figure
demonstrates Observation 2. A) Density versus Densityc q,;
B) Centralization versus Centralization,g,,; C) Heterogeneity
versus Heterogeneityc ,,,,; D) Intramodular clustering coeffi-
cients ClusterCoef; versus ClusterCoefcr . In Figures A), B)
and C), each dot corresponds to a mocfule since these net-
work concepts summarize an entire network module. In Fig-
ure D), each dot corresponds to a node since these network
concepts are node specific. A reference line with intercept 0
and slope | has been added to each plot.
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Figure 3

Yeast PPl module networks: the relationship
between fundamental network concepts Network-
Concept(A - I) (y-axis) and their approximate CF-
based analogs NetworkConceptcg ., (x-axis). This figure
demonstrates Observation 2. A) Density versus Densityc q;
B) Centralization versus Centralization,,,,; C) Heterogeneity
versus Heterogeneityc ,,,,; D) Intramodular clustering coeffi-
cients ClusterCoef; versus ClusterCoefCg . In Figures A), B)
and C), each dot corresponds to a module since these net-
work concepts summarize an entire network module. In Fig-
ure D), each dot corresponds to a node since these network
concepts are node specific. A reference line with intercept 0
and slope | has been added to each plot.

In the following, we relate TopOverlapy;); to the funda-
mental network concept Centralization. According to

max(k)

equation (3), ~ Centralization + Density. Substi-

tuting this expression in equation (13) implies

TopOverlapy,;~ (Centralization + Density)
(1 + Heterogeneity?) (14)

Equation (14) is illustrated in Figure 5 (Drosophila PPI
network), Figure 6 (yeast PPI network), and Figure 7
(weighted and unweighted yeast gene co-expression net-
works).

In factorizable networks, fundamental network concepts
are simple functions of the connectivity

Here we demonstrate another advantage of approximate
CF-based network concepts. They allow one to relate
fundamental network concepts to simple functions of
the connectivity. Toward this end, note the following
simple relationship between the conformity CF and the
approximate CF-based connectivity kcy, ;-
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Figure 4

Yeast gene co-expression module networks: the rela-
tionship between fundamental network concepts
NetworkConcept(A - I) (y-axis) and their approximate
CF-based analogs NetworkConceptc ., (x-axis). This
figure demonstrates Observation 2. A reference line with
intercept 0 and slope | has been added to each plot. The fig-
ures on the left (right) hand side depict network concepts
from the weighted (unweighted) network. A) and B) Central-
ization versus Centralization ,,; C) and D) Heterogeneity
versus Heterogeneityc 4, E) and F) Intramodular clustering
coefficients ClusterCoef; versus ClusterCoefc - The analogous
plots for Density are not presented since the fundamental
network concepts and their approximate CF-based analogs
are almost identical and the dots fall near the reference line
with R2= | for both weighted and unweighted networks, and
thus are omitted due to limited space. In Figures A), B), C)
and D), each dot corresponds to a module since these net-
work concepts summarize an entire network module. In Fig-
ure E) and F), each dot corresponds to a node since these
network concepts are node specific.

k .
CF = ——ckappt (15)

; .
v Sl (kCF,app )

Since in approximately factorizable networks kp; =~ k;, we

find that the conformity CF is approximately given by the

scaled connectivity, i.e.

http://www.biomedcentral.com/1752-0509/1/24
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Figure 5

Drosophila PPl module networks: the relationship
between fundamental network concepts. This figure
demonstrates Observation 3 and equation (14). In Figures A)
and B), each point is a protein colored by its module assign-
ment, and the red line has intercept 0 and slope |. Figure A)
illustrates the relationship between the mean clustering coef-
ficient (short horizonal line) and (I + Heterogeneity?)2 * Den-
sity (equation (11)). Figure B) illustrates the relationship
between the topological overlap with the hub node and (Den-
sity + Centralization) * (I + Heterogeneity?) (equation (14)).
Figure C) is a color-coded depiction of the topological over-
lap matrix TopOverlap;in the turquoise module network. Fig-
ure D) represents the corresponding approximation
max(k,k)(l + Heterogeneity?)/n (equation (12)). Figures E) and
F) are their analogs for the brown module. The turquoise
and the brown module represent the largest and third largest
module. Analogous plots for the other modules can be found
in our online supplement.

csz

VSi(k)
This equation shows that conformity can be interpreted as
a scaled connectivity in approximately factorizable net-
works. Since approximate CF-based network concepts are

k
VSi(k)
for CF implies that approximate CF-based concepts can be
approximated by simple functions of the connectivity. For
example, we find the following simple expressions for the
cluster coefficient and the topological overlap.

(16)

simple functions of the conformity, substituting

Observation 4

2
ClusterCoef; = %,
(S1(k))
TopOverlap;; kik;j(S (k) + 5 (k) _ max(k;, k;) S, (k)
Ul min(kl- ,k] )Sl (k) + Sl (k) - klk] n Sl (k) ’
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Figure 6

Yeast PPl module networks: the relationship
between fundamental network concepts. This figure
demonstrates Observation 3 and equation (14). In Figures A)
and B), each point is a protein colored by its module assign-
ment and the red line has intercept 0 and slope I. Figure A)
illustrates the relationship between the mean clustering coef-
ficient (short horizonal line) and (I + Heterogeneity?)2 * Den-
sity (equation (I 1)). Figure B) illustrates the relationship
between the topological overlap with the hub node and (Den-
sity + Centralization) * (I + Heterogeneity?) (equation (14)).
Figure C) is a color-coded depiction of the topological over-
lap matrix TopOverlap; in the turquoise module network. Fig-
ure D) represents the corresponding approximation
max(k,k)(1 + Heterogeneity?)/n (equation (12)). Figures E) and
F) are their analogs for the brown module. The turquoise
and the brown module represent the largest and third largest
module. Analogous plots for the other modules can be found
in our online supplement.

w =0 and
S, (k)

where the last approximation assumes

Sk)-kiky
mln(kl,k] )Sl (k)

Protein-protein interaction and gene co-expression
network applications

Drosophila and yeast protein-protein network

To illustrate our results, we computed network concepts
in module networks based on Drosophila and yeast pro-
tein-protein interaction (PPI) networks downloaded from
BioGrid [31]. As described before, we defined the mod-
ules as branches of the hierarchical clustering dendro-
gram, see Figure 1.

Of the 1371 proteins in the Drosophila PPI network, 862
were clustered into 28 modules, and the remaining pro-
teins grouped into an improper (grey) module. The mod-
ule sizes of the proper modules range from 10 to 96, mean
30.79, median 23, and interquartile range 24.

http://www.biomedcentral.com/1752-0509/1/24
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Figure 7

Yeast gene co-expression module networks: the rela-
tionship between fundamental network concepts.
This figure demonstrates Observation 3 and equation (14).
The figures on the left (right) hand side depict network con-
cepts from the weighted (unweighted) network. Each point is
a gene colored by its module assignment. The red line has
intercept 0 and slope I. Figures A) and B) illustrate the rela-
tionship between the mean clustering coefficient (short hori-
zonal line) and (I + Heterogeneity2)2* Density (equation (11)).
Figure C) and D) illustrates the relationship between the top-
ological overlap with the hub node and (Density + Centraliza-
tion) * (I + Heterogeneity?) (equation (14)).

Of the 2292 proteins in the yeast PPI network, 2050 were
clustered into 44 proper modules, and the remaining pro-
teins grouped into an improper module. The module sizes
of the proper modules range from 10 to 219, mean 46.59,
median 24, and interquartile range 38.8.

Yeast gene co-expression networks

We now illustrate our theoretical results using gene co-
expression networks that have been used by many
authors, e.g. [11,21,32]. Gene co-expression networks are
constructed on the basis of microarray data from the tran-
scriptional response of cells to changing conditions. There
is evidence that genes with similar expression profiles are
more likely to encode interacting proteins [33,34].

In gene co-expression networks, nodes correspond to gene
expression profiles. The corresponding adjacency matrix
is determined from a measure of co-expression between
the genes. In the examples below, we will use the absolute
value of the Pearson correlation coefficient between the
gene expression profiles to measure co-expression
between gene pairs. As detailed at the end of the Methods
section, one can transform the Pearson correlation matrix
into an adjacency matrix by hard thresholding or soft
thresholding. Hard thresholding results in an unweighted
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network and soft thresholding results in a weighted net-
work [21]. We applied our methods to a yeast cell cycle
microarray data comprised of 44 microarrays and 2001
genes. This dataset recorded gene expression levels during
different stages of cell cycles in yeasts and has been widely
used before to illustrate clustering methods [35].

Of the 2001 genes (microarray probesets) in the weighted
yeast gene co-expression network, 1081 were clustered
into 8 proper modules. The module sizes of the proper
modules range from 53 to 308, mean 135.1, median
101.5, and interquartile range 69.3. To facilitate a com-
parison between the weighted and the unweighted gene
co-expression networks, we used the module assignment
of the weighted network for the unweighted network as
well. It turns out that the module assignment is highly
preserved between the weighted and the unweighted gene
co-expression networks, see Figures 1C) and 1D).

Functional annotation of modules

Since the scope of this paper is a mathematical and topo-
logical analysis of module networks, we defined modules
without regard to external gene ontology information.
Also we do not provide an in-depth analysis of the biolog-
ical meaning of the network modules. But we briefly men-
tion that there is indirect evidence that most of the
resulting modules are biologically meaningful. We used
the functional gene annotation tools from the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) [36] to test for both enriched biochemical path-
ways and subcellular compartmentalization. We find that
most modules are significantly enriched with known gene
ontologies. A functional enrichment analysis for each net-
work application is provided. For the Drosophila PPI net-
work, [see Additional file 3]; for the yeast PPI network,
[see Additional file 4]; for the weighted and unweighted
yeast gene co-expression networks, [see Additional file 5].

Empirical relationships in 4 different networks

In accordance with Observation 2, we find a close rela-
tionship (R?2 > 0.6) between the fundamental network
concepts and their approximate CF-based analogs. Specif-
ically, we relate the network density, centralization, heter-
ogeneity and clustering coefficients to their approximate
CF-based analogs in Figures 2 (Drosophila PPI network),
Figure 3 (yeast PPI network), and Figure 4 (weighted and
unweighted yeast gene co-expression networks).

In accordance with Observation 3, we find a close rela-
tionship (R2 > 0.6) between the mean clustering coeffi-
cient mean (ClusterCoef ) and (1 + Heterogeneity?)? x
Density. Further, we find a close relationship between Top-
Overlap;;; and  (Centralization ~ +  Density)(1  +
Heterogeneity?), see Figures 5 (Drosophila PPI network),
Figure 6 (yeast PPI network), and Figure 7 (weighted and
unweighted yeast gene co-expression networks).

http://www.biomedcentral.com/1752-0509/1/24

We find that our theoretical observations fit better in the
weighted- than in the unweighted yeast gene co-expres-
sion network.

Network concepts and module size

Since the number of genes inside a module (module size)
varies greatly among the modules, it is natural to wonder
whether the reported relationships between network con-
cepts are due to the underlying module sizes. We find that
the relationship between fundamental network concepts
and their approximate CF-based analogs remains highly
significant even after correcting for module sizes [see
Additional file 2]. The same holds for the relationships
between network concepts. Thus, none of the reported
relationships is trivially due to module sizes. But we find
that many network concepts depend on the underlying
module size. We find that large modules are less factoriz-
able than small modules: there is a strong negative corre-
lation between module factorizability F(A) and module
size. We also find that fundamental network concepts
(e.g. density) depend on module size in our applications.
For the factorizability, density, centralization, heterogene-
ity and mean clustering coefficient, the correlation coeffi-
cients with module size are -0.84, -0.46, -0.17, 0.26, and -
0.36 in Drosophila PPI module networks; they are -0.55,
-0.52, 0.05, 0.5, and -0.44 in yeast PPI module networks;
they are -0.93, -0.52, -0.82, 0.27, and -0.55 in weighted
yeast gene co-expression module networks; they are -0.86,
-0.77,-0.56, 0.87, and -0.85 in unweighted yeast gene co-
expression module networks. A more detailed analysis is
presented in the Additional files [see Additional file 2].

A simple exactly factorizable network example: constant
network

A simple, exactly factorizable network is given by an adja-
cency matrix A with constant adjacencies (a;;= b, b € (0,

1]). The adjacency matrix is exactly factorizable since a;; =

CF,CF;where CF; = Jb . This network can be interpreted as

the expected adjacency matrix of an Erdos-Rényi network
[37]. One can easily derive the following expressions for
the fundamental network concepts: Connectivity;= (n - 1)b,

Density = b, Centralization = 0, Heterogeneity = 0, Cluster-
Coef; = b and TopOverlap;; = b.

Since A is exactly factorizable, the fundamental network
concepts equal their CF-based analogs. However, the
approximate CF-based concepts are different from their
exact counterparts, see Table 3. For reasonably large values
of n, the fundamental network concepts are very close to
their approximate CF-based analogs. This illustrates
Observation 2. With the results in Table 3, one can easily
verify Observation 3 and equation (16) in this example.
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Example: block diagonal adjacency matrix

In the following, we will consider a block diagonal adja-
cency matrix where each block has constant adjacencies,
ie.

1 b bb 0 0O 0
b 1 bb 0 0O 0
A=| b T (17)
0 0 - 0 1 by - b
0 0 - 0 b, 1 - b
0 0 - 0 by by - 1

We assume that the first and second blocks have dimen-
sions n; x n, and n, x n,, respectively. Such a block diago-
nal matrix can be interpreted as a network with two
distinct modules. Setting n, = 0 results in the simple con-
stant adjacency matrix, which we considered before.

We denote by f, = (1, 1,..., 1, 0, O, ..., 0) the vector whose
first n; components equal 1 and the remaining compo-
nents equal 0. Similarly, we define f, = (0, 0, ...,0, 1, 1, ...,
1) =1 - f;. To simplify the calculation of the conformity,
we further assume that

http://www.biomedcentral.com/1752-0509/1/24

Table 3: Network concepts in the constant Erdos-Rényi network.

Network Concepts Fundamental Approximate CF-based
Connectivity; (n-Nb nb
Density b b n
n-1
Centralization 0 0
Heterogeneity 0 0
TopOverlap b nb+1
opOverlap;
’ (n-1)b+1

ClusterCoef; b b

ny(ny —1)b3

——=<1. (18)

ny (ny —1)bf

Then the conformity is uniquely defined by

CF:\/EI/

as one can show using equations (36) and (37) in the
appendix. Further, using Proposition 10 in the appendix,
one can show that the factorizability is given by

ny (ny —1)b}

F(A) = > 5 (19)
m (g —1)bi +ny(ny —1)b3
Table 4: Network concepts in the simulated block-diagonal network.
Concept Fundamental CF-based Approx CF-based
Connectivity (m =Dy Indicy, +(ny —1)byInd;s,, (m —1)byInd;g,, mbyIndicy,
Density ny(ny —1)by +ny(ny —1)by ny(ng —1)by nib
(m +ny)(ng +ny —1) (n +ny)(ng +ny —1) (n +ny)(mg +ny—1)
Centralization "2(("1 - 1)b1 + (”2 - 1)b2) (nl - 1)”2b1 nanbl
(m +ny =1)(m +ny —2) (m+ny=1)(m +ny=2)  (m +ny —1)(my +ny —2)
. 212 242
Heterogeneity \/ (m +n)[m(m —1)7bf +ny(ny —1)7b3 n n
2
[m(m = 1)by +ny(ny —1)by | M ™
TopOverlap, byInd; .o, +bylnd; o, byInd; o, bl
Jsm J>m ]S (”1 _ l)bl +1 Jsm
ClusterCoef;

bl Indignl + bz Indi>n1

bl Indignl b] Indignl

The indicator function Ind(-) takes on the value | if the condition is satisfied and 0 otherwise.
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In particular, if n, = n, and b, = b,, i.e. if the adjacency
matrix is comprised of two nearly identical blocks, the fac-
torizability is F(A) ~ 1/2. Similarly, one can show that if
the matrix A is comprised of B identical blocks, then F(A)
~ 1/B.

This block diagonal network allows one to arrive at
explicit formulas for fundamental-, CF-based-, and
approximate CF-based network concepts, see Table 4.

In the following, we study the relationship between fun-
damental network concepts and their approximate CF-
based analogs in the limit when the block diagonal net-
work becomes approximately factorizable. Specifically,
we calculate network concepts in the limit b, - 0 when n,,
n, and b, are kept fixed. Under this assumption, b,— 0 is
equivalent to F(A) — 1. Then, one can easily show that

. . m -1 .

lim Connectivity; = 1 Connectivity o app,i
F(A)—1 m e

n —1

lim Densi = 1 Densi ,
F(A)>1 v n WCE app

. . . n — 1 . .

lim Centralization = Centralizationcg app .
EF(A)=1 m '

lim Heterogenei = Heterogenei ,
FATS1 geneity 8ENeLLY Cr app

. m —1)b +1

lim TopOverlap;; = (1—1T0 Overla, i
F(A)o1 p pz] "1b1 1 p pCF,app,l]

lim ClusterCoef; = ClusterCoe i
F(A)>1 fl fCF,app,l

For reasonably large values of n, (say n, > 20), these limits
illustrate Observation 2. Similarly, one can easily verify
Observation 3 and equation (16) in the case when the fac-
torizability F(A) is close to 1 and n, is reasonably large.

Discussion

This paper does not describe a new software or method for
constructing networks. Instead, it presents theoretical
results which clarify the mathematical relationship
between network concepts in module networks. A deeper
understanding of network concepts may guide the data
analyst on how to construct and use networks in practice.
Our results will pertain to any network that is approxi-
mately factorizable irrespective of its construction
method. While the term 'factorizable' network is new,
numerous examples of these types of networks can be
found in the literature, e.g. [38]. A recent physical model
for experimentally determined protein-protein interac-
tions is exactly factorizable [39]. In that model, the 'affin-
ity' a; between proteins i and j is the product of the
corresponding conformities. The conformities are approx-
imately given by CF,; = exp(-K;) where K; is the number of

http://www.biomedcentral.com/1752-0509/1/24

hydrophobic residues in the i-th protein. Another related
example is an exactly factorizable random network model
for which the edges between pairs of nodes are drawn
according to a linking probability function [40,41].

We find that in many applications, the conformity is
highly related to the first eigenvector of the adjacency
matrix. The idea of using a variant of the singular value
decomposition for decomposing an adjacency matrix has
been proposed by several authors [42-45]. However, we
prefer to define the conformity as a maximizer of the fac-

XX i (i~ ViV )y

torizability function Fy(v)=1- 3 for
PIDY i ()

the following reasons: First, the factorizability satisfies

that F,(CF) = 1 if, and only if, A is exactly factorizable net-

work with a;;= CF,CF;. Second, we prefer to define the con-
formity without reference to the diagonal elements a; of

the adjacency matrix. Third, the definition naturally fits
within the framework of least squares factor analysis
where conformity can be interpreted as the first factor
[46]. An algorithm for computing the conformity in gen-
eral networks is presented in the appendix. While network
analysis focuses on the adjacency matrix, factor analysis
takes as input a correlation or covariance matrix. In mod-
ule networks, the first factor (conformity) corresponds to
a normalized connectivity measure, see equation (16).
Future research could explore the network interpretation
of higher order factors.

The topological structure of complex networks has been
the focus of numerous studies, e.g. [7,8,16-18,20,38,47].
Here we explore the structure of special types of networks,
which we refer to as module networks.

To derive results for factorizable module networks, we
define several novel terms including a measure of network
factorizability F(A), conformity, CF-based network con-
cepts, approximate CF-based network concepts.

The first result (Observation 1) uses both PPI and gene co-
expression network data to show empirically that subnet-
works comprised of module nodes are often approxi-
mately factorizable. This insight could be interesting to
researchers who develop module detection methods.
Approximate factorizability is a very stringent structural
assumption that is not satisfied in general networks.
While modules in gene co-expression networks tend to be
approximately factorizable if the corresponding expres-
sion profiles are highly correlated, the situation is more
complicated for modules in PPI networks: only after
replacing the original adjacency matrix by a 'smoothed

Page 12 of 20

(page number not for citation purposes)



BMC Systems Biology 2007, 1:24

out' version (the topological overlap matrix), do we find
that the resulting modules are approximately factorizable.

The second result (Observation 2) shows that fundamen-
tal network concepts are approximately equal to their
approximate CF-based analogs in approximately factoriz-
able networks (e.g. modules). While fundamental net-
work concepts are defined with respect to the adjacency
matrix, approximate CF-based network concepts are
defined with respect to the conformity vector. The close
relationship between fundamental and approximate CF-
based concepts in module networks can be used to pro-
vide an intuitive interpretation of network concepts in
modules. We demonstrate that these high correlations
between module concepts remain significant even after
adjusting the analysis for differences in module size [see
Additional file 2].

The third result (Observation 3) shows that the mean
clustering coefficient is determined by the density and the
network heterogeneity in approximately factorizable net-
works. Further, the topological overlap between two
nodes is determined by the maximum of their respective
connectivities and the heterogeneity. Thus, seemingly dis-
parate network concepts satisfy simple and intuitive rela-
tionships in these special but biologically important types
of networks.

The fourth result (Observation 4) is that in approximately
factorizable networks, fundamental network concepts can
be expressed as simple functions of the connectivity.
Under mild assumptions, we argue that the clustering
coefficient and the topological overlap matrix can be
approximated by simple functions of the connectivity.

Our empirical data also highlight how network concepts
differ between subnetworks of 'proper' modules and the
subnetwork comprised of improper (grey) module nodes,
see Table 1. For all applications, we find that proper mod-
ules have high factorizability, high density, high mean
conformity. Based on our theoretical derivations, it comes
as no surprise that proper modules also have a high aver-
age clustering coefficient and a high centralization when
compared to the improper module. But we find no differ-
ence in heterogeneity between proper and improper mod-
ule networks.

As a consequence of approximate factorizability, network
concepts with disparate meanings in social network the-
ory are closely related in module networks. Our results
shed some light on the relationship between network con-
cepts traditionally used by social scientists (e.g. centraliza-
tion, heterogeneity) and concepts used by systems
biologists (e.g. topological overlap). For example, equa-
tion (13) shows that in module networks, the topological

http://www.biomedcentral.com/1752-0509/1/24

overlap between a hub gene and other module genes is
related to the centralization.

Conclusion

Using several protein-protein interaction and gene co-
expression networks, we provide empirical evidence that
subnetworks comprised of module nodes often satisfy an
important structural property, which we call 'approximate
factorizability'. In these types of networks, simple rela-
tionships exist between seemingly disparate network con-
cepts. Several network concepts with very different
meanings in general networks turn out to be highly corre-
lated across modules. These results are pertinent for sys-
tems biology since a biological pathways may correspond
to an approximately factorizable module network.

Methods

The adjacency matrix and notation

We study the properties of an adjacency matrix (network)
A that satisfies the following three conditions:

(A.1) A is symmetric and has dimension n x n.

(A.2) The entries of A are bounded within [0, 1], thatis, 0

<a;<1 forall 1 <i,j<n.

(A.3) The diagonal elements of A are all 1, that is, ;= 1
forall1 <i<n.

Matrix and vector notation
We will make use of the following notations. We denote
by e; the unit vector whose i-th entry equals 1 and by 1 the

'one' vector whose components all equal 1. The Frobenius

matrix norm is denoted by ||M||F = lzlzjmg . The

transpose of a matrix or vector is denoted by the super-
script *. For any real number p, we use the notation M?and
v? to denote the element-wise power of a matrix M and a
vector v respectively. We define the function §,(-) for a

vector v as S,(v) = 2; ulp = (v?)7 1. Further denote by I the
identity matrix and by diag(v2) a diagonal matrix with its
i-th diagonal component given by Vi2 =1, ..,n. We

define the maximum function max(M) as the maximum
entry of matrix M and max(v) as the maximum entry of
the vector v. Similarly we define the minimum function
min( - ). Also, we define mean(v) = S;(v)/n and variance(v)

= S,(v)/n - (Sy(v)/n)>.
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Uniqueness of the conformity for an exactly factorizable
network

One can easily show that the vector CF is not unique if an
exactly factorizable network contains only n = 2 nodes.
However, for n > 2 the conformity is uniquely defined
when dealing with a weighted network where a;; > 0.

Specifically, we prove the following statement. If A is an n
x n (n > 3) dimensional adjacency matrix with positive
entries (a;> 0), then the system of equations in (7) has at
most one solutlon CF with positive entries. If the solution
exists, it is given by

N ‘

(20)

pi
Ch = ) |
(1)

where p; = H;,l:l a;j denotes the 'product connectivity' of
the i-th node.

Proof: by assumption, we have a; = CF,CF, for a positive

vector CF and n > 3. Multiplying both sides of equation

(7) yields

n 2(n-1)
I, T =TL, 01, click, =TT |
Since H?Zl CE is positive, we find

1
H (H H )2(”1 . Similarly, eliminat-
lem

ing the ith row and column from A vyields

1 5 %
- (n-1)
Hl#iCFl = (Hrn#Hl#m,ialm )Z(n U= [HmHl#malm/(H#iali ) ) "

. Since CE, = H1n=1 CE /HZ#CFZ , we conclude that CF;is

uniquely defined by
1 1
CF, = (Hm]'[#ma;m)z("*ll) ULl aIM)Z(nll [ﬁam ]“
=1
(Hm;tilen,ia”")z(nil) (H Hl#mal”’)z(n "
1
-2
_ pi
1/(2(n-1))
(TT,10m )

Network concept functions and fundamental network
concepts

In general, we define a network concept function to be a ten-
sor valued function (e.g. the connectivity vector) that

http://www.biomedcentral.com/1752-0509/1/24

takes a square matrix (e.g. the network adjacency matrix)
as input.

Denote by M = [m;] a general n x n matrix. Then we will
study the followmg network concept functions:

Connectivity;(M) = ZM,-]- =ef M1,
) 2 jMij
Density(M) = W,
M1
Centralization(M) = _n [ max(MI) Density(M) |,
n-2 n-1
1" MM1
Heterogeneity(M) = —n( > )_ 1,
(1° M1)
e; MMe; + e Me;
TopOverlap;;(M) = — . z ,
min{e; M1,e; M1} +1—e; Me;
T
; MMMe;
ClusterCoef;(M) = LV
e MBy,;Me;

(21)

where the components of matrix B,, in the denominator
of the clustering coefficient function are given by b;; = 1 if
i #j and b; = Ind(m; > 0). Here the indicator function
Ind( ) takes on the value 1 if the condition is satisfied and
0 otherwise.

For the sake of brevity, we study only a limited selection
of network concept functions and do not claim that these
are more important than others studied in the literature.
Our general formalism for relating fundamental network
concepts to their approximate CF-based analogs should
allow the reader to adapt our derivations to alternative
concepts as well.

Now we are ready to define the fundamental network con-
cepts that are studied in this article.

Definition 5 (Fundamental Network Concept) The fun-
damental network concepts of a network A are defined by eval-
uating the network functions (equation (21)) on A -1, i.e.

FundamentalNetworkConcept = NetworkConcept(A - I).
As special cases of this definition, we find the following

concepts. The connectivity (also known as degree) of the
i-th node is given by

k; = Connectivity;(A—1) = Zaij.

j#i
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The line density [13] equals the mean adjacency, i.e

Densi(A— 1) 225 _ Si(k) _ mean(l) |
n(n-1) n(n—1) n—1
(22)
For notational convenience, we sometimes omit the refer-
ence to the adjacency matrix and simply write Density to
denote the fundamental network concepts.

The normalized connectivity centralization (also known
as degree centralization) [14] is given by

Centralization(A —1) =

L( max(k) _ Density (max(k) — mean(k)).

n-2\ n-1 ]=(n—2)(n—1)
(23)
Our definition of the network heterogeneity equals the

coefficient of variation of the connectivity distribution,
ie.

Heterogeneity(A—1) = \/ch(k) — \/sz)—l
mean(k) S, (k)

(24)
Note that Heterogeneity(b * M) = Heterogeneity(M) for a
scalar b # 0.

The clustering coefficient of node i is a density measure
of local connections, or 'cliquishness' [19,20]. Specifi-
cally,

X . . a-lal Aypi
ClusterCoef; =ClusterCoefi(A—I)=ﬂ= zlilzm#l i

" {(2#1‘““ )2 _21#"1'21}.

(25)

The topological overlap between nodes i and j reflects
their relative interconnectedness. It is defined by

lij + (,ll']'

TopOverlap;; = TopOverlap;;(A—1) = min {k; kj}+1-a;’
(26)

where [;= 2 a

uzi,jRiuuj-
Network concepts in exactly factorizable networks

In the following, we will present explicit formulas for the
fundamental network concepts in Definition 5 when the
adjacency matrix A is exactly factorizable, i.e. if a; =
CF,CF;. We define the CF-based adjacency matrix as fol-
lows

Acpi= CF CFr- diag(CF2) + 1, (27)

http://www.biomedcentral.com/1752-0509/1/24

where diag(CF?) denotes the diagonal matrix with diago-

nal elements CFi2 ,i=1..n.Then one can easily show that

for exactly factorizable networks

A =
NetworkConcept(A —1I)

Acr,
NetworkConcept(Acp —1).

(28)

Using our definition of network concept functions in
equations (21), one can easily derive the following formu-
las for NetworkConcept(Acy - I) in terms of the quantities

S,(CF) = %, CF .

Connectivity;(Acy —1) = CES;(CF)-CF?,
2 -
Density(Acg — 1) - SiCE) -S,(Ch)
n(n—1)
- iy
Centralization(Acp —1) = n 2( max(Conneclwtlty(ACF ) _ Density(Acp — 1) J,
n-— n-—

1(S,(CF)S (CF)* — 285(CF)S,(CF) + $4(CF))
(51(CF)? - 2(CP)? )
(S2(CF) = CR?)” = (84(CF) - CE')
(S1(CF) - CE)* = (S,(CF) - CE?)*
CFCF;(S,(CF) - CE? - CF}) + CECF;
min(CF($;(CF) - CE), CF;(8; (CF) - CF})) + 1 - CECF,
(29)
Approximate CF-based network concepts in general
networks
When A - I is used as input of a network concept func-
tion, it gives rise to a CF-based network concept as
detailed in the following

1,

Heterogeneity(Acp —1) = \/

ClusterCoef;(Acp — 1)

TopOverlap;i(Acp —1) =

Definition 6 (CF-based Network Concepts) Assume that
the conformity vector CF can be defined for a general adjacency
matrix A. Then the CF-based network concepts are defined by
evaluating the network concept functions on Ap- I = CF CF*-
diag(CF?), i.e.

NetworkConcept - := NetworkConcept(Aqy - I).

By definition, fundamental network concepts are equal to
their CF-based analogs if A is exactly factorizable.

In the following, we define approximate CF-based analogs
of the fundamental network concepts. The theoretical
advantage of these approximate CF-based concepts is that
they satisfy simple relationships. Define the approximate
CF-based adjacency matrix as follows

Actapp = CF CF. (30)
Note that only the diagonal elements differ between
Acr,qpp and Ay . We define the approximate CF-based net-
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work concepts by using ACp,, as input of the network
concept functions as detailed in the following

Definition 7 (Approximate CF-based Network Con-
cepts) The approximate CF-based network concepts of a net-
work A with conformity CF are defined by evaluating the
network functions (equations (21)) on Acy,ay, = CF CF7, i.e.

NetworkConceptcy, ., := NetworkConcept(Acg,qpp)-

In approximately factorizable networks, fundamental
network concepts are approximately equal to their
approximate CF-based analogs

Here we will provide a heuristic derivation of Observation
2. Since the components of CF are positive, one can easily
show that S,(CF) < S,(CF)2. For many large, exactly factor-
izable networks, the ratio S,(CF)/S,(CF)? is close to 0.
Since S,(CF)/S,(CF)?2 =

W&F—U—A@mﬂﬁﬂhawwﬁfm“mmmmm“A@‘

I~ Acp,4pp- Since the network concept functions are contin-
uous functions, this implies NetworkConcept(Acp- I) ~ Net-
workConcept(Acr,p)- These derivations are summarized in
the following

Observation 8 (Approximate Formulas for CF-based
Concepts) If S,(CF)/S,(CF)2= 0, then

NetworkConcept(Acy - I) = NetworkConcept(Acr, 4pp)-
(31)
In particular, for exactly factorizable networks (i.e. A - I =
Acp - I), this means that the fundamental network con-
cepts can be approximated by their approximate CF-based
analogs.

In our real data applications, we show empirically that
equation (31) holds even in networks that satisfy the
assumptions of Observation 8 only approximately.

In the appendix (equation (43)), we define a measure of
network factorizability as follows

l(A-D-(Ace - D|f2

(32)
-1l

F(A)=1-

Thus, in approximately factorizable networks (i.e. F(A)
closeto 1), A - I can be approximated by A - I. For a con-
tinuous network functions, this implies

NetworkConcept(A -I) = NetworkConcept(ACF - 1),

http://www.biomedcentral.com/1752-0509/1/24

i.e. the fundamental network concepts are approximately
equal to their CF-based analogs in approximately factoriz-
able networks. Observation 8 states that

NetworkConcept(Acy -1) = NetworkConcept(Acy,qpp)-

Combining the last two equations leads to NetworkCon-
cept(A - I) ~ NetworkConcept(Acr,,pp)- These derivations are
summarized as follows.

In approximately factorizable networks, the fundamental
network concepts are approximately equal to their
approximate CF-based analogs, i.e.

FundamentalNetworkConcept ~ NetworkConcept cy, .-

Construction of gene co-expression networks

Gene co-expression networks are constructed from micro-
array data that measures the transcriptional response of
cells to changing conditions. We consider the case of n
genes with gene expression profiles across m microarray
samples. Thus, the gene expression profiles are given by
an n x m matrix

X =[xyl = (2, Ux,)%i=1,...,mj=1,..,m,
(33)

where the i-th row & is the transcriptional responses of

the i-th gene.

Recently, several groups have suggested thresholding the
pairwise Pearson correlation coefficient cor(x; ;) in order
to arrive at gene co-expression networks, which are some-
times referred to as 'relevance' networks [11,32]. In these
networks, a node corresponds to the gene expression pro-
file of a given gene. The corresponding adjacency matrix is
determined from a measure of co-expression between the
genes. In the examples below, we will use the absolute
value of the Pearson correlation coefficient between the
gene expression profiles to measure co-expression.

To transform the co-expression measure into an adja-
cency, one can make use of an adjacency function. The
choice of the adjacency function determines whether the
resulting network will be weighted (soft-thresholding) or
unweighted (hard-thresholding). The adjacency function
is a monotonically increasing function that maps the
interval [0, 1] into [0, 1]. A widely used adjacency func-
tion is the signum function which implements 'hard'
thresholding involving the threshold parameter 7. Specif-
ically,

a;; = Signum(|cor(x;, x;)|, 7) = Ind(|cor(x;, x;)| = 7),
(34)
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where the indicator function Ind( - ) takes on the value 1 if
the condition is satisfied and 0 otherwise. Hard threshold-
ing using the signum function leads to intuitive network
concepts (e.g., the node connectivity equals the number
of direct neighbors), but it may lead to a loss of informa-
tion: if T has been set to 0.8, there will be no connection
between two nodes if their similarity equals 0.79.

To avoid the disadvantages of hard thresholding, we pro-
posed a 'soft' thresholding approach that raises the abso-
lute value of the correlation to the power S>1 [21], i.e.

a;; = Power(|cor(x; x;)|, B) = |cor(x; x))|/. (35)
In our yeast cell cycle gene co-expression network analy-
sis, we followed the analysis steps described in [21].
Briefly, we used the 2001 most varying and connected
genes. Next, we used the power adjacency function with g
= 7 (equation (35)) to construct a weighted gene co-
expression network and the signum adjacency function
with 7= 0.65 (equation (34)) to construct an unweighted
network.

Using our R software tutorial, the reader can easily verify
that our conclusions are highly robust with respect to a)
different ways of constructing co-expression networks and
b) different ways of constructing modules.

Availability and requirements
An R implementation and the data can be obtained from
the internet: http://www.genetics.ucla.edu/labs/horvath/

ModuleConformity/ModuleNetworks

Appendix: node conformity and factorizability of
a general network

Equation (20) provides an explicit formula for the con-
formity of a weighted, exactly factorizable network. For a
general, non-factorizable network, we describe here how
to compute the conformity by optimizing an objective
function. In the following, we assume a general n x n adja-
cency matrix A where n > 2. Letv = (v,v,, ...,v,) “be a vector
of length n. We could define the conformity as a vector v*
that minimizes the following objective function f(v) = %;
2j(a;; - vv))?. But instead, we find the following equiva-
lent formulation as a maximization problem more useful
since it naturally gives rise to a measure of factorizability.

Specifically, we define the objective function

2
HA—I+diag(v2)—va .

FA(U) —1— Zizj';ti(aij - UiVj)Z L

zizj:ti(aij)z

2
HA_IHF
(36)

It is clear that F,(CF) = 1 for an exactly factorizable net-
work with a;;= CF,CF;fori #j. Note that F4(v) <1 and F,(0

http://www.biomedcentral.com/1752-0509/1/24

) = 0. One can easily show that if v* maximizes F,(v), then
-v* also maximizes F,(v). Further, all components of v*
must have the same sign since otherwise, flipping the sign
of the negative components leads to a higher value of
F,(v). This leads us to the following

Definition 9 (Conformity, Factorizability) We define the
conformity CF as the vector with non-negative entries that
maximizes F,(v). If there is more than one such maximizer,

then a maximizer closest to k/ \/S;(k) is chosen. Further, we

define the factorizability F (A) as the corresponding maximum
value F,(CF).

Our definition of the conformity is a generalization of
Definition 7 since F(A) = 1 if, and only if, A is exactly fac-
torizable with a;; = CF,CF, for i # j. The advantages of this
Definition are briefly described in the discussion section.

In general, F,(v) may have multiple maximizers as can be
demonstrated with the block diagonal simulated example
(equation (17)) by choosing n, = n, and b, = b,. By form-
ing the first derivative of the factorizability function F,(v)
in terms of v;, one can show that a local maximum satisfies

2
2. 4;jCFj = CE Y CF}, (37)
j#i j#i
ie.
(A -1+ diag(CF?))CF = CF || CF |3 . (38)

Proposition 10 (Expressions for the Factorizability) If
the conformity vector CF of the adjacency matrix A exists, then
the factorizability F(A) is given by

_lAce =11 _ s,(cry - su(cP)

F(A)= 5 2 (39)
|A=1l |A=1l
|41+ diag(cry? ~cF cF® ’
Proof Since F(A)=1- 5 F
|A-1];
it will be sufficient to show that

l(A=D~(Ace =D} = A= 1]} | Ace ~1[}3. From the
definition of the Frobenius norm of a matrix B, one can
show that || B||12: = trace(B® B) where the trace of a matrix is

Thus,
l(A=D=(Ace =D = A= 1]} +[ Ack — 1|}, - 2x trace((A - I)(Acr = 1))

the sum of its diagonal elements.

. Using equation (38), we find that trace((A - I)(Aqp- 1)) =
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tr((A - I)CF CF?) - tr((A - I)diag(CF2)) = CF(A - I)CF =
lAce —1 ||12: :

l(a=D-(Acr =Dl =l A= 1]z = Ace = 1] The

Thus,

remainder of the proof is straightforward.

Equation (38) suggests that the conformity is an eigenvec-
tor of the 'hat' adjacency matrix

A = A -1+ diag(CP?).

An algorithm for computing the conformity is based on
the following

Lemma 11 If A denotes a symmetric real matrix with eigenval-
ues dy, ..., d, sorted according to their absolute values, i.e., |d|

>|d,| =...2|d,|, and the corresponding orthonormal eigenvec-
T 2 . P
tors are denoted by u,, ..., u,, then “A -w “ is minimized at
F

v* =

|d1| u,.

The proof can be found in Horn and Johnson (1991).

Denote by CF(i - 1) an estimate of the conformity CF.
Next define

A(i-1)=A-1I+diag(CF(i - 1)2). (40)
Define a new estimate of the conformity by
CF(i) =/ dy (i — Dy (i — 1), (41)

where Ell (i-1)and u; (i - 1) denote the largest eigen-

value and corresponding unit length eigenvector of A (i-
1). One can easily show that all the components of i (i

- 1) must have the same sign and we assume without loss
of generality non-negative components. Lemma 11 with A

= A (i- 1) implies that

“ A— I + diag(CF(i —1)*) — CF(i — 1)CF(i — 1)° i

> H A~ I + diag(CF(i —1)*) - CF(i)CF(i)"

2
e
Considering the diagonal elements, one can easily show
that

http://www.biomedcentral.com/1752-0509/1/24

” A~ + diag(CF(i —1)*) — CF(i)CF(i)" 12:

> “ A~ I + diag(CF(i)?) - CF(i)CF(i)" 12: .

Thus, we arrive at the following

F,(CF(i)) =2 F,(CF(i - 1)), (42)
which suggests a monotonic algorithm for computing CF.
Equation 16 suggests to choose k/.,/S;(k) as a starting

value of the algorithm. These comments give rise to the
following

Definition 12 (Algorithmic Definition of Conformity,
Factorizability) For a general network A, set CF(1) = k/

/S (k) and apply the monotonic iterative algorithm described
by equations (40) and (41). If the limit CF(x) exists, we
define it as the conformity CF = CF(0). Further, we define the
network factorizability as

l(A-D~(Ace - D
|a-1]2

F(A)=1- (43)

Note that the conformity satisfies equation (38) by defini-
tion of convergence. One can easily show that 0 < F(A) <
1. Further, one can easily show that F(A) = 1 if, and only
if, A is exactly factorizable with a;;= CF,CF, i.e. A -1 = Agp
-L

The algorithm described by equations (40) and (41) is
monotonic (equation (42)). It is a special case of an algo-
rithm described in [46] for fitting a least squares factor
analysis model with one factor. Theoretical properties of
the algorithm are discussed in [46] and [48].

We find that for most real networks, the conformity is
highly related to the first eigenvector of the adjacency
matrix, i.e. the conformity vector CF is roughly equal to
\/dT u, where d, is the largest eigenvalue of A and u, is the
corresponding unit length eigenvector with positive com-
ponents.
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Additional material

Additional file 1
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Additional file 3

Functional enrichment analysis (gene ontology) of the Drosophila PPI
modules (DAVID software).

Click here for file
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0509-1-24-S3 xls]

Additional file 4

Functional enrichment analysis (gene ontology) of the yeast PPI modules
(DAVID software).

Click here for file
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0509-1-24-84 xls]

Additional file 5

Functional enrichment analysis (gene ontology) of the yeast gene co-
expression modules (DAVID software).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
0509-1-24-S5.xls]

Additional file 2

Network concepts and module size. Descriptions of how module concepts
are related to module sizes in the Drosophila PPI, yeast PPI networks, and
yeast gene co-expression networks.

Click here for file
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