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Abstract

Background: Organisms live and die by the amount of information they acquire about their
environment. The systems analysis of complex metabolic networks allows us to ask how such
information translates into fitness. A metabolic network transforms nutrients into biomass. The
better it uses information on available nutrient availability, the faster it will allow a cell to divide.

Results: | here use metabolic flux balance analysis to show that the accuracy | (in bits) with which
a yeast cell can sense a limiting nutrient's availability relates logarithmically to fitness as indicated by
biomass yield and cell division rate. For microbes like yeast, natural selection can resolve fitness
differences of genetic variants smaller than 10-6, meaning that cells would need to estimate nutrient
concentrations to very high accuracy (greater than 22 bits) to ensure optimal growth. | argue that
such accuracies are not achievable in practice. Natural selection may thus face fundamental
limitations in maximizing the information processing capacity of cells.

Conclusion: The analysis of metabolic networks opens a door to understanding cellular biology

from a quantitative, information-theoretic perspective.

Background

Organisms need to acquire information about their envi-
ronment in order to survive and reproduce. They need to
respond to information about changes in temperature,
soil conditions, water availability, nutrient supply, preda-
tion pressure, and many other factors. The ability to
acquire and use such information arguably affects organ-
ismal fitness [1-6]. However, we know nothing about the
quantitative relationship between such information and
fitness.

In microbes, an important fitness component is a cell's
growth or cell division rate. The selection pressure to grow
rapidly during times of nutrient availability has left clear
traces in the evolutionary record, such as strong microbial
codon usage biases that allow high translation efficiency

of abundant proteins [7,8]. It has recently become possi-
ble to make quantitative predictions about a cell's maxi-
mal division rate, based on nearly complete information
about the metabolic networks that sustain cellular life [9-
16]. These metabolic networks comprise of the order of
103 chemical reactions for free-living organisms. Their
structure has been elucidated in several organisms by
manual curation, aided by functional genomic data
[9,11,12]. Flux balance analysis allows one to predict
those flows of matter — metabolic fluxes - through each
reaction of a network that are consistent with the laws of
mass conservation. More precisely, flux balance analysis
predicts ratios of metabolic fluxes, i.e., values of metabolic
fluxes relative to a reference flux that needs to be deter-
mined independently, for example through experimental
measurements. Together with the known biomass compo-
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sition of an organism, flux balance analysis can then also
identify the metabolic fluxes that maximize biomass pro-
duction. For organisms such as Saccharomyces cerevisiae
and common growth substrate compositions, such as
minimal media with glucose as a sole carbon source, the
predictions of flux balance about maximal biomass yield
are in good agreement with experimental data, where
available [14,17,18]. For other organisms and more unu-
sual environments [19-21] this does not always hold.
Strikingly, however, even in this case laboratory evolution
experiments can produce strains of organisms that show
the maximally predicted biomass yield within a short
amount of time [13,19,20,22]. I here use flux balance
analysis of the yeast metabolic network to explore the
relationship between environmental information and
how rapidly an organism produces biomass per unit time.

The kind and concentration of available growth substrates
influence a cell's maximal biomass yield [23-26]. Cells
have developed elaborate nutrient sensing mechanisms to
respond to changes in nutrient abundances. For example,
in yeast, dedicated glucose sensor proteins (Snf3, Rgt2) as
well as glycolytic intermediates form the beginning of a
signaling cascade. This cascade produces an integrated cel-
lular response that includes the expression of glucose
transporter genes (HXT1-HXT7), the expression of glyco-
lytic genes, as well as the repression of many other genes
[24,25]. Even though long-studied, glucose sensing is still
only qualitatively and incompletely understood. This
holds to an even greater extent for other sensing mecha-
nisms, such as those for phosphate and nitrogen [24,25].
The accuracy of the sensing mechanism is clearly impor-
tant for optimal growth, but there is an important asym-
metry: Overestimation of a nutrient concentration, e.g.
through overexpression of catabolic genes, will not lead to
sub-optimal growth due to metabolic undercapacity,
because the available nutrients can still be maximally
used. In contrast, underestimation and the resulting
undercapacity will lead to reduced growth. Information is
thus of greatest value from a metabolic perspective if it
prevents underestimation of nutrient concentrations, and
thus undercapacity of a nutrient utilization system. I will
thus focus primarily on the consequences of sensing
errors that lead to underestimates of nutrient concentra-
tions. Note that overestimation of nutrient concentration
may lead to sub-optimal growth for other reasons, reasons
that cannot currently be modeled in a metabolic context,
and that are discussed below.

Information acquired through nutrient sensing can be
represented as follows. Consider k& nutrients and their
actual concentrations N; (1 <i<k) in a cell's environment.
If a cell underestimates the actual nutrient concentration
in the environment for any one nutrient, then its "meas-
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urement" N;  of the actual nutrient concentration is such

that N;" <N,. Now subdivide the interval (0, N;) into n,

equal subintervals. If the cell can place (measure) the con-
centration of i within the interval (N;(n;-1)/n;, N;) then it
has I; = log, n; bits of information about this nutrient. If
the measurement error, when viewed as a random varia-
ble, has a symmetric or a uniform distribution within this
interval, then the expected sensing error is E; = N;/2n;.

Nutrient information and sensing error thus relate to each
other as

N
I; =logy ﬁ

i
Although E; and I; are equivalent, using I; has two advan-

tages. First, its units (bits) are canonical measures of infor-
mation [27]; second, information content is additive, that
is, if a cell has I; bits of information on nutrient j (1 <j <

k), then it has [ = 2].1 j bits of information about its

entire nutrient environment, if the nutrients occur inde-
pendently from one another, or if the cell measures them
independently from each other.

Flux balance analysis allows us to immediately assess the
fitness value of nutrient information for a cell, because a
cell's maximal biomass yield is a function of the measured

nutrient concentrations (N7",...,N}') and the extent to

which these concentrations differ from their actual value
(N1 ,..., Np.

Results

Diminishing returns on improved information acquisition
The relationship between information and fitness is best
explored for a defined environment, such as a minimal
growth medium. The environment I use contains NHj;,
inorganic phosphate (P;), sulfate, and glucose as the sole
carbon source. Oxygen is available as a terminal electron
acceptor. For simplicity, I first focus on a scenario where
information about all substrates except glucose is perfectly
accurate. I assume that the biomass yield Y per unit time
is linearly proportional to a cell's division rate G, a meas-
ure of fitness. In other words, Y = ¢G, ¢ being some con-
stant. | express the effect of incomplete information on
biomassyield Yass=1-Y/Y, . = 1-G/G,,.,, where Y, .. and
G hax are the maximally achievable biomass yields and cell
division rates, respectively, i.e., the yields and rates for
perfectly accurate glucose information. The quantity s can
also be thought of as a selection coefficient, as a measure
by how far a cell's fitness w = 1-s = G/G,,,, is reduced by
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Increased glucose information (bits, lower horizontal axis,
filled circles) and reduced sensing error (percent, upper hor-
izontal axis, open symbols) cause an increases in fitness (1-s)
as estimated through biomass production in the yeast meta-
bolic network via flux balance analysis. The vertical axis
shows the selection coefficient s, the difference to the maxi-
mal biomass yield at perfectly accurate information. Results
are nearly identical for the other four substrates, and are
shown for O, and NHj in the inset. The dashed horizontal
line demarcates a neutral zone, below which (s <7.33 x [0-8;
see text) growth rate increases are selectively neutral.

incomplete information. Figure 1 shows how a cell's fit-
ness depends on the amount of information the cell can
acquire about substrate concentration. Specifically, the
figure shows that the logarithm of fitness depends linearly
on information in bits. The relationship of s and informa-
tion is especially simple if a binary logarithm is used to
scale s, i.e., -log,(s) = I +1. This simple relationship
emerges numerically from flux balance analysis, but it
also has a straightforward intuitive explanation. If zero
bits of information are available for a growth-limiting
nutrient, then under the assumptions used here, the cell's
"guess" about nutrient concentrations will be randomly
distributed in the interval (0, N;), with an expected value
of N;/2. At this expected value, the division rate of a cell
will be half the maximal growth rate, such thats = 1/2. The
above relationship between s and I then holds, because -
log,(1/2) = 1 = I+1. If one bit of information is available
(I =1), then the cell's measurement will be randomly dis-
tributed in the interval (N;/2, N;), with an expected value
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of 3N,/4, leading to s = 1/4, and -log,(1/4) = 2 = I+1. The
same line of reasoning applies to ever increasing values of
I. The key assumption in this intuitive explanation is that
if one nutrient is growth-limiting, then cell division rate
depends linearly on the cell's ability to utilize this nutri-
ent. This is not obvious a priori, because the nutrient's
metabolic products may be fed into many different path-
ways that produce essential biomass components. The
distribution of these products among different pathways,
and the cell's final resulting division rate, might in princi-
ple depend on the concentration of the nutrient and on
that of other nutrients. However, flux balance analysis
shows that the dependency between nutrient concentra-
tion and biomass yield is quite simple and linear.

Nutrient sensing has much greater impact if the amount
of information acquired by a cell is low (Figure 1). For
instance, an increase in available glucose information
from 1 bit (low-high) to 2 bits (four distinct concentra-
tion values) causes a 36% increase in growth rate, whereas
an increase from 14 to 15 bit causes an increase of 0.0012
percent. For the purpose of comparison, the figure also
shows the relationship between fitness reduction and
sensing error in percent. Fitness reduction s decreases lin-
early with decreasing sensing error (note the double-loga-
rithmic scale). Quantitatively very similar linear-log and
linear relationships hold for the other four nutrients (data
for oxygen and ammonium are shown in the inset for Fig-
ure 1). In sum, the logarithm of division rate scales line-
arly with nutrient information in bits, and increased
information acquisition carries diminishing fitness
returns.

Even very small sensing errors cause adaptively significant
growth-rate differences

How large must a growth rate difference s (due to imper-
fect nutrient sensing) be in order to matter to natural
selection? The influence of genetic drift dominates over
that of natural selection, if a reduction in growth rate is s
< 1/4N, for diploid cells, where N, is the effective popula-
tion size [28,29]. N,, in turn, can be estimated from the
synonymous nucleotide diversity © in a population, and
the per-generation mutation rate p as N, = w/4p. Thus, if a
growth rate difference is smaller than s = p/x in a popula-
tion, then the associated growth rate difference is too
small to be seen by natural selection. The rate of muta-
tions per nucleotide and generation in Saccharomyces cere-
visiae has been estimated at p = 2.2 x 10-19[30]. In the
closest wild relative of yeast synonymous n has been esti-
mated as © = 0.003 [31]. The above parameters yield s =
7.33 x 108 as a "critical" growth rate difference that can
still be seen by natural selection. No data on synonymous
nucleotide diversity are available for S. cerevisiae itself, but
a recent estimate [32] on overall nucleotide diversity of & =
0.0046 (which is typically smaller than synonymous

Page 3 of 9

(page number not for citation purposes)



BMC Systems Biology 2007, 1:33

Q.s000
0.0500
0.00s0
0.0ooos
S5e-5
S5E-G
S58E-7

(5] ss0] el o)

SE-s

2 e

Frafeoy

Figure 2

EE A F- I

http://www.biomedcentral.com/1752-0509/1/33

& - o x>
- (=}

AL T o COirs)

Dependency of the selection coefficient s on glucose information and ammonium information.

diversity) suggests an upper bound of s = 4.78 x 108, ren-
dering the critical s I use here conservative. Growth rate
differences below this value are more strongly influenced
by drift than by selection.

The critical selection coefficient s is indicated in Figure 1
by a horizontal line. Below this line, any gains in informa-
tion do have negligible effect. Specifically, information
gains exceedingI = -log, s-1 = 22 bits are selectively neutral
for yeast.

Reduced fitness value of information for imperfect sensing
of several nutrients

Thus far, I assumed limited information for only one
nutrient, but what if information is limited for more than
one nutrient? Consider a genotype that systematically
underestimates the availability of one substrate, such as
glucose, because of a poor sensing mechanism. The result-
ing undercapacity to metabolize this substrate renders the
substrate growth-limiting. In this situation, accurate sens-
ing of the availability of another substrate, such as ammo-
nium, may not increase fitness. The reason is that growth
is limited not by a lack of information about ammonium,
but by a lack of information about glucose. As an exam-
ple, Figure 2 shows how information about ammonium
and glucose abundance (x- and y-axes) interact to produce
observed growth rate differences (z-axis). If ammonium
sensing is highly accurate, then increasing information
about glucose concentrations causes a linear increase in
fitness (the plane parallel to the yz-axes, at an accuracy of
24 bits for ammonium availability) exactly as in Figure 1.

However, if ammonium sensing is poor (the same plane,
but at zero bits of ammonium information) then good
glucose sensing yields no growth-rate gain, because it is
the poor ammonium-sensing that effectively limits
growth. If ammonium-sensing accuracy is intermediate,
then an improvement in glucose sensing causes a growth-
rate increase (smaller s) up to some number of bits. From
that point on, additional glucose-information has no
effect, because ammonium-sensing has become growth-
limiting. Exactly the same considerations hold if the
places of ammonium or glucose are interchanged (or for
any other two nutrients), which causes the symmetry of
the piecewise linear surface in Figure 2.

Figure 3 shows a different representation of the relation-
ship between the fitness value of information about one
growth substrate, and variation in information about
another growth substrate. The figure shows how increas-
ing information about glucose concentration (horizontal
axis) affects biomass yield and thus fitness (vertical axis),
if at the same time information measured about one or
more other nutrients varies randomly. For example, the
black bars correspond to a situation where only one other
substrate, oxygen, is measured at accuracies randomly and
uniformly distributed between 0 and 16 bits. For increas-
ing glucose information, the growth rate loss becomes
smaller, but never as small as when only glucose informa-
tion limits growth (note the logarithmic and linear verti-
cal axes in Figures 1a and 1¢, respectively). Even at glucose
information of 16 bits, the biomass yield loss by a cell rel-
ative to the maximal growth rate is of the order of s = 0.02
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Effect of glucose information (bits) on the selection coeffi-
cient s, if sensing accuracy for a varying number of other sub-
strates (differently shaded bars) varies uniformly in the
interval (0, 16) bits.

(2 percent, Figure 3, black bars), several orders of magni-
tude greater than the s  10-8 observed if oxygen sensing is
highly accurate. This means that inaccurate sensing of one
growth substrate severely limits the value of information
about other growth substrates. This limitation becomes
more severe as the number of growth substrates for which
uncertainty exists increases (black to white bars in Figure
3). Although the data is shown for specific growth sub-
strates, the results are insensitive to the kind of nutrients
for which imprecise information is available.

Figure 4, finally, shows the effect on biomass yield of the
total amount of information available, i.e., summed over
five key growth substrates in a minimal glucose medium,
where information on each growth substrate can vary
between 0 and 16 bits. Biomass yield increases (s
decreases) only slightly as the amount of available infor-
mation increases, until much information (>60 bits)
becomes available, at which point every additional bit has
a large effect. This means that the benefits of growth sub-
strate information are limited by the poorest sensing proc-
ess in a metabolic system. Only if every substrate-sensing
process has high accuracy, does increasing information
about any one substrate provide large benefits.

http://www.biomedcentral.com/1752-0509/1/33

Discussion

The notion that cells process information is not new [33].
However, it is usually expressed qualitatively, without ref-
erence to the amounts of information involved and what
exactly is being processed. Using metabolic flux balance
analysis, [ here take a small step towards a quantitative
approach to information processing in cells. Specifically, I
show that nutrient sensing inaccuracy is translated into
reduced cell growth. In the simplest possible case of infor-
mation limitation in only one nutrient, the relationship
between cell growth and information (in bits) is best
expressed as -log,(s) = I+1, where s is a selection coeffi-
cient, the difference between the maximal growth rate
with perfect sensing and the actually attained growth rate.

Population genetic considerations show that very small
selection coefficients of s < 10-¢ are still visible to natural
selection in microbes like yeast. Very small inaccuracies (=
0.0001 percent measurement error; Figure 1) can thus still
lead to growth rate loss with evolutionary consequences.
Yeast cells would need to sense nutrients at accuracies
greater than 22 bits to ensure optimal growth. Organisms
with larger population sizes would need even greater
accuracies.

Although nutrient sensing mechanisms are only incom-
pletely understood [23-25], several lines of evidence sug-
gest that the needed accuracies are unlikely to be
achievable in practice. First, with an average volume of 9.5
x 10-14liter for a yeast cell [34], a typical nutrient concen-
tration of 10 mmol 1! translates into 5.72 x 108 mole-
cules. Temporal random fluctuations scale as the square
root of the number of molecules [35], and will be of the
order of 0.004 percent, more than an order of magnitude
greater than the necessary accuracy. At physiological nutri-
ent concentrations, the needed sensing accuracy thus is
greater than random fluctuations in molecule numbers.

Second, although it is generally unknown how accurately
cells can sense molecule concentrations, some bench-
marks come from the accuracy with which cells can sense
concentration differences. Eukaryotic cells, including yeast,
can detect concentration differences of 1-10% across the
length of a cell [36]. Much smaller E. coli cells can detect
concentration differences of 0.01% by integrating infor-
mation over time during chemotactic swimming [37-41].
However, these accuracies are two orders of magnitude or
more smaller than the measurement error associated with
22 bit sensing accuracy of absolute nutrient concentra-
tions.

A third line of evidence comes from measurements of
gene expression noise. For optimal utilization of a nutri-
ent, several classes of molecules need to be expressed at a
minimum level determined by the nutrient concentra-
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The selection coefficient s depends nonlinearly on the total amount of information available for all five substrates. Information
about each substrate was varied in the interval (0, 16) bits. All data are for a minimal, aerobic medium with glucose as the sole
carbon source and the following five substrates: glucose, O,, phosphate, sulfate, and NH,.

tion. These include the nutrient sensors, the signaling
molecules needed to communicate the sensing informa-
tion to regulators of gene expression, and the nutrient uti-
lization enzymes themselves. Sensing is suboptimal if any
one of these classes of molecules is expressed at too low a
level. Concentrations of all gene products fluctuate in a
cell due to gene expression noise [38-42]. Although highly
expressed proteins show low expression noise, even
highly expressed yeast proteins may fluctuate in concen-
tration by about 10% around their mean [41]. If concen-
trations of sensing and utilization molecules need to be
fine-tuned for high sensing accuracy, then sufficiently
high sensing accuracy is not realistic. In sum, fluctuations
of nutrient concentrations, limits to detection of concen-
tration differences, and gene expression noise will con-
spire to prevent high-accuracy sensing of nutrient
concentrations  needed  for  optimal  growth.

A number of caveats to this approach are in order. First, I
have here emphasized sensing errors that lead to underes-
timation of substrate availabilities, because only such

errors lead to an undercapacity to metabolize nutrients.
Overestimation would lead to overcapacity of nutrient
utilization systems, which in itself would still lead to max-
imal growth. However, if overestimation causes a system-
atic overexpression of signaling or utilization molecules,
overestimation could carry an increased cost of gene
expression. Even though few genes might be involved,
these costs are not necessarily low. For example, in case of
the lactose operon of E. coli, overexpression of only three
lactose utilization genes in the absence of lactose leads to
a 5% reduction in growth rate (s = 0.05) [26], which is a
very large fitness loss compared to the small values visible
to natural selection [43]. Hundreds of genes can change
expression in response to nutrient availability in yeast
[44]. Because many of these genes do not encode meta-
bolic enzymes, it is not straightforward to predict the
ensuing change in expression cost from a metabolic
model. In addition, available quantitative information
about expression changes for such genes has very limited
accuracy for mRNA, and is generally unavailable for pro-
teins. Thus, although it would be highly desirable to
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understand both the growth cost of underestiming and
overestimating nutrient concentrations [44], a quantita-
tive analysis of such costs must await more complete char-
acterization of sensing pathways and gene expression
changes therein.

A second caveat is that selection may act concurrently on
multiple attributes of a metabolic system, not only on
nutrient sensing. One example comes from glucose limi-
tation experiments in chemostats, where a population's
environment is held constant for hundreds of genera-
tions. Consider a nutrient whose actual concentration is
N, and the value of its concentration sensed by a cell (pos-
sibly with some inaccuracies) is S(N). If the import system
for this nutrient is far from being saturated, which is likely
if the nutrient is at concentrations sufficiently low to be
growth limiting, then the cell's uptake rate U of this nutri-
ent is likely to be proportional to S(N), with some propor-
tionality constant ¢, i.e., U = ¢S(N). In this paper, I focus
on the value of improved nutrient sensing S(N). However,
the proportionality constant ¢ itself may be subject to
selection pressure, thereby increasing the efficiency of
uptake for a given S(N). For example, in yeast populations
cultivated during several hundred generations in a chem-
ostat, such increase in uptake efficiency occurs through
gene duplication and increased expression of hexose
transporter genes [45,46]. Note, however, that the con-
stant chemostat conditions of such experiments are likely
to be rare in the wild, where an exponentially growing
population rapidly exhausts any limiting nutrient source.

A final caveat is that it may not always be possible to sense
the availability of two compounds independently from
one another. One example is the sensing of glucose and
protons (H+*), where in yeast the glucose sensor Snf3p is
known to activate the proton pumping plasma membrane
ATPase [47].

Nutrient sensing systems are only as strong as their weak-
est link: Inaccurate sensing of one nutrient may strongly
reduce the fitness benefits of high quality sensing of other
nutrients. However, it is easy to see how multiple inde-
pendent mutations, each in a different nutrient sensing
system, may favor incremental improvements in the sens-
ing of all nutrients through natural selection. The reason
is that an allele that increases sensing quality for one
nutrient will increase fitness whenever that nutrient is lim-
iting, and be driven to fixation during such times. This
increases the value of better information for other nutri-
ents, and favors alleles that improve information acquisi-
tion for these nutrients, thus increasing the respective
mutations in frequency, and so on. At the end point of
many such evolutionary cycles stands a cell that achieves
the best possible nutrient sensing, given biophysical and
population size constraints.

http://www.biomedcentral.com/1752-0509/1/33

Recent work suggests that the lens of natural selection can
see seemingly minute changes in transcriptome and pro-
teome composition, such as single amino acid changes
and small changes in the expression of one gene [48]. The
observations made here likewise emphasize the impor-
tance of natural selection to shape nutrient sensing accu-
racy. In addition, they suggest the existence of biophysical
constraints that may severely limit the outcome of selec-
tion on high-accuracy nutrient sensing to biophysically
achievable, but suboptimal solutions. This perspective
only becomes possible through a system-wide analysis of
a metabolic network. An important task of future work
would be to quantify the constraints natural selection faces
in optimizing how cells acquire information.

Methods

Flux balance analysis [49] uses information about the sto-
ichiometry of all enzymatic reactions known to occur in
an organism, which is encapsulated in a stoichiometry
matrix S. At a metabolic steady-state, the vector of allowa-
ble metabolic fluxes v describing the rates through each
reaction in the network must fulfill the condition Sv = 0
S0 as to not violate mass conservation. For each v that is a
solution of this equation, cv (c being some real constant)
is also a solution, such that one can think of v as specify-
ing relative ratios of fluxes through a metabolic network.
Further constraints, such as irreversibility of some reac-
tions, and experimentally measured uptake fluxes of exter-
nal substrates can reduce the number of allowable fluxes
v in steady-state. Within the space of allowable fluxes one
can then use linear programming to determine the fluxes
that maximize or minimize any quantity that can be
expressed as linear combinations of individual metabolic
fluxes. An especially important such quantity is the bio-
mass growth flux itself.

The following substrate uptake fluxes (mmol substrate/h/
g dry weight) were used here (rounded to two significant
digits): Glucose: 15.3; O,: 2.4; Sulfate: 0.034; inorganic
phosphate P;: 0.09; ammonium NH;: 2.45. Among these
values, the glucose uptake flux v and oxygen uptake flux
Vo, stem from experimental measurements in an aerated
batch culture of S. cerevisiae [50]. I constrained these two
fluxes and then determined the maximal growth flux v,,,,
given these constraints, where the stoichiometry of the
growth flux is given in [12]. I then constrained the growth
flux to v,,,, (while still constraining v, v, to the above
values), and minimized the sulfate uptake flux for which
this growth flux could be observed. The resulting sulfate
uptake flux (see value above) is the smallest sulfate uptake
flux that can sustain the observed v,,,, with the given glu-
cose uptake flux. I subsequently carried out analogous
minimization procedures for the remaining two growth
substrates, thus arriving at the values listed above. This
combination of values has the advantage that reduction in
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any one nutrient uptake flux will lead to a reduction in
growth rate. In other words, no nutrient is in excess, and
accurate nutrient availability estimation is critical to sus-
tain maximal growth. All analyses were carried out with a
publicly available yeast metabolic model [12] and with
the FBA package "sbrt" (Wright and Wagner, unpub-
lished), using the commercial linear programming pack-
age CPLEX (ILOG, Mountain View, CA.). To estimate
expected growth rates for an amount of information I,
available for a given nutrient i, I translated I; into the
appropriate number of measurement intervals n;, accord-
ing to the relation I; = log, n; discussed in the main text.
The expected measured nutrient value then calculates as
N;(2n;-1)/2n;, where N; is the actual nutrient concentra-
tion represented through one of the uptake fluxes listed
above. Flux balance analysis was carried out with this
expected value to determine the growth rate achievable for
the corresponding amount of information.

As stated, nutrient concentrations are here represented
through nutrient uptake rates. That is, I implicitly assume
that if the concentration of a limiting nutrient changes by
x%, then a cell with access to perfect nutrient sensing
would also change its uptake rate of the nutrient by x%.
However, it must be clarified that nutrient uptake rates are
not necessarily proportional to nutrient concentrations,
even if cells have perfect information. Specifically, if there
is so much of a nutrient that the nutrient uptake transport-
ers are saturated, changes in extracellular nutrient concen-
trations will have no effect on nutrient uptake. However,
this scenario is very different from my focus here, namely
an environment where the concentration of individual
nutrients limits growth, and where information about
such nutrients matters to the cell.
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