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Abstract

Background: Identifying large gene regulatory networks is an important task, while the acquisition
of data through perturbation experiments (e.g., gene switches, RNAI, heterozygotes) is expensive.
It is thus desirable to use an identification method that effectively incorporates available prior
knowledge — such as sparse connectivity — and that allows to design experiments such that maximal
information is gained from each one.

Results: Our main contributions are twofold: a method for consistent inference of network
structure is provided, incorporating prior knowledge about sparse connectivity. The algorithm is
time efficient and robust to violations of model assumptions. Moreover, we show how to use it for
optimal experimental design, reducing the number of required experiments substantially. We
employ sparse linear models, and show how to perform full Bayesian inference for these. We not
only estimate a single maximum likelihood network, but compute a posterior distribution over
networks, using a novel variant of the expectation propagation method. The representation of
uncertainty enables us to do effective experimental design in a standard statistical setting:
experiments are selected such that the experiments are maximally informative.

Conclusion: Few methods have addressed the design issue so far. Compared to the most well-
known one, our method is more transparent, and is shown to perform qualitatively superior. In the
former, hard and unrealistic constraints have to be placed on the network structure for mere
computational tractability, while such are not required in our method. We demonstrate
reconstruction and optimal experimental design capabilities on tasks generated from realistic non-
linear network simulators.

The methods described in the paper are available as a Matlab package at

http://www.kyb.tuebingen.mpg.de/sparselinearmodel.

Background dreds of genes in parallel, and many approaches to iden-
Retrieving a gene regulatory network from experimental  tify network structure from micro-array experiments have
measurements and biological prior knowledge is a central ~ been proposed. Models include dynamical systems based
issue in computational biology. The DNA micro-array  on ordinary differential equations (ODEs) [1-5], Bayesian
technique allows to measure expression levels of hun-  networks [6,7], or Boolean networks [8]. We focus on the
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ODE setting, where one or few expression levels are per-
turbed by external means, such as RNA interference [9],
gene toggle switches (plasmids) [10], or using diploid het-
erozygotes, and the network structure is inferred from
changes in the system response. So far only few studies
investigate the possibility of designing experiments
actively. In an active setting, experimental design is used to
choose an order of perturbations (from a set of feasible
candidates) such that maximum novel information about
the underlying network is obtained in each experiment.
Multi-gene perturbations are becoming increasingly pop-
ular, yielding more informative data, and automated data-
driven design technologies are required to deal with the
combinatorial number of choices which can be opaque
even for a human expert.

Identifying (linear) ODE systems from observations and
experimental design are well developed within the control
community [11]. However, in the systems biology con-
text, only very few measurements are available compared
to the dimension of the system (i.e. number of genes), and
experiments leading to such observations are severely
restricted. Biological measurements are noisy, and time
resolution is low, so that in practice only steady states of a
system may be accurately measurable. On the other hand,
there are no real-time requirements in biological control
applications, and more advanced models and analysis can
be used. A large body of biological knowledge can be used
to counter the small number of observations, for example
by specifying a prior distribution within a Bayesian
method. The standard system identification and experi-
mental design solutions of control theory may therefore
not be well-suited for biology.

We propose a full Bayesian framework for network recov-
ery and optimal experimental design. Given many
observed genes and rather few noisy measurements, the
recovery problem is highly under-determined, and a prior
distribution encoding biological knowledge about the
connectivity matrix does have a large impact. One of the
key assumptions is network sparsity, which holds true for
all known regulatory networks. We adopt the linear
model frequently used in the ODE setting [1,2,4,5,12],
but use a sparsity-enforcing prior on the network matrix.
The sparse linear model is the basis of the Lasso [13], pre-
viously applied to the gene network problem in [12].
However, they simply estimate the single network maxi-
mizing the posterior probability from passively acquired
data, and do not address experimental design. We closely
approximate the Bayesian posterior distribution over con-
nectivity matrices, allowing us to compute established
design criteria such as the information gain, which cannot
be done using maximum a posteriori (MAP) estimation.
The posterior distribution cannot be computed in closed
form, and obtaining an accurate approximation efficiently
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is challenging. We apply a novel variant of the recent
expectation propagation algorithm towards this end.

Many other approaches for sparse network recovery have
been proposed. In [1], the space of possible networks (as
computed by a SVD) is scanned for the sparsest solution.
A sparse Bayesian model is proposed in [14], see also [15].
While there is some work on experimental design for
boolean networks [16] and Bayesian causal networks
[17], none of the above mentioned methods have been
used towards this goal. Experimental design remains fairly
unexplored in the sparse ODE setting, with the notable
exception of [3]. We compare our approach to theirs, find-
ing our method to perform recovery with significantly less
experiments and running much faster. Our method is
more robust to observation noise frequently present for
biological experiments, and somewhat more transparent
and in line with statistical practice. Finally, their method
consists of a combinatorial search and is therefore only
applicable to networks with uniformly small in-degree, an
assumption invalid for many known regulatory networks,
e.g. [18].

Results and Discussion

Algorithm

Our Model

We start with the common linearized ODE model: expres-
sion levels x(t) € RN of N measured genes at time ¢ are
modeled by the stochastic dynamical system

dx(t) = f(x(6))dt - u(t)dt + AW(0). (1)

Here, f: RN — RN describes the non-linear system dynam-
ics, u(t) is a user-applied disturbance, and dW (t) is white
noise. With u(t) = 0, we assume that the system settles in
a steady state, and we linearize the system around that
point. In this setting, a perturbation experiment consists
of applying a constant u(t) = u, then measuring the differ-
ence x between new and undisturbed steady state. Under
the linearity assumption, we have that

u=Ax+g¢ (2)

where A is the system matrix with entries a;;, the non-zero
a;; describing the gene regulatory network. The noise éis
assumed to be i.i.d. Gaussian with variance ¢2. We focus
on steady state differences, as in [3]. Time course measure-
ments are modelled linearly in [4,5], and our method can
easily be formulated in their setup as well. We assume that
the disturbances u do not drive the system out of the lin-
earity region around the unperturbed steady state. While
this seems a fairly strong assumption, our simulation
experiments show that effective network recovery is possi-
ble even if it is partly violated.
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Our contribution to this standard linear regression formu-
lation is a Bayesian model, incorporating prior informa-
tion about A, namely its sparsity. The unknown matrix A
is inferred via a posterior distribution, rather than merely
estimated, allowing us to perform experimental design
within a statistically optimal framework.

Observations are denoted X = (x; ... x,,)7, U = (u; ... u,)7,
and the Bayesian posterior is

P(A|U, X) « P(U]A, X)P(A), 3)

where the likelihood is

m 5 .
PU| A, X) = Hj:1N(uj | Ax;,0°I), owing to (2).

Note that typically m < N, certainly in early stages of exper-
imental design, and U = XA has no unique solution. In
this situation, the encoding of knowledge in the prior
P(A) is of large importance. True biological networks are
known to be sparsely connected, so we would expect
sparse network matrices A. The prior should force as many
entries of A close to zero as possible, at the expense of
allowing for fairly large values of a few components. It
should be a sparsity prior.

We employ a Laplace prior distribution

T

LOR | LR R dal
ij

e
2

It is instructive to compare the Laplace against the Gaus-
sian distribution, which is commonly used as prior in the
linear model. The Laplace puts much more weight close to
zero than the Gaussian, while still having higher probabil-
ities for large values. The implications are depicted in Fig-
ure 1, see also [15]. In fact, the Gaussian prior is used with
the linear model mostly for convenience, since the poste-
rior is Gaussian again and can be computed easily [19].
Even within our framework, computations with a Gaus-
sian prior are significantly more efficient than with a
Laplace. However, our results prove that theoretical argu-
ments in favour of the Laplace prior do have real practical
weight, in that the computational advantages with the
Gaussian are paid for by a much worse predictive accu-
racy, and identification needs significantly more measure-
ments than for the Laplace.

The bi-separation characteristic of the Laplace prior into
few large and many small parameters (which is not
present for the Gaussian) is embodied even more strongly
in other sparsity priors, such as "spike-and-slab" (mixture
of narrow and wide Gaussian), Student-t, or distributions
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Gaussian Laplace Very Sparse Distribution
Figure |

The Choice of Model. Three prior distribution candidates
over network matrix coefficients: Gaussian, Laplace, and
"very sparse” distribution (P(a;) o< exp(- 7]q;|%4)). We show
contour plots of density functions over two entries, coloured
areas contain the same probability mass for each of the dis-
tributions. Upper row: prior distributions (unit variance), and
likelihood for single measurement (linear constraint with
Gaussian uncertainty). Lower row: corresponding posterior
distributions. The Gaussian is spherically distributed, the oth-
ers shift probability mass towards the axes, giving more mass
to sparse tuples (> | entry close to 0). This effect is clearly
visible in the posterior distributions. For the Gaussian prior,
the area close to the axes has rather low mass. The Laplace-
posterior is skewed: more mass is concentrated close to the
vertical axis. Both posteriors are log-concave (and unimodal).
The "very sparse"-posterior is shrunk towards the axes more
strongly, sparsity is enforced stronger than for the Laplace
prior. But it is bimodal, giving two different interpretations
for the single observation. This multimodality increases
exponentially with the number of dimensions, rendering
accurate inference very difficult. The Laplace prior therefore
is a good compromise between computational tractability
and suitability of the model.

based on a-norms, | x| = > lx |“, with a < 1, see also

Figure 1. However, among these only the Laplace distribu-
tion is log-concave, i.e. has a log-concave density func-
tion, leading to a posterior whose log density is a concave
function, thus has a single local maximum. This simplifies
accurate inference computations significantly. For a non-
log-concave prior, posteriors are usually multi-modal,
spreading their mass among many isolated bumps, and
the inference problem is in general at least as hard as the
combinatorial problem of testing all possible sparse
graphs. For such posteriors, all known methods for
approximate Bayesian inference tend to either perform
poorly or require an excessive amount of time. Further-
more, they tend to be algorithmically unstable, and the
approximation quality is hard to assess. Robustness of the
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inference approximation is important for experimental
design, since decisions should not be based on numerical
instability artefacts of the method, but on the data alone.
These points motivate our choice of a Laplace sparsity
prior.

Note that the Laplace prior does not imply any strict con-
straints on the graph structure, i.e. the sparsity pattern of
A, in contrast to other combinatorial approaches which
can be run affordably only after placing hard constraints
on the in-degree of all network nodes [3]. The Laplace
prior P(A) and the resulting posterior have densities, so
that the probability of a matrix A having entries exactly
equal to zero vanishes. Sparsity priors with point masses
on zero have been used in Statistics, but approximate
Bayesian inference for such is very hard in general (such
priors are certainly not log-concave). We predict discrete
network graphs from our posterior as follows. For a small
threshold ¢, we take a;; to represent an edge i < j iff [a;| >
d,- Moreover, the marginal posterior probability of {|a;| >
J,} is used to rank potential edges i < j.

The posterior for the sparse linear model with Laplace
prior does not fall into any standard multivariate distribu-
tion family, and it is not known how to do computations
with it analytically. On the other hand, experimental
design requires a good approximation to the posterior,
which can be updated efficiently in order to score an
experiment. Denote the observations (experiments)
obtained so far by D. From (3) and (4), we see that the
posterior of A, in that

P(A|D)= H,-P(AiT,- | D), where A/. is the i-th row of A.

factorizes w.r.t. rows

The factors are joint distributions over N variables. We
noted above that these factors are log-concave, and thus
have a single local maximum and convex upper level sets
(see Figure 1). These features motivate approximating
them by Gaussian factors, so that a posterior approxima-

tion is obtained as Q(A) = []; Q( AZ .) with multivariate

Gaussians Q( AiTI .). The approximate inference method

we use is a novel variant of expectation propagation (EP)
[20,21]. Our approach deals correctly with very underde-
termined models (m << N in our setup), where previous
EP variants would fail due to severe numerical instability.
Details are provided in the Methods section, see also [22].

Experimental Design

In our setup, an experiment consists of applying a con-
stant disturbance u to the system, then measuring the new
steady state. With current technology, such an experiment
is expensive and time-consuming, especially if u is to be
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controlled fairly accurately. The goal of sequential experi-
mental design is to choose the next experiment among a
set of candidates (of about the same cost), with the aim of
decreasing the uncertainty in A using as few experiments as
possible. A successful design methodology allows to obtain
the same conclusion with less cost and time, compared to
doing experiments at random or even following an
exhaustive coverage. To this end, an information value
score is computed for each candidate, and the maximizer
is chosen.

Different costs of experiments can be considered by mul-
tiplying the information value score with the costs. How-
ever, note that if the costs are extremely different,
experiment design is often not necessary since the costs
alone determine what should be done next.

A straightforward choice of an information value score is
the expected decrease in uncertainty. In general, experi-
mental design thus cannot be done without a representa-
tion of uncertainty in A, and the Bayesian framework
maintains such a representation at its core, namely the
posterior. Methods based solely on maximum likelihood
or maximum a posteriori estimation (such as Lasso) fail to
represent uncertainties. Denote the current posterior by
Q(A) = Q(A|D). If (u., x.) is the outcome of an experi-
ment, let Q'(A) = Q'(A|D v {(u-, x.)}) be the posterior
including the additional observation. Different informa-
tion value scores have been proposed for experimental
design, see [23] for an overview. A measure for the
amount of uncertainty in Q is the differential entropy E,
[- log Q], so a convenient score would be the entropy dif-
ference Ej, [- log Q] - E [- log Q']. A related score is the
information gain S(u., x.|D) = D[Q' || Q] = E,, [log Q" - log
Q]. Here, D[Q' || Q] is the relative entropy (or Kullback-
Leibler divergence), a common measure for the "cost" (in
terms of information) of replacing Q' by Q. The inclusion
of a new experiment leads precisely to the replacement Q
— Q/, so the information gain is well-motivated in our
setup. While scores such as information gain or entropy
difference are hard to compute for general distributions
Q, Q/, this can be done straightforwardly for Gaussians. If

Q(a) =N(h, %), Q'(a) =N(h',X)and a = A,T , the infor-

mation gain is

%(log|M|+trM_I—N+(h'—h)TZ_1(h'—h), (5)

with M = (2')-1%, which can be computed very efficiently
in our framework.

Page 4 of 15

(page number not for citation purposes)



BMC Systems Biology 2007, 1:51

The outcome (u., x.) of an experiment is of course not
completely known before it is performed. The central idea
of Bayesian sequential design is to compute the distribu-
tion over outcomes of the experiment, based on all obser-
vations so far, with which to average the score S(u., x.|D).
Thus, some experimental candidate e is represented by a
distribution Q,(- |D) over (u., x.). In the setting of this

paper, u. is completely known, say u. = u(®) for candidate
e, although in an extended setting, ¢ might only specify a
Ux = u(e),

distribution Given

Qe(u.,x. [D)=1,, _,
pled from easily: first, draw A ~ Q(A|D), then x. = A-1(u. -

&), &~ N(0, &2I). In general, the information value for

over Us.

(e]}Q(x* | D,u,), which can be sam-

candidate e is given as S(e | D) = E, [S(u.,x. | D)], which
specializes to
S| D)= S(u, |D)=E Q) PIQ 1] Q]] in our setup

here.

Testing

In the literature, there are some small networks with
known dynamics, e.g. the Drosophila segment polarity
network [24]. However, a thorough evaluation of our
method requires significantly larger systems for which the
dynamics are known, so that disturbance experiments can
be simulated, and the predictions of our method can be
verified. We are not aware of such models having been
established for real biological networks yet, the DREAM
project [25] aims at providing such data in the future. We
therefore concentrate on realistic "in-silico" models,
applying our method to many randomly generated
instances with different structures and dynamics in order
to obtain a robust evaluation and comparison.

We simulate the whole network identification process.
First, we generate a biologically inspired ground-truth net-
work together with parameters for a numerical simulator
of nonlinear dynamics. We feed our method with a
number of candidate perturbations {u.}, among which it
can choose the experiments to be done. If some u. is
selected, the corresponding x. is obtained from the simu-
lator, and (u., x.) is included into the posterior as new
observation. We score the current posterior Q(A) against
the true network after each inclusion, comparing our
method against variants in different settings. Free hyper-
parameters (7, 02) are selected individually for each of the
methods to be compared (see Methods section). We also
compare against the experimental design method pro-
posed in [3], and finally show results on the real, but
small Drosophila segment polarity network [24].

http://www.biomedcentral.com/1752-0509/1/51

Network Simulation

Common computational models of sparse regulatory net-
works often build on the scale-free or the small-world
assumption [26]. In small world networks the average
path length is much shorter than in a uniform random
network. We sample such small-world networks with N =
50 nodes (unless otherwise said), see Figure 2 for an
example. Further details about network generation and
properties are given in additional file 1.

For a given network structure, we sample plausible inter-
action dynamics using Hill-type kinetics, inspired by the
model in [2]. The non-linear function in (1) is

X
(x -V ,71
fl( ) di di+xi

xi 'Y
I+Aj| —
Ki 1
+V3i H / H n
jeAi (i ' jer; (x; \'H
— 1

(6)
where A;(7;) are the activating (inhibitory) parents of

gene i. The parameters in (6) and the way they are ran-
domly sampled are described in additional file 1. Pro-
posed system equations are subject to the condition, that
the model produces dynamics with a reasonable stable
steady state.

Each observation (u, x) consists of a constant disturbance
u and its effect x, being the difference between a new (per-
turbed) and the old (unperturbed) steady state. Distur-
bance candidates were restricted to a small number r of
non-zero entries, since experimental techniques for dis-
turbing many genes in parallel by tightly controlled
amounts are not yet available. All non-zero u;are in {+v},
where the sign is random, so ||u]| is the same for all u. We
measure ||u|| in units given by the average relative change
in steady state when such disturbances u are applied. We
use a pool of 200 randomly generated candidates. The
SDE simulator can be used with different levels of noise,
measured in terms of the signal-to-noise ratio (SNR), i.e.
the ratio of ||u|| and the standard deviation of the result-
ing ¢in (2).

All results are averaged over 100 runs with independently
drawn networks. In the comparative plots presented
below, the different methods all see the same data in each
run.
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Figure 2

An Example Network. Small-world network of N = 50 nodes. Arrowless edges are bi-directional. "Gene names" are ran-
domly drawn. Some nodes have rather high in-degree, characteristic of real biological networks, e.g. [18].

Evaluation Criterion

The output from a regulatory network identification
method most relevant to a practitioner is a ranking of all
possible links, ordered by the probability that they are
true edges. With this in mind, we choose the following
evaluation score, based on ROC analysis.

At any time, our method provides a posterior Q(A), of
which at present we only use the marginal distributions
Q(a;). We produce a ranking of the edges according to the
posterior probabilities Q({|a;| > 6,}), where 6,= 0.1 in all
experiments. J, was calibrated against average component

sizes |a;|, which are roughly given through the dominant

time scales in the dynamical system. The predicted rank-
ings are robust against moderate changes of &,.

In a standard ROC analysis, the true positive rate (TPR) is
plotted as a function of the false positive rate (FPR), and
the area under this curve (AUC) is measured. This is not
useful in our setting, because only very small FPRs are
acceptable at all (there are N2 potential edges). Our iAUC
score is obtained by computing AUC only up to a number
of FP equal to the number of edges in the true network,
normalized to lie in [0, 1]. For N = 50, the "baseline" of
outputting a random edge ranking has an expected iAUC
of 0.02. Furthermore, on average about 25% of the true
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edges are "undetectable"” by any method using the linear-
ized ODE assumption: although present in the nonlinear
system, their entries a;; are very close to zero, and they do
not contribute to the dynamics within the linearization
region. Such edges were excluded from the computation
of iAUC, for all competing methods.

Discussion

In Figure 3, we present reconstruction curves for our
method versus competing techniques, lacking novelties of
our approach (optimal experimental design, Laplace spar-
sity prior). Very clearly, optimal design helps to save on
costly and time-consuming experiments. The effect is
more pronounced for the Laplace than for the Gaussian
prior. The former is a better prior for the task, and it is well
known that the advantage of designed versus random
experiments scales with the appropriateness of the model.
In this case, the iAUC level 0.9 is attained after 36 experi-
ments with designed disturbances, yet only after 50 meas-
urements with randomly chosen ones, thus saving 30% of
the experiments.

In general, the model with Laplace prior does significantly
better than with a Gaussian one (7 of the Laplace and the
variance of the Gaussian prior were of course selected
independently). The difference is most pronounced at

T T 1
—— 1D |

0.9 LM - A
—— LR l
GD
0.8 |

——— GR

iAUC

0 5 10 15 20 25 30 35 40 45 50
Experiment number

Figure 3

Reconstruction Performance for Different Methods.
Reconstruction curves for experiments (gene expression
changes of 1%, SNR 100, r = 3 non-zeros per u). LD: Laplace
prior, experimental design. LR: Laplace prior, random exper-
iments. GD: Gaussian prior, experimental design. GR: Gaus-
sian prior, random experiments. LM: Laplace prior, mixed
selections (first 20 random, then designed). Error bars show
one standard deviation over runs. All visually discernible dif-
ferences in mean curves of different methods are significant
under the t-test at level 1%.
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times when significantly less than N experiments have
been done and the linear system (2) is strongly under-
determined. This confirms our arguments in favour of the
Laplace prior.

The systematic underperformance of the most direct vari-
ant LD of our method, up to about N/2 observations, is
not yet completely understood. One should be aware that
aggressive experimental design based on very little knowl-
edge can perform worse than a random choice. This is a
variant of the well-known "explore-exploit" trade-off [27],
which can be countered by either specifying prior knowl-
edge more explicitly, or by doing a set of random inclu-
sions (explore) before starting the active design (exploit).
This is done in the LM variant.

In Figure 4, experimental design is compared to the ran-
dom experiment choice setting, both with a Laplace prior.
In the left panel, we vary the number r of non-zero entries
in the disturbances u. Recall that large r are in fact unreal-
istic in experimental techniques available today, but may
well become accessible in the future. The less constraints
there are on u, the more information one may obtain
about A in each experiment, and the better our method
performs. This is in line with linear systems theory, where
persistent excitations [11] (i.e. full u's) are known to be
most effective for exploring a system. The edge of experi-
mental design is diminished with larger r. This is plausi-
ble, in that the informativeness of each u increases
strongly with more non-zeros, thus the relative differences
between u's are smaller. Experimental design can outper-
form random choices only if there are clear advantages in
doing certain experiments over others.

The middle panel in Figure 4 explores effects of different
sizes ||ul|, i.e. different perturbation strengths (here, r = 3,
and the noise in the SDE is very small). For larger | |u||, the
real non-linear dynamics deviate more and more from the
linearized ones, thus decreasing recovery performance
above about 5%. On the other hand, larger ||u|| would
result in a better SNR for each experiment, given that non-
linear effects could be modelled as well. This is not yet
done in our method, but these shortcomings are shared
by all other methods relying on a linearization assump-
tion. It is, however, encouraging that our method is quite
robust to the fact that even at smaller ||u||, the residuals &
behave distinctly non-Gaussian (occasional large values).

The right panel in Figure 4 shows how increasing stochas-
tic noise in (1) influences network recovery. We keep r =
3 and set ||u|| to generate steady state deviations of 1%.
Good performance is obtained at SNRs beyond 10. With
a SNR of 1, one cannot expect any decent recovery with
less than N measurements. At all SNRs shown, the net-
work was recovered eventually with more and more exper-
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Type of Pertubations

Pertubation Strength
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Stochastic Noise

1 1
I .0 09

08 08
07 07
06
05
0.4

IAUC averaged
°
&

IAUC averaged

03 03
02 0.2
0.1 0.1
4 0
1" 2 3 5 20*  non-sparse’ 0.1%"
Number of Pertubations per Experiment

0.5 %" 1%

Figure 4

I .0

IAUC averaged
o
&

0
5%" 10 %* 20 %* 50 % 1000 316" 100* 32* 10* 3 1

change in steady state caused by perturbation SNR

Reconstruction Performance for Different Experimental Conditions. Comparison between LD (Laplace, design) and
LR (Laplace, random experiments) under different conditions. Score is average iAUC after 25, ..., 50 experiments. (Left):
Number r of non-zero u coefficients in each disturbance varied, keeping ||u|| constant. (Middle): Norm ||u|| of disturbances
varied, while keeping r = 3 and low noise level. (Right): Stochastic noise in the data (1) varied, for constant ||u]|, r = 3. Settings
marked with *: LD is significantly superior to LR, according to t-test at level |%.

iments, but this is probably not an option one has in
current biological practice.

Comparison to Tegnér et.al

The method proposed in [3] is state-of-the-art for experi-
mental design applied to gene network recovery, and in
this section, we compare our method against theirs. Their
approach can be interpreted in Bayesian terms as well, this
is detailed in additional file 1.

In contrast to our method, they discretize the space of pos-
sible matrices A. Observations are used to sieve out candi-
dates which are not "consistent" with all measurements so
far. They have to restrict the maximum node in-degree for
each gene to 3 in order to arrive at a procedure of reason-
able cost. To our knowledge, the code used in [3] has not
been released. We implemented it, following all details in
their paper carefully (some details of our re-implementa-
tion are given in additional file 1). In general, the diago-
nal of A (self-decay rates) is assumed to be known in [3].
For the comparison, we modified our method to accept a
fixed known diag A and changed the iAUC score not to
depend on self-edges.

Results of a direct comparison are shown in Figure 5, with
and without the proposed optimal design methods. Due
to the high resource requirements of the method in [3],
we use networks of size N = 20 (simulated as above),
restricted to in-degrees at most 3. In general, our method
performs much better in recovering the true network. This
difference is robust even to significant changes in the
ground truth simulator. We find that their method is very
sensitive to measurement and system noise, or to viola-
tions of the linearization assumption, whereas our tech-
nique is markedly more robust w.r.t. all these. We give

some arguments why this might be the case. Firstly, their
"consistency" sieve of A candidates in light of measure-
ments is impractical. After every experiment a number of
inconsistent A is rejected from consideration, and noisy
experiments may well lead to a wrong decision. Any future
evidence for such a rejected solution is, however, not con-
sidered any more. At the same time, an experiment does
not help to discriminate between matrices which are still
consistent afterwards. Another severe problem with their
approach lies in the discretization of A entries. A histo-
gram of values of a; from our simulator reveals a very non-
uniform (and also non-Gaussian) distribution: many val-
ues close to zero, but also a substantial number of quite
large values. At the very least, their quantization would
have to be chosen non-uniformly and adaptively, such
that each bin has about equal mass under this distribu-
tion. However, it is quite likely that the best quantization
depends on details of the true system which are not
known a priori. Statistics with continuous variables, as we
employ, is a classical way of avoiding such quantization
issues. Furthermore, our Laplace prior seems to capture
features of the a; distribution favourably.

In Table 1, we compare running times. Even though they
restrict the node in-degree to 3, which is often unrealistic
for known biological networks [18], the required running
times are orders of magnitude larger than for our method.
Also, their memory requirements are huge, so that net-
works sizes beyond N = 50 could not be dealt with on a
unit with 4 GB RAM. Both are clearly consequences of
their quantization approach, which we circumvent com-
pletely by applying a continuous model. The asymptotic
running time for a naive implementation of our method
is O(N°) (Laplace, experimental design, N experiments),
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Reconstruction Performance Compared to Tegnér
et. al. Network recovery performance, comparing our
method (Laplace, design) with [3]. Networks of size N = 20, r
= | non-zeros in u, perturbation size 1%, SNR 100. Three ini-
tial random experiments, to reduce memory requirements in
[3] method. TD: [3], experimental design. TR: [3], random
experiments. LD: Our method, Laplace prior, experimental
design. LR: Our method, Laplace prior, random experi-
ments.

independent of the true network structure, but this can be
reduced to O(N#) as discussed in the Methods section.

Drosophila segment polarity network

In [24], von Dassow et.al. describe a realistic model of the
Drosophila segment polarity network. We tested our algo-
rithm on a single cell submodule, using the equations and
parameters as described in [3, Supplement], who also
used this model.

So far, we modelled only mRNA levels. However, the Dro-
sophila network also contains 5 proteins which play an
important role in the regulatory network. Since proteins
are hard to control and to observe, we treat them as unob-
served variables and focus on identifying the effective net-
work between the genes. A link i — j between genes i # j

Table I: Runtimes. Running time for full network recovery,
comparing our method (Laplace, design) with [3]

N 20 30 40 50 100 150 200
Our method 0.02 008 02 05 8 52 175
Tegnér et.al. [3]* 0.8 5 16 55 - - -

In minutes; 2 GHz Opteron processor, 1.5 GB RAM. *: We allowed 4
GB RAM for [3], but this failed due to even higher demand for N >
50.

http://www.biomedcentral.com/1752-0509/1/51

in the effective network represents one or more interac-
tions of the form i —» P, > U - P, —j, where Py, ..., P, q
> 0 are intermediate proteins, but not genes. In the meth-
ods section, we give a mathematical proof that any
method working on the observed part of the system only,
such as ours, in fact focusses on identifying the effective
network, given that the linearized ODE assumption is
applied to the complete system. This is reassuring, since
all regulatory networks between genes are nothing else
but effective networks of larger partially unobserved sys-
tems.

As shown in Figure 6, the network contains 9 inter-gene
regulatory pathways, apart from the self-links that are
dominated by the respective self-decay rates. Three of the

inter-gene links are functionally weak (i.e. A ij~ 0). We
simulated single gene perturbation experiments with an
ordering chosen by our algorithm (Laplace prior distribu-
tion, perturbation size 1%, SNR 100). After each experi-
ment we ranked potential edges according to their
probability. Resulting ranks after 2, 3, 5 experiments for
the true network edges are shown in Figure 6. All signifi-
cant network edges are recovered after 5 experiments
(iAUC = 1). Even weak links are assigned low ranks com-
pared to a maximal rank 20, which places them amoung
the first that would have to be examined more closely.

Conclusion

We have presented a Bayesian method for identifying
gene regulatory networks from micro-array measurements
in perturbation experiments (e.g., RNAi, toggle-switch,
heterozygotes), and shown how to use optimal design in
order to reconstruct networks with a minimum number of
such experiments. The approach proves robust and effi-
cient in a realistic non-linear simulation setting. Our main
improvements over previous work consist of employing a
Laplace prior instead of a simpler Gaussian one, encoding
the key property of sparse connectivity of regulatory net-
works within the model, and of actively designing rather
than randomly choosing experiments. Both features are
shown to lead to significant improvements. When it
comes to experimental design, our method outperforms
the most prominent instance of previous work signifi-
cantly, both in higher recovery performance and in
smaller resource requirements. Our application of the
recent expectation propagation technique to the under-
determined sparse linear model is novel, and variants may
be useful for other models in Bioinformatics.

In this paper, we have focussed on modelling mRNA lev-
els, which can be measured easily and cost-effectively.
However, protein and metabolite concentrations also play
important roles in any regulatory pathway, and a concise
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true network after 2 experiments

Figure 6
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after 4 experiments after 5 experiments

O ONNOSEC

Reconstruction of Drosophila segment polarity network. The left figure shows the effective single cell model with five
genes of the Drosophila segment polarity network [24]. Lines with circles denote inhibitory, arrows activating influence, func-
tionally weak links are dashed. The figures on the right show the ranks that our algorithm assigns to each of the edges after n

experiments (n = 2, 4, 5). There are 6 rel. strong edges with A ;# 0 in the network, and we assume that an edge is correctly

identified if its rank is amoung the top 6. These edges are coloured green.

ODE explanation of a system can probably not be formu-
lated if they are ignored. Our method allows to treat these
as unobserved variables and to identifying effective net-
works between the genes. However, if the additional vari-
ables can be directly measured, they can easily be treated
explicitly within our method, by simply extending the
state variable x(t).

Throughout the paper we have assumed that u. is known
for an experiment, i.e. the disturbance levels of the r tar-
geted genes can be controlled or at least predicted in
advance, before the experiment is actually done. For
example, a study trying to model the efficacy of RNAi
experiments is given in [28]. In the context of experiment
design, we can only hope to compute the expected
decrease in uncertainty for a specific experiment, and thus
rank potential experiments according to their expected
value, if the experimental outcome is predictable to some
degree. In our method, the outcome x. for a given u. is
inferred through the current posterior, i.e. the information
gain from (u., x.) is averaged over Q(x.|u., D). This can be
extended to uncertain u., if distributions Q,(u.|D) specific
to each experiment e can be specified. For experimental
biology, this means that not only do we need experimen-
tal techniques which deliver quantitative measurements,
but furthermore the parameters distinguishing between
different experiments (u in our case) either have to be
fairly tightly controlled (our assumption in this paper), or
their range of outcome has to be characterized well by a
mathematical model.

In general, biological prior knowledge about the (effec-
tive) regulatory network may already be available before
any experiments are done. In fact, in the presence of many
genes N, it is typically not affordable to do on the order of

N disturbance experiments, which are required for com-
plete network identification in the absence of specific
prior knowledge (it has been conjectured that O(log N)
experiments are required only in [3], but we cannot con-
firm such a surprisingly fast scaling based on our experi-
ments, even when using their method). Within our
method, such prior knowledge can be incorporated if it
can be formulated in terms of the system matrix A. No
interaction i < j is encoded as a;; = 0, an activating influ-
ence i < j as a; > 0. These types of knowledge can be
included in our method, as is discussed in the Methods
section.

There are several other setups of formulating the network
recovery problem in terms of a sparse linear model. Time-
course mMRNA measurements with unknown, yet time-
constant disturbances u are used in [5] and [4]. Relative
rather than absolute changes in expression levels are
employed in [2]. Within all these setups, our general effi-
cient Bayesian framework for the sparse linear model
could be beneficial, and could lead to improvements due
to the Laplace sparsity prior.

The linearized ODE assumption is frequently done [1-
5,12], yet it is certainly problematic. For disturbances
which change steady state expression levels by more than
about 5%, our simulator showed a behavior which cannot
directly be captured by a linearized approach. But such
perturbation levels may be necessary to achieve a useful
SNR in the presence of typically high measurement noise.
An important point for future work is the extension of the
model by simple non-linear effects of relevance to biolog-
ical systems. For example, our model can directly be
extended to higher-order Taylor expansions of non-linear
dynamics, since these are still linear in the parameters.
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Methods

Approximate Bayesian Inference

In this section, we provide an exposition and some possi-
ble extensions of our approximate inference method. We
sketch the expectation propagation (EP) method for infer-
ence in the sparse linear model. Further details are given
in [29].

Our aim is to approximate Bayesian inference, given a
model and prior distributions for all unknowns. The like-
lihood function is the probability of the observed data,
given all unknowns, it is determined entirely by the
model. In our case, we have a Gaussian likelihood

P(D|A)=H;":1N(uj |Ax]-,0'21), since the observation

noise is assumed to be Gaussian. In the Bayesian frame-
work, knowledge and assumptions about unknowns can
be formulated in the model or in the prior distributions.
In general, the model is used to specify knowledge which
is given in an explicit deterministic form. In our example,
the linearlzation assumption leads to the linear model.
Prior distributions are used in order to formulate implic-
itly defined or non-deterministic properties. For example,
we argued that since biological regulatory networks are
sparsely connected, the matrix A should be sparse. If we
knew a priori which entries of A are zero, we would modify
the model by eliminating these components. The knowl-
edge that many components should be close to zero, but
the precise set of relevant components is unknown up
front, is of a non-deterministic kind and is conveniently
represented by the Laplace prior P(A).

The posterior distribution is

N
P(A| D) = P(D)"'P(D| A)P(A) = HP(AZ .| D)
i=1

by the rules of conditional probabilities. It factorizes w.r.t.
rows of A, since both prior and likelihood do. For the
sparse linear model, computations based on the posterior

factor P( Ag .|D) cannot be done analytically. In EP, the

factor is approximated by a joint Gaussian Q( AZ . ), with
the aim of fitting mean and covariance of the true poste-
rior. This is done by means of marginal moment matching
steps, which can be computed easily. Q( AiTI . ) depends on
X, U. ; o and 7, as well as 2N EP variational parameters.

A un over all these costs O(N min(N, m)2?) time, and apart
from X, U, the posterior representation is of size

http://www.biomedcentral.com/1752-0509/1/51

O(min(N, m)?). A numerically robust implementation for
the sparse linear model is challenging and requires some
measures not previously proposed for EP.

More specifically, fix a row index i and let a = AiTI .. Then,
P(a|D) o« N (U. ;| Xa, o?I) I1;1; (a;) with t;(a;) = exp(-7]a;]).
The EP approximation has the form Q(a) «« N(U. ;|Xa, o?

I); t j(a;) with t;(a;) = exp(bja; —%njajz-), and comes with

2 N site parameters b, 1. An EP update of the current
approximation Q focuses on a site j € {1, ..., N}, con-
structing the distribution P i(a) o< Q(a)t(a))/ 3 i(4), then
adjusting b, 7 such that the new approximation Q'

j
matches first and second order moments (mean and cov-

ariance) of P j- Intuitively, this step is a principled part of
the effort of matching these moments of the full posterior.
While the latter is not analytically tractable, each EP
update actually is. P j1s non-Gaussian, but since the trou-
blesome factor t;(a;) depends on a single coordinate of a
only, we may still compute mean and covariance effi-
ciently. Note that the EP update can be computed analyt-
ically in the Laplace case, but EP can even be used with
sites t;(a;) for which this is not possible. In such situations,
the non-analytic computation is merely a one-dimen-
sional quadrature, which can be computed by standard
numerical techniques. Each EP update works like the
inclusion of new evidence f;(4;) in a Bayesian setting, with
the difference that in EP, we iterate multiple times over all
sites, until convergence. For this reason, we need to divide
by t j(a;) in each update, so as to avoid counting site infor-
mation twice. Each update affects the posterior approxi-
mation Q(a) globally. Although only b;, 7 are modified,
this affects all of Q due to the presence of the coupling fac-
tor N(U. ;Xa, o I). Q(a) has a representation, whose
modification is the dominating computational effort dur-
ing an EP update. Recall that the sites ¢; are log-concave. A
direct consequence for EP is that each update can actually
be done, in that P j has a finite covariance, and that the
novel 7 is non-negative [30]. Empirically, log-concavity
seems to imply fast convergence of EP to a close posterior

approximation, and a numerically robust behavior can be
obtained in a careful implementation.

In the under-determined case m <N we are principally
interested in here, this standard application of EP fails,
because the Gaussian coupling factor cannot be normal-
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ized as distribution over a. The variant of EP we are using
in our experiments here, does come with essentially the
same motivation, but some more complicated details. It is
described in [29].

Returning to experimental design, the information gain
score S(u., x.|D) for an experimental outcome (u., x.) is

D|Q' || Q]. Note that two things happen in Q — Q"
Firstly, (u., x.) is included, which modifies the Gaussian

coupling factor in Q. Secondly, the site parameters b, zare
updated by EP. For the purpose of scoring, early trials
showed that the second step can be skipped in scoring
without much loss in performance. Doing so, we see that

M in the equation for D[Q' || Q] has the form I + x. v!,
and S(u., x.|D) can be computed very efficiently using a

rank one matrix update in our representation of Q(a). In
practice, the effort of scoring even a large number of can-
didates is clearly dominated by the EP updates after each
inclusion.

Running Time

The running time for a naive implementation of our
method (Laplace prior, experimental design) is O(N%), if
N experiments are done. Namely, after each experiment,
we need to update N posterior representations, one for
each row of A. For each, we require at least N EP updates,
one at each Laplace site, and each such update costs O(N?2)
(at least once m, the number of experiments so far, is close
to N).

This scaling behaviour can be improved by noting that
especially during later stages, it will not be necessary to do
EP updates for all N2 sites after each new experiment. For
arow a, we can compute the change in marginal moments
of each Q(4;) upon including the new observation into the
likelihood P(®) only. We then do EP updates for O(1) sites
only, namely the ones with most significantly changed
marginals. This cuts the scaling to O(IN%).

Relations to other Sparse Bayesian Methods

Interestingly, EP for the sparse linear model can be com-
pared directly to the sparse Bayesian learning (SBL)
approach [15]. While SBL is formulated in terms of Stu-
dent-t priors, we can do the same scale-mixture decompo-
sition as they do for the Laplace prior [31]. The SBL
approach leads to a Gaussian posterior approximation
Q(a) of the same form as in EP, with the difference that in

the site approximations f j the b; parameter is set to zero
and eliminated. The presence of the b; parameters in EP is

important, because only these guarantee that every possi-
ble posterior mean can actually be represented in Q(a).

http://www.biomedcentral.com/1752-0509/1/51

The 7; are chosen in SBL by maximizing the likelihood of
the data, integrating out the parameters a. This is a non-
convex problem which requires some optimization code,
while EP comes with a method of updating b;, 7;which can
be motivated more directly. The role of log-concavity is
also less clear in SBL. A systematic comparison between
these approaches is subject to future work. Note that SBL
with Student-t priors has been applied to gene network
recovery [14], although they did not consider experimen-
tal design. Furthermore, the Student-t distribution is not
log-concave, so the true posterior is multimodal, render-
ing the quality of the Gaussian SBL approximation ques-
tionable.

A Markov chain Monte Carlo (MCMC) method for the
linear model with Laplace prior is given in [31]. In their
approach, the noise variance ¢?is inferred together with a,
and they give arguments why their sampler should con-
verge quickly, based again on posterior log-concavity.
While a direct comparison to our EP variant has not been
done, it seems clear that the MCMC approach is much
more costly. This may not be a problem for a standard
application, but is likely to make the experimental design
approach computationally unattractive. In general, while
MCMC inference approximations are exact in the limit of
large running time, it is very hard even for experts to assess
at which point an MCMC estimate can be considered reli-
able.

Incorporating Biological Prior Knowledge

In our method presented so far, we assumed that nothing
is known about the network system matrix A, apart from
it being sparse. In many applications, substantial addi-
tional prior knowledge about A is available. In this sec-
tion, we show how some types of such prior knowledge
can be incorporated into our method, leading to fewer
experiments required for identification. In general, our
method can be extended by using additional sites beyond

~1|aij|

the tj(a,-j)=%e coming from the Laplace prior.

Such sites must have the form f(w” A].), where w e RN
and f( - ) is log-concave.

First, suppose that mRNA degradation rates for some
genes are roughly known from independent experiments,

say r; for gene i. We could either fix g;; = - r;and eliminate
this variable, or we could use the factor

Pa;) = %e_ﬂ aii +7i|

with smaller rthan usual, which would allow for errors in
the knowledge of r;. Using such off-center factors is of

Page 12 of 15

(page number not for citation purposes)



BMC Systems Biology 2007, 1:51

course possible in our framework with very minor
changes.

Next, suppose that partial connectivity knowledge is avail-
able. For example, if there is no influence j — i, then a;; =
0, and the corresponding variable can simply be elimi-
nated. If it is known that j — i is an activating influence,

this means that a;;> ¢ for some &2 0. We can incorporate

asite 1 {a, ¢} into our method, noting that this is log-con-

cave as an indicator function of a convex set (& «). A bet-
ter option is to assume that a; - £ has an exponential prior
distribution, which also gives rise to a log-concave site.

Setting Free Parameters

We need to adjust two free parameters: the noise variance
o2, and the scale 7 of the Laplace prior. Given some sub-
stantial amount of observations, these could be estimated
by empirical Bayesian techniques, but this is not possible
for experimental design, where we start with very few
observations. One may be able to correct initial estimates
of ¢, as more observations are made, and a method for
doing so is subject to future work.

There are two sources of noise, i.e. non-zero ¢ for observa-
tions (u, x) and true linearization matrix A. First, the ODE
of our simulator is stochastic, and measurement errors are
made for u, x. Second, we have systematic deviations
between the true non-linear dynamics to ones of the line-
arization. It is possible to estimate the variance of errors of
the first kind without knowing the true A or performing
specific disturbance experiments, by observing fluctua-
tions around the undisturbed steady state. This is not pos-
sible for errors of the second kind. However, it is
reasonable to assume that a good value for ¢? does not
change too much between networks with similar biologi-
cal attributes, so that we can transfer it from a system
whose dynamics are known, or for which sufficiently
many observations are already available. This transfer was
simulated in our experiments by generating 50 networks
with data as mentioned above, then estimating o2 from
the size of the eresiduals. Note that these additional net-
works were only used to determine o2, for the other exper-
iments we used independent samples from our network
generator. The scale parameter 7 determines the a priori
expected number of edges in the network. It could be
determined similar to o2, but a simple heuristic worked
just as well in most setups we looked at (the exception was
very high noise situations). We need a rough guess of the

http://www.biomedcentral.com/1752-0509/1/51

average node in-degree d . Then, under the Laplace prior,

76

we expect d tobe Ne ™ g priori. Solving for 7, we obtain

1 d
=— log %, 7
4 S, BN @)

We found in practice that our method is quite robust to
moderate changes in 7and &2, as long as the correct order
of magnitude is chosen.

Unobserved variables

Complete gene regulatory networks consist of mRNA con-
centrations, but also of proteins and metabolites. In typi-
cal setups, only (some) mRNA levels are directly
measured, and we will discuss here how the unobserved
elements of the network influence our network inference.
For simplicity, all unobserved quantities will be termed as
proteins in this section.

Denote the observed mRNA concentrations by x(t) € RN
as before, unobserved protein concentrations by y(t) €
RM. Let u(t) € RNbe a perturbation vector, which does not
affect the unobserved variables. We now have a joint
(nonlinear) ODE system for (x, y), which is again linear-
ized around its steady state. If time constant perturbations
are used, the difference between new and old steady state
follows a linear equation (up to noise)

u) (A Bji«x
o] |c D|y]
From this, we deduct u = (A - BD-1C)x. Thus, given only

the u and x our algorithm will not recover A, but A = A -
BD-1C.

We show that A encodes an effective gene network in the

following sense. If A ij# 0, then there exists either a direct
link from gene j to gene i or there is a path from gene j to
gene i which also passes through some proteins in the full
gene regulatory network, but not through other observed
genes. This is logically equivalent to the statement, that if

there is no such path from j to i, then A ij= 0. However,

A ij = 0 does not imply that there is no (indirect) connec-
tion between i and j. It could be for example that two pro-
tein pathways from j to i are equally strong, but of
opposite influence on gene i, and thus cancel each other.
To prove that A encodes such an effective network, we
first need the following lemma.
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Lemma 1. Let W € R be the weighted adjacency matrix of
a directed graph, in that i < j has weight wy, and the edge is
present iff w;;# 0. Assume that W is nonsingular. The following
holds: if (W-1);# 0, then there exists some directed path j — i.

Proof. We prove the logical converse. For i = j, there is
always a path of length 0 from i to i, so the lemma makes
no statement. For i # j, assume that there is no directed
path from j to i. Let J be the set of all nodes reachable by j
(note that j € J), and let I be its complement. i € I by our
assumption. Without loss of generality, assume that J =
{1, ..., |J|}, noting that this can always be achieved by
renaming nodes, without changing the network. Now,

w=Wr W)
0w,
If W;; was not zero, there would be some element in I
reachable from J, therefore from j, so I n ] # &, a contra-

diction. From the special form of W we have that |W| =
|W;||W}|, so that both W), W, are nonsingular. Now,

w/' R
0o w/!

w=

with R= —W]_IW”W,_1 . This proves the lemma. [

Back to the effective gene network, we have that A ij = Aj-
21 Bi(D1)Cy;. Suppose there is no path from j — i pass-
ing through > 0 proteins only in the full network. Then, A;;
= 0 (no direct gene-gene link). Furthermore, B;(D1),C;;#
0 for some k, I would mean a path from gene j to protein

I, then to protein k via potentially other proteins (apply
the lemma above with W = D), then to gene i. Therefore,

all terms in the sum are zero, and A ij=0.

While we can thus recover an effective network, the

knowledge of A does not uniquely determine A, B, C, or
D, or in fact even the number M of unobserved variables.

Awvailability and Requirements

The methods described in the paper are available as a Mat-
lab package at http://www.kyb.tuebingen.mpg.de/sparse
linearmodel. The code makes use of C++ MEX files for
core routines, pre-complied binaries are provided for
Windows and Linux 32 bit operating systems. The code is
published under the GNU GPL licence, for commercial
use please contact the authors.
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