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Abstract
Background: In dynamical models with feedback and sigmoidal response functions, some or all variables have
thresholds around which they regulate themselves or other variables. A mathematical analysis has shown that
when the dose-response functions approach binary or on/off responses, any variable with an equilibrium value
close to one of its thresholds is very robust to parameter perturbations of a homeostatic state. We denote this
threshold robustness. To check the empirical relevance of this phenomenon with response function steepnesses
ranging from a near on/off response down to Michaelis-Menten conditions, we have performed a simulation study
to investigate the degree of threshold robustness in models for a three-gene system with one downstream gene,
using several logical input gates, but excluding models with positive feedback to avoid multistationarity. Varying
parameter values representing functional genetic variation, we have analysed the coefficient of variation (CV) of
the gene product concentrations in the stable state for the regulating genes in absolute terms and compared to
the CV for the unregulating downstream gene. The sigmoidal or binary dose-response functions in these models
can be considered as phenomenological models of the aggregated effects on protein or mRNA expression rates
of all cellular reactions involved in gene expression.

Results: For all the models, threshold robustness increases with increasing response steepness. The CVs of the
regulating genes are significantly smaller than for the unregulating gene, in particular for steep responses. The
effect becomes less prominent as steepnesses approach Michaelis-Menten conditions. If the parameter
perturbation shifts the equilibrium value too far away from threshold, the gene product is no longer an effective
regulator and robustness is lost. Threshold robustness arises when a variable is an active regulator around its
threshold, and this function is maintained by the feedback loop that the regulator necessarily takes part in and
also is regulated by. In the present study all feedback loops are negative, and our results suggest that threshold
robustness is maintained by negative feedback which necessarily exists in the homeostatic state.

Conclusion: Threshold robustness of a variable can be seen as its ability to maintain an active regulation around
its threshold in a homeostatic state despite external perturbations. The feedback loop that the system necessarily
possesses in this state, ensures that the robust variable is itself regulated and kept close to its threshold. Our
results suggest that threshold regulation is a generic phenomenon in feedback-regulated networks with sigmoidal
response functions, at least when there is no positive feedback. Threshold robustness in gene regulatory networks
illustrates that hidden genetic variation can be explained by systemic properties of the genotype-phenotype map.

Published: 6 December 2007

BMC Systems Biology 2007, 1:57 doi:10.1186/1752-0509-1-57

Received: 29 June 2007
Accepted: 6 December 2007

This article is available from: http://www.biomedcentral.com/1752-0509/1/57

© 2007 Gjuvsland et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/1752-0509/1/57
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18062810
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Systems Biology 2007, 1:57 http://www.biomedcentral.com/1752-0509/1/57
Background
Historical perspective
In the early 1970s, Leon Glass, Stuart Kauffman, and René
Thomas started their pioneering efforts in exploring the
possibility of modelling what was then called "Genetic
Control Circuits" (Thomas) and "Biochemical Control
Networks" (Glass and Kauffman) by using concepts and
ideas from mathematical logic. Combining these ideas
with earlier ideas from Monod and others on allostery and
cooperativity which suggested sigmoidal rate depend-
ences of key metabolites, Glass and Kauffman [1,2] and
Thomas [3] proposed that gene transcription could be
modelled by sigmoidal response functions depending on
transcription factor concentrations. In the case of several
transcription factors acting on a gene, they assumed the
effect could be expressed by Boolean combinations of the
separate response functions, and proposed a simple
framework of ordinary differential equations for model-
ling of gene regulatory networks based on these princi-
ples. Glass and Kauffman observed that the behaviour of
these regulatory networks was remarkably insensitive to
the steepness of the sigmoids, and suggested to use Heav-
iside or step function in stead of sigmoids as dose-
response functions to simplify the models and their anal-
ysis.

From these early attempts, phenomenologic frameworks
for the modelling of Gene Regulatory Networks (GRNs)
have been developed, based on a few fundamental
premises: (i) genes are controlled by transcription factors
(TFs) which combine into logical input functions, and
these can be described by Boolean logic; (ii) the effect of
a transcription factor on the transcription rate of a gene
(the response function) can be described by a sigmoidal
function of its concentration with a pronounced thresh-
old behaviour (graded response) or by a Heaviside step
function (binary response); (iii) this can be modelled in a
discrete way in which transcription factors are either
absent of present, and proteins are either transcribed or
not, or in a continuous way by means of ordinary differ-
ential equations; (iv) proteins act as transcription factors,
so that networks become closed with feedback loops; (v)
posttranscriptional, translational and posttranslational
regulation, transport processes, metabolic processes etc.
can be phenomenologically encompassed by the sigmoi-
dal or binary response functions.

Recent experimental evidence seem to confirm the valid-
ity and usefulness of the basic assumption on which
GRNs are resting. A number of studies have shown that
gene networks have cis-regulatory elements governed by a
Boolean-like logic [4-11]. There is also extensive experi-
mental documentation of sigmoidal or binary responses
in gene regulation [5,11-16] as well as theoretical justifi-

cations based on classical principles from physical chem-
istry [17-20].

How common is steep transcription response? Analyses
based on classical methods from statistical physical chem-
istry show that a steep transcription response curve could
be due to cooperativity in the transcription factor binding
[18-20]. It has been shown that transcriptional and signal-
ling cascades do in fact lead to graded or binary responses
[21,22]. There is also extensive evidence that transcription
response in single cells is binary (see references in [14]),
and that individual cells responds in an on/off way to var-
ying external inputs [13]. Thus, there are good reasons to
expect that high gain regulation is quite common in gene
regulatory networks.

The method developed in [23-27] to deal with models
with steep sigmoidal response functions works for quite
general models, also with other nonlinearities in addition
to the steep sigmoidal functions. In the course of this
work it was discovered that when the responses functions
are very steep, equilibrium values for actively regulating
variables show a remarkable robustness towards changes
in all parameters except the level of the threshold around
which the active regulation occurs. We call this phenome-
non threshold robustness. To be precise, this is a mathemat-
ical result valid in the limit when the sigmoid function
approaches a step function (Heaviside function), but for
continuity reason it is also valid for steep sigmoid func-
tions. But to what extent is it found in models with more
empirically sound threshold functions? We have investi-
gated this question by a simulation study of a wide class
of 3-dimensional regulatory systems where the regulatory
dose-response relationships are varied from a hyperbolic
Michaelis-Menten situation to an extremely steep sigmoi-
dal situation.

If conserved when the steepness of the sigmoidal interac-
tions is slackened to realistic values, insensitivity or
robustness to functional genetic polymorphism may be a
deep generic property of some of the loci in a wide range
of regulatory networks. When present, threshold robust-
ness adds significant and characteristic phenomena to the
genotype-phenotype map. This implies for example that
the functional mutational changes in network which
shows threshold robustness will only results in small phe-
notypic variations in the homeostatic values of the pro-
tein products.

Analytical foundation
The above basic assumptions of Gene Regulatory Net-
works lead to the following generic model for the time
course of gene product concentrations:

y R Z Q Z yj j j j j j= −κ λ( ) ( ) , (1)
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where yj is the concentration of gene product number j, j =
1,...,n, Zj = S(yj, θj, pj) is a sigmoid or binary function with
threshold θj and steepness parameter pj, and y and Z are
the vectors with yj and Zj as components. The functions Rj
∈ [0, 1] and Qj ∈ �0, 1] are regulatory functions, frequently
taken to be algebraic equivalents of Boolean functions
[25], describing the regulation of production and decay,
respectively, while the positive parameters κj and λj repre-
sent the maximal production and decay rates.

Eq. (1) could be justified in at least two ways. It could be
considered a model of transcription regulation with the yj
still representing protein concentrations. This model
could be derived from a larger model for protein and
mRNA concentrations where transcription of mRNA is
regulated by protein concentrations, and the conversion
from mRNA to protein is described by linear equations. If
all mRNA degradation rates are much larger than all pro-
tein degradation rates, we can apply a quasi-stationary
hypothesis to the mRNA concentrations, leading to Eq.
(1). This procedure can be justified mathematically as
well as biologically. A simple example is presented below,
and the case n = 2 is studied in [28].

Alternatively, taken as a model of gene regulation, Eq. (1)
is a generic phenomenological model of protein concen-
tration dynamics, not a mechanistic description of gene
regulation. The threshold functions model the aggregated
effect of all the processes involved in the real cellular reg-

ulatory networks [29]: transcription, translation, intracel-
lular transport, post-translational modifications, protein-
protein interactions, metabolic processes, and signalling
cascades. Such drastic simplification is hard to justify the-
oretically, but models based on the generic Eq. (1) have
been applied successfully to many real systems [5,30,31].
Considered in this way, Eq. (1) is a generic, phenomeno-
logical framework assumed to catch the essential features
of a wide range of regulatory systems, where the regulatory
control may be at the level of transcription, mRNA stabil-
ity, translation, or post-translation, and where the state
variables may for example be concentrations of proteins,
hormones, mRNA, and intracellular ions [29].

In almost all cases, regulation of the degradation is disre-
garded, thus we assume Qj = 1. We let S be a Hill function,
Zj = S(yj, θj, p) = yj

p/(yj
p + θj

p), with the property that when
p → ∞, then Zj approaches the Heaviside step function
with threshold θj, and put all pj = p (Fig. 1). Of course, in
real systems sigmoids most likely do not have the same
steepness. Our justification for taking all pj equal is to
investigate systematically whether there is a threshold
robustness effect for varying steepnesses. Once this effect
is established, one might take one step further to investi-
gate necessary and sufficient conditions on the steep-
nesses for robustness in more realistic models.

Models encompassed by Eq. (1) have been extensively
investigated mathematically, in particular in the special

Regulatory functions used in the simulationsFigure 1
Regulatory functions used in the simulations. (a) The Hill function describes the dose-responce relationship between the 
amount of a regulator x1 and the relative production rate of the regulated gene. The threshold parameter θ1 = 2 is the same for 
all four curves. (b) Regulatory function for two regulators x1 and x2. Two Hill functions are combined by the algebraic equiva-
lent of the Boolean AND function (see Table 1). The parameter values used in this panel are θ1 = θ2 = 2 and p = 10.
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case of Sj being step functions. (See [32] for an extensive
list of references.) An efficient way to analyse models of
the generic type Eq. (1) with steep sigmoids is presented
in [26,27].

Frequently models encompassed by the generic type Eq.
(1) have stationary points lying close to the thresholds of
one or several variables when the sigmoids are steep, i.e.
when p is large. A stationary point y*(p) is called a singular
stationary point (SSP) for Eq. (1) if at least one of its com-
ponents approaches its threshold when p → ∞. These
components are called singular, the others regular. It has
been proved that if a SSP Y* exists in the step function
limit, then there exists a stationary point y*(p) for suffi-
ciently large p with the property that y*(p) → Y* when p
→ ∞ [26]. Mathematically, SSPs of Eq. (1) have remarka-
ble generic robustness properties. The key issue is that the
singular components of Y* are locked to their thresholds,
while the regular components vary with the other param-
eters in the model. For y*(p) this implies that when p is
large, the singular components are highly insensitive to
changes in all parameters except the thresholds of the sin-
gular variables. Biologically this insensitivity means that
the expression levels of genes corresponding to singular
components will be kept virtually constant despite sto-
chastic or mutational variation in the expression process
rates.

An illustrative example is provided by a popular model for
a negatively autoregulated gene, which are very common
in e.g. E. coli

where m and y are the concentrations of mRNA and pro-

tein, respectively, Z = S(y, θ, p) is the sigmoidal response

function, r is the basal transcription rate, θ is the regula-
tion threshold, p is the steepness parameter, and the
remaining four parameters are production and degrada-
tion rate constants. Incidentally, asssuming quasistation-
arity of mRNA concentration as explained above, leads to

 = (κ/γ)[r + α(1 - Z)] - λy, which is of the generic type Eq.

(1).

After elimination of m, the equilibrium equation for y can
be solved graphically (Fig. 2). There are three qualitatively
different situations to consider: the solution can be close
to the threshold and approach the threshold as steepness
increases (red line), or the gene can be almost off (green
line) or almost constitutively on (magenta line), the dif-
ferences being accentuated for higher steepness. In the
first case the stationary point is a SSP, in the two other
cases it is regular. In the singular case we find the solution

in the step function limit by putting y* = θ and solve for
m*, getting m* = λθ/κ, Z* = 1 + r/α - g, where g = γλθ/(ακ).
From the requirement Z* ∈ �0, 1� it follows that this solu-
tion exists when r/α <g < 1 + r/α. Thus, when g lies in this
interval, the protein concentration y* is very close to the
threshold, independent of parameter values, and y* = θ in
the step function limit.

However, if g is perturbed outside this interval, y* is no
longer locked to the threshold, and robustness is lost. If p
→ ∞ and g <r/α, then Z* = 1 (the magenta case), m* = r/γ,
y* = κr/(γλ), while if g > 1 + r/α, then Z* = 0 (the green
case), m* = (α + r)/γ, y* = κ(α + r)/(γλ). We see that in
both these cases, y* vary with the other parameters.

Model system
For our simulations we chose a particular realisation of
Eq. (1) which after a scaling is given by the dimensionless
equations

xj' = αjRj(Z1, Z2) - γj xj, j = 1,...,3, (3)

m r Z m

y m y

= + − −
= −

α γ
κ λ

( ) ,

,

1
(2)

y

Graphical solution of the equilibrium condition of Eq. (2) for varying steepness of the response function and varying rela-tive degradation ratesFigure 2
Graphical solution of the equilibrium condition of Eq. (2) for 
varying steepness of the response function and varying rela-
tive degradation rates. The blue curves are graphs of r + α(1 
- Z), the straight lines graph the degradation term γy. For 
intermediate values of γ the equilibrium concentration is 
close to θ and approaches θ when the response function 
steepness increases (red line), and there is active regulation. 
When γ is small, the basal transcription rate is sufficient to 
balance the degradation, and y* gets large (green line). When 
γ is large, degradation is so rapid that the protein concentra-
tion never reaches the level where it regulates. Maximal pro-
duction is necessary to balance the degradation (magenta 
line).
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where xj is the scaled version of yj, α3 ∈ �0, 1� and all γj ∈ �0,
1�, and Zj = xj

p/(xj
p + 1). The prime denotes differentiation

with respect to a scaled time. The Boolean functions Rj are
chosen so that the system has a unique stable point in
which both x1 and x2 are singular (close to threshold at
equilibrium). Altogether 14 models satsify this require-
ment (Fig. 3, see also the Methods section).

The key question is whether the robustness of SSPs is still
generic and preserved when the Hill exponents atttain
smaller, more realistic values. Considering instances of
Eq. (1) as models for gene regulatory networks, we
checked this out for a large set of 3-dimensional particular
realisations of Eq. (3). We took the set of stable equilib-

rium values  as the phenotype and the set {αj, γj, θj,

p, Rj}, j = 1,...,3, of parameter values and regulatory func-

tions as the genotype. The equilibrium conditions for Eq.
(3) then define the genotype-phenotype map for this sys-
tem. Our interest is to investigate the robustness proper-
ties of the phenotype under mutations, i.e. under
perturbations of the genotype. For the 14 models with a
unique SSP in the step function limit we investigated the
robustness properties of the singular and the regular com-
ponents of the SSP for a range of parameter perturbations
and for varying Hill exponent of the response functions
from p = 1 (Michaelis-Menten conditions) to p = 100,
which for all practical purposes is very close to a step func-
tion.

x pj
∗( )

Connectivity diagrams for the 14 network models in the simulation studyFigure 3
Connectivity diagrams for the 14 network models in the simulation study. Genes 1 and 2 are represented by circles, the down-
stream gene 3 being omitted for clarity. The sign of an arrow indicates whether the type of regulation is activation (+), in which 
case the input variable is Zi, or inhibition (-), in which case the input variable is 1 - Zi. When a gene has two regulators, the indi-
vidual signals are combined with a logic block, represented by a rectangle, merging the two signals into one by the continuous 
analogue of the Boolean functions AND or OR. (See the Methods section for explanations of the Boolean variables and func-
tions.)
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The coefficient of variation CV for a distribution is defined
as the ratio of the standard deviation to the mean. Being a
dimensionless number and scaled by the mean, it is suit-
able for comparison of the variation of distributions with
large differences in mean values. To measure and compare

the CVs for the equilibrium values  for each of the 14

models we generated 81 parameter sets, giving a total of
1134 different systems with a unique SSP for which x1 and

x2 are singular and x3 regular. For each data set we sampled

50 random pertubations of each production parameter αj

from the uniform distribution U(αj/2, 3αj/2) with corre-

sponding coefficient of variation CVuni ≈ 0.288. We then

computed the coefficients of variation CVj
k, j = 1, 2, 3, k =

1,...,81 for the steady state levels of all three variables in all
the 14 networks separately. Details are described in the
Methods section. We use the minimum coefficients of var-

iation as robustness measure in order to be able to com-
pare the robustness of most favourable parameter sets.

Results
Models 1, 9, 12, and 14 represent four different classes
among the 14 models: Model 1 represents models with a
negative feedback loop between the two genes plus
autoregulation, Model 9 has just a pure negative feedback
loop and no autoregulation, Model 12 has interaction but
no feedback loop between genes 1 and 2, and Model 14
has no interaction at all between genes 1 and 2 (Fig. 3).
The comparison (Fig. 4) of the distributions of CV1

k and

CV2
k over the 81 parameter sets to the distribution of CV3

k

shows that there is a marked difference between the CVs
of the singular variables x1 and x2 and the downstream,

regular variable x3. This difference is most marked for high

Hill coefficient, but is present even under Michaelis-

xi
∗

Variation in steady state values for Models 1, 9, 12, and 14Figure 4
Variation in steady state values for Models 1, 9, 12, and 14. Boxplots show the distributions of the 81 coefficients of variance 
for all three genes using seven different Hill coefficients ranging from p = 1 to p = 100. For each Hill coefficients the three plots 
show from left to right the coefficient of variation for gene 1 (red), 2 (green), and 3 (blue), respectively. The boxes show the 
quartiles and the median. The black vertical lines extend to the largest observation and the smallest. The long black horisontal 
line shows the coefficient of variation 0.288 of the perturbed production rates αj.
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Menten conditions. While in almost all cases the variation

in  is larger than CVuni, the variations in  and  are

considerably smaller for most parameter sets, in Model 14
for all parameter sets. The result for Model 14 is not sur-
prising, as it is well known that negative autoregulation
leads to a high degree of robustness [30,33,34].

What is more important is that in almost all cases, all the
coefficients of variation for genes 1 and 2 are significantly
smaller than those for gene 3. The reduced sensitivity of
gene 3 when p decreases towards 1 can be seen as a conse-
quence of the fact that when the sigmoids in the rate equa-
tion for x3 are slackened, a certain variation in the inputs
gives smaller variation in the response. However, for all
the models except Model 14 there are parameter sets for

which the system is not robust, which shows that robust-
ness is generally only present for a certain range of param-
eter values. The decisive factor is how easily a perturbation
shifts the position of the stable point away from the
switching domain. If this happens, the gene's status in the
regulatory system is changed: it is no longer an active reg-
ulator and its robustness is lost. Accordingly, the gene that
was regulated is now either off or constitutively on unless
it is still effectively regulated by the other gene.

For all 14 models a decrease in p reduces robustness of
both singular variables, defined as the minima of CV1

k

and CV2
k over all 81 parameter sets (Fig. 5). But even at p

= 1 there is less variation in the equilibrium values than in
the perturbed parameter values. The cases of highest

x3
∗ x1

∗ x2
∗

The coefficient of variation as function of the Hill coefficient for the most robust parameter sets for gene 1 and 2 across all 14 modelsFigure 5
The coefficient of variation as function of the Hill coefficient for the most robust parameter sets for gene 1 and 2 across all 14 
models. (a)-(b): Minimum of CV1

k and CV2
k, respectively, over all 81 parameter sets. (c): CVminmax as function of the Hill coeffi-

cient for each of the 14 models. An explanation for the remarkably high values for Models 1, 2, and 11 for high Hill coefficient 
values is given in the text. (d) The ratio of minimum of CV2

k to minimum of CV1
k as function of the Hill coefficient for each of the 

14 models.
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robustness for each of the 14 models and all steepness val-
ues show large variation among the models (Fig. 5). But
for all models, even for the least robust Models 1 and 2,
robustness increases with increasing Hill exponent, and is
always smaller than CVuni. In Fig. 5c the differences

among the models are accentuated for high Hill expo-
nents. For each model the number CVminmax plotted along

the vertical axis is computed as follows: for each of the 81

parameter sets first compute  = max{CV1
k, CV2

k},

then find CVminmax = min{ }. For each model this

procedure selects the parameter set for which both CV1

and CV2 are small, giving CVminmax as a measure of the

highest robustness when both genes 1 and 2 are taken into
account.

Models 1, 2, and 11 have distinctly larger values of CVmin-

max than the other models. This behaviour can be

explained as a consequence of the shape of the parameter

space domain ΩSSP in (μ1, μ2)-space, where μj = αj/γj, j = 1,

2. This is the parameter domain for which both  and

 attain threshold values in the step function limit, in

other words, the domain in which there is threshold

robustness in both variables. For Models 1, 2, and 11 ΩSSP

is concave, while for all the other models it is either
wedge-shaped or rectangular (Fig. 6). In the concave
domains of Models 1, 2, and 11 there is no point giving
threshold robustness in both variables for the full param-
eter perturbation range of 50% up and down (see the

CV k
max

CV k
max

x1
∗

x2
∗

The shaded areas are the robustness domains ΩSSP in the (μ1, μ2)-plane for (a) Models 1, 2, 11, (b) Models 3, 13, (c) Model 6, (d) Models 4, 5, 7–10, 12, 14Figure 6
The shaded areas are the robustness domains ΩSSP in the (μ1, μ2)-plane for (a) Models 1, 2, 11, (b) Models 3, 13, (c) Model 6, 

(d) Models 4, 5, 7–10, 12, 14. For parameter values in ΩSSP both  and  are singular variables and approach their threshold 

values in the step function limit. Then they exhibit threshold robustness for all parameter perturbations which leave the per-
turbed values inside ΩSSP.
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Methods section, which also contains the derivation of
this result), contrary to all the other models where thresh-
old robustness is obtained for all parameter values suffi-
ciently far from the boundary. With this result in mind it
is reasonable to expect a drastically reduced robustness for
these three models compared to the rest.

A comparison of CV1 and CV2 for all models show a dis-
tinct difference in robustness of x1 and x2 for Model 2 and
Model 11 (Fig. 5d). We can explain this difference by how
the character of the stationary point varies over the param-
eter space (Fig. 7 for Model 2). One can see that x1 is sin-
gular for all μ2 > 1 independent of μ1, while the domain in
which x2 is singular is much smaller and with a strongly
narrowing band. In this band, all points are close to the
boundary, and robustness in x2 is very easily lost. Accord-
ingly, the probability of having a perturbed point in
parameter space in which the singular state is preserved is
much less for x2 than for x1, just as seen in Fig. 5. For
Model 11 the situation is similar.

To further illustrate the difference between the least robust
Models 1, 2, and 11 and the rest of the models, we com-
puted for each realisation the number of perturbations N
for which the stable point is a SSP with both x1 and x2 as

active regulators. We consider xj an active regulator if 

lies in the interval �0.05, 0.95�. Among all 81 parameter
sets the highest observed N was 37, 37, and 35 for Models
1, 2, and 11 respectively. For all other models one can
always find a parameter set with N = 50, i.e. for which all
perturbations render a SSP with a high degree of robust-

ness in both  and .

Discussion
A number of different sources of robustness in cellular
function and biochemical networks are discussed in the
literature (see e.g. [35,36]). Considered as as a systemic
property of a developmental or functional unit in an
organism, robustness has been explained as a conse-
quence of both negative and positive feedback and several
other network properties [30,37,38], as a consequence of
network topology and connectivity [39-41] or of modu-
larity or redundancy of the network [42,43]. Conversely,
complexity has been seen as a consequence of selection
for robustness rather than the other way round [44,45].

Distinguishing the phenomenon of robustness from
homeostasis and stability which concern the system's abil-
ity to maintain a stable state, Kitano defines robustness as
"a property that allows a system to maintain its functions
against external perturbations [37,46]." The function
maintained by threshold robustness is the gene's or gene
product's ability to act as an active regulator of itself or
another gene despite parameter perturbations, which can
be seen as consequences of external noise.

A variable xj exhibits threshold robustness when it is a sin-

gular (also called switching) variable of a SSP, in other

words, when the stationary value  approaches the

threshold θj as the steepness of the associated sigmoid

function tends to infinity. In that case the stationary value
is locked to the threshold whatever the value of the other
parameters (as long they are not perturbed so strongly that
xj is no longer a singular variable in the perturbed system).

Then the equilibrium value of the response function 

is neither close to 0 nor to 1, these cases corresponding to
the gene in question being either constitutively off or con-
stitutively on. We illustrated this by our analysis of Model
2 given above. For all parameter perturbations which
maintain the parameter values within the shaded area in
Fig. 7, both variables are singular and locked to their
threshold, and robustness is preserved. Only if the equi-
librium point is perturbed outside the shaded area, one or

both  slip away from threshold onto one of the flatter
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part of the response curve where corresponding Zj-value

approaches 0 or 1 and is rather insensitive to variations in
the xj-value. Then the x-variable is no longer an active reg-

ulator, the previously regulated gene now being either
constantly off or constantly on, and its robustness is gone.
This analysis pertains to the limiting case of very steep
responses functions, but is approximately valid when the
response is more gradual.

Thus, threshold robustness of a transcription factor or
gene product stems from the fact that it is actively regulat-
ing itself or other genes in the stable equilibrium state.
There is a general theorem stating that the system of equa-
tions F(x) = g, where x ∈ Rn, F is a differentiable function
F : Rn → Rn, and F(x0) = g0, can only have a differentiable
solution x = G(g), x0 = G(g0), if there is a feedback loop
involving all n variables [27,47]. When this is applied to a
SSP, it follows that for the SSP to exist there must be a feed-
back loop among all the singular variables, mediated by the sig-
moidal terms Zj [27]. Thus, at least for the models
investigated in the present paper, if there is a sigmoid-
mediated feedback loop among a subset of the variables,
and there is a SSP in which these variables are singular,
and the sigmoids involved are sufficiently steep, the sys-
tem will exhibit threshold robustness in this SSP for all the
singular variables. Mathematically, threshold robustness
is not restricted to any particular type of feedback system.
Rather, it is a generic feature of GRNs with steep response
functions. Due to the generality of the above-mentioned
theorem and the concept and properties of SSPs [25,26],
we conjecture that threshold robustness is a general prop-
erty of singular stationary points. Our findings suggest
that this feature is generic in a wider sense, not being
dependent on response functions being steep, but it
becomes weaker as the system approaches Michaelis-
Menten conditions. Also, we may conclude that threshold
robustness is a systemic property effectuated by the feed-
back loop between the sigmoidal interaction terms of the
variables at threshold.

The fact that an actively regulating variable necessarily is
part of a feedback loop explains how it can maintain its
regulation ability. Due to the feedback and because the
point is stable, a perturbation that shifts a singular varia-
ble away from its threshold, will eventually be counter-
acted. Thus, a singular variable, i.e. a variable with
threshold robustness, is actively regulating and also itself
being actively regulated. On the other hand, a feedback
loop, even between sigmoidal terms, do not necessarily
imply that a SSP exists. It may for certain parameter value
combinations but not for others. Thus, it would not be
fair to say that threshold robustness is a necessary conse-
quence of feedback. Rather, it is a property of a SSP, and
the SSP can only exist if there is a sigmoid-mediated feed-

back loop among its singular variables. René Thomas has
suggested the reasonable conjecture that this must be a
negative feedback loop [48]. Our results seem to support
this conjecture and suggest that threshold robustness is
maintained by negative feedback.

In our numerical simulations, we chose both thresholds
fixed at θj = 1. However, this was just a matter of conven-
ience and not a model limitation. Without this choice, all
parameter variations would still have been expressed by
the same two parameters, but with the modification that
μj = αj/(γjθj). Thus, variation in the thresholds would also
result in a variation of μj, the only additional effect being
a shift in the position of the SSP as long as the perturbed
parameters would not fall outside the domain in parame-
ter space where both variables are singular. The system
would still exhibit threshold robustness, but now around
the shifted threshold values. For the majority of the mod-
els this domain covers the major part of the parameter
space (c.f. Fig. 6). For this reason threshold robustness
might also be called adaptive robustness.

Seen as genotype-phenotype maps the studied gene regu-
latory networks share some interesting features related to
the genetic phenomena hidden genetic variation and neu-
trality. Hidden (or cryptic) genetic variation is defined as
"standing genetic variation that does not contribute to the nor-
mal range of phenotypes observed in a population, but that is
available to modify a phenotype that arises after environmental
change or the introduction of novel alleles [49]." It is known
that negative autoregulation hides variation in the copy
numbers of genes [33]. Our results show a more general
connection between negative feedback, threshold regula-
tion and hidden genetic variation. In our simulations we
fixed a certain amount of parameter variation, corre-
sponding to genetic variation, for a range of different gene
regulatory models, and showed that this variation does
not result in a corresponding variation in the phenotype.
Thus, in a network which exhibits threshold robustness,
functional mutations are hidden for phenotypic selection.
Our results imply that mutations causing changes in the
maximum production rate or the relative decay rate, but
keeping the threshold of regulation intact, may have
almost no phenotypic signature if the regulatory dose-
response relationships are steep enough. Such mutations
are neutral in the sense of Wagner's definition: "A neutral
mutation does not change a well defined aspect of a biological
system's function in a specific environment and genetic back-
ground [36]." It is implicit in this definition that neutral
mutations may aquire a phenotypic signature if the sys-
tem conditions change. Threshold robustness also offers
an explanation of how genotypic variation that is hidden
under one condition may be released by for instance a
mutation causing a functional change in the regulatory
machinery. For instance, the hidden genetic variation
Page 10 of 14
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could be released by a change in the regulatory structure
beyond the limit inside which robustness for one or sev-
eral variables is conserved. That would turn singular com-
ponents into regular components without threshold
robustness and susceptible to parameter variations. Thus,
a single key mutation in a regulatory structure may release
a substantial amount of hidden, potential variation, as
illustrated in a simulation study by Bergman and Siegal
[50].

Conclusion
This paper presents a simulation study of a class of gene
regulatory models in which regulation is modelled with
sigmoidal response functions combined by operators
mimicking Boolean functions. From a mathematical anal-
ysis it is known that when the sigmoidal response func-
tions are very steep, the equilibrium values of the
regulating agents are locked to the thresholds, thus are
very insensitive to perturbations in all parameters except
the threshold levels. This implies that they retain their
active regulating power despite parameter perturbations.
Our simulations show that this threshold robustness is
preserved also for more gentle responses, and is qualita-
tively present even under Michaelis-Menten conditions.
Even though the models investigated are simple, there are
reasons to believe that they give a phenomenological
description of a large number of different system in which
the aggregated effects of a series of transcriptional, transla-
tional, and post-translational processes as well as protein-
protein interactions and metabolic processes can be
described by threshold-dominated response functions.

According to Kitano, robustness is an ability to maintain
a function under noise-like perturbations. Threshold
robustness is the ability of a protein or transcription factor
to maintain an active regulation of a gene in homeostasis
under external perturbations. The feedback loop that the
system necessarily possesses in the homeostatic state,
ensures that the robust members of the loop are them-
selves regulated and kept close to their threshold values.

Some of the 14 models investigated show a much lower
degree of robustness than the rest, a fact that we have
explained by a specific analysis of the models in which we
compared the shape and extension of the parameter space
domain in which the robustness property is preserved
under parameter perturbations. For the models with lower
degree of robustness, this domain is smaller and con-
cavely shaped such that the perturbed values very easily
fall outside the robustness domain. We have also seen that
one variable may be considerably less robust than the
other, despite all response functions being equally steep,
and have offered an explanation of this phenomenon.

Threshold robustness may offer increased insight into
genetic phenomena such as maintenance and release of
genetic variation in evolution, but a closer investigation of
these matters was beyond the scope of the present paper.

Methods
Model equations and regulatory functions
To simplify the simulations our model system

was scaled to give the scaled equations (3)

xj' = αjRj(Z1, Z2) - γjxj, j = 1,...,3,

where α3 ∈ �0, 1� and all γj ∈ �0, 1�, and Zj = xj
p/(xj

p + 1).
Details are given below.

The regulatory functions R1 and R2 were chosen as alge-

braic equivalents of Boolean functions with two inputs,

subject to the requirements ∂Rj/∂Zj ≤ 0, j = 1, 2, and (∂R1/

∂Z2)(∂R2/∂Z1) ≤ 0 to ensure that there is no positive loop

in the system and accordingly no multistationarity, and a
globally attracting stationary point. Excluding TRUE and
FALSE which imply no regulation, and two more func-
tions that do not fulfil the above mono-stationarity con-
ditions, we were left with the 12 regulatory functions
listed in Table 1. The algebraic equivalents are computed
by the rules given in [25], X1 and X2 are Boolean variables,

i = NOT Xi; Z1 and Z2 are the corresponding sigmoidal

y R Z Z y jj j j j j= − =κ λ( , ) , ,..., ,1 2 1 3 (4)

X

Table 1: The 12 Boolean functions used and their algebraic 
equivalents

Boolean function Algebraic equivalent

1 X1 AND X2 Z1Z2
2

X1 AND 2
Z1(1 - Z2)

3
1 AND X2

(1 - Z1)Z2

4
1 AND 2

(1 - Z1)(1 - Z2)

5 X1 Z1
6 X2 Z2
7

1
1 - Z1

8
2

1 - Z2

9 X1 OR X2 Z1 + Z2 - Z1Z2
10

1 OR 2
1 - Z1Z2

11
X1 OR 2

1 - Z2 + Z1Z2

12
1 OR X2

1 - Z1 + Z1Z2

X

X

X X

X

X

X X

X

X
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functions as defined above. The third function R3(Z1, Z2)

= Z1Z2 in all cases.

Disregarding cases that were equivalent due to the x1-x2
symmetry of Eq. (3), we were left with 14 different models
(Fig. 3, only x1 and x2 are shown). For example, the scaled
equation system for Model 6 is

Scaling
Here we outline the scaling steps to non-dimensionalise
the model equations (4) and standardise the parameter
ranges.

1. For j = 1, 2, introduce xj = yj/θj to scale the thresholds for
xj to θj = 1.

2. Assume λj ∈ �0, Λ�, j = 1, 2, 3, and scale the time t by
introducing τ = Λt.

3. Assume κ3 ∈ �0, K� and introduce x3 = (K/κ3)y3.

This leads to the scaled equations (3). The new parameters
are αj = κj/(Λθj), j = 1, 2, α3 = κ3/K, and γj = λj/Λ, j = 1, 2,
3, with the properties α3 ∈ �0, 1� and all γj ∈ �0, 1�. Below
we use μj = αj/γj, j = 1, 2.

Sampling

This subsection describes the generation of parameter sets

for Eq. (3). The parameters γ1, γ2, γ3 were sampled from

independent uniform distributions over �0, 1�. Since we
were interested in parameter sets that exhibit threshold
regulation in the step-function limit, we did not sample
the production rates directly but rather worked our way

back from the values of the equilibrium values  and

 in the limit p → ∞. Granted that these lie in �0, 1�, the

steady state values of x1 and x2 are at their thresholds θj =

1. From the steady state conditions of Eq. (3), the maxi-
mal production rates for gene 1 and 2 are then given by

For each of the 14 models we generated 81 initial param-

eter sets φk = {α1k, γ1k, α2k, γ2k, α3k, γ3k} by taking the equi-

librium values ( , ) from the square lattice {0.1,

0.2,...,0.9} × {0.1, 0.2,...,0.9}.

Having drawn a parameter set we introduced variation in

the parameters. For each parameter set φk we generated a

set of 50 perturbed parameter values , � = 1,...,50 by

keeping γj fixed and sampling αj of all three genes uni-

formly in the range �αj/2, 3αj/2�. This is justified by the fact

that the stable state values only depend on the ratios μj.

For each set of perturbed parameter values we used Mat-

lab's odesolver to find the steady state  of the three

gene products in Eq. (3).

Measuring robustness towards pertubation
The robustness properties of the the three gene products
in Eq. (3) were evaluated by comparing the coefficient of
variation (CV) for parameters to the coefficient of varia-
tion for the steady state values. For each k ∈ {1,...,81} the
robustness of the steady state values of xj against perturba-
tions in the production rates αj is analysed using the coef-
ficient of variation

As the coefficient of variation is invariant under scaling,
the parameter CVs will be close to the CV of the uniform

distribution U(0.5, 1.5) which is CVuni = 1/  ≈ 0.288.

Since we wanted to study how the robustness depends on
the steepness of the dose-response function, we carried
out this procedure for p = 1, 2, 5, 10, 20, 50, 100.

Explaining the differences in robustness among the models
The reason for the reduced robustness of Models 1, 2, and
11 compared to the remaining models can be explained
by investigating the shape and size of the robustness
domain ΩSSP in the (μ1, μ2)-plane for which both x1 and x2
are active regulators in the stable point in the step func-
tion limit. We find that for Models 1, 2, and 11, ΩSSP is a
narrow, concave stripe, while for the remaining models it
is a convex domain (Fig. 6). Below we show how to derive
this result for Model 1. The analyses for the rest of the
models are similar.

From Fig. 3 it follows that the scaled equations of motion
for x1 and x2 in Model 1 are

′ = − −
′ = − −
′ = −

x Z Z x

x Z x

x Z Z x

1 1 1 2 1 1

2 2 1 2 2

3 3 1 2 3 3

1

1

α γ
α γ
α γ

( ) ,

( ) ,

.

(5)

Z1
∗

Z2
∗

α
γ

j
j

R j Z Z
j= ∗ ∗ =

( , )
, , .

1 2
1 2 (6)

Z1
∗ Z2

∗

φ k

x j
k∗

CV
x j
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x j
kj

k =
∗

=
∗

=

std

mean

({ } ,..., )

({ } ,..., )
.

1 50

1 50
(7)

12

′ = − −
′ = − + −

x Z Z x

x Z Z Z x
1 1 1 2 1 1

2 2 2 1 2 2 2

1

1

α γ
α γ

[ ] ,

[ ] .
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Assume the stationary point is a SSP in which both varia-
bles are singular, and that p is very large. Then at equilib-

rium,  ≈ θ1 = 1,  ≈ θ2 = 1, and 0 <  < 1. Solving the

equilibrium conditions with respect to μj, j = 1, 2 under

these assumptions we find that μj > 1 and

Upon elimination of  this leads to

Then ΩSSP is the domain covered by this family of curves

when  vary between 0 and 1. One easily finds ΩSSP to

be the domain between the three curves μ1 = 1, μ2 = 1, and

μ2 = μ1/(μ1 - 1) (Fig. 6a). As both μ1 and μ2 are perturbed

50% up and down in our simulations, there is no point in

ΩSSP in which both perturbed values are bound to stay

inside ΩSSP.
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