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Abstract
Background: The study of synchronization among genetic oscillators is essential for the
understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels.
Genetic networks are intrinsically noisy due to natural random intra- and inter-cellular fluctuations.
Therefore, it is important to study the effects of noise perturbation on the synchronous dynamics
of genetic oscillators. From the synthetic biology viewpoint, it is also important to implement
biological systems that minimizing the negative influence of the perturbations.

Results: In this paper, based on systems biology approach, we provide a general theoretical result
on the synchronization of genetic oscillators with stochastic perturbations. By exploiting the
specific properties of many genetic oscillator models, we provide an easy-verified sufficient
condition for the stochastic synchronization of coupled genetic oscillators, based on the Lur'e
system approach in control theory. A design principle for minimizing the influence of noise is also
presented. To demonstrate the effectiveness of our theoretical results, a population of coupled
repressillators is adopted as a numerical example.

Conclusion: In summary, we present an efficient theoretical method for analyzing the
synchronization of genetic oscillator networks, which is helpful for understanding and testing the
synchronization phenomena in biological organisms. Besides, the results are actually applicable to
general oscillator networks.

Background
Elucidating the collective dynamics of coupled genetic
oscillators not only is important for the understanding of
the rhythmic phenomena of living organisms, but also
has many potential applications in bioengineering areas.
So far, many researchers have studied the synchronization
in genetic networks from the aspects of experiment,
numerical simulation and theoretical analysis. For
instance, in [1], the authors experimentally investigated
the synchronization of cellular clock in the suprachias-

matic nucleus (SCN); in [2-4], the synchronization are
studied in biological networks of identical genetic oscilla-
tors; and in [5-7], the synchronization for coupled noni-
dentical genetic oscillators is investigated. Gene
regulation is an intrinsically noisy process, which is sub-
ject to intracellular and extracellular noise perturbations
and environment fluctuations [8-12,14]. Such cellular
noises will undoubtedly affect the dynamics of the net-
works both quantitatively and qualitatively. In [13], the
authors numerically studied the cooperative behaviors of
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a multicell system with noise perturbations. But to our
knowledge, the synchronization properties of stochastic
genetic networks have not yet been theoretically studied.

This paper aims to provide a theoretical result for the syn-
chronization of coupled genetic oscillators with noise per-
turbations, based on control theory approach. We first
provide a general theoretical result for the stochastic syn-
chronization of coupled oscillators. After that, by taking
the specific structure of many model genetic oscillators
into account, we present a sufficient condition for the sto-
chastic synchronization in terms of linear matrix inequal-
ities (LMIs) [15], which are very easy to be verified
numerically. To our knowledge, the synchronization of
complex oscillator networks with noise perturbations,
even not in the biological context, has not yet been fully
studied. Recently, it was found that many biological net-
works are complex networks with small-world and scale-
free properties [16,17]. Our method is also applicable to
genetic oscillator networks with complex topology,
directed and weighted couplings. To demonstrate the
effectiveness of the theoretical results, we present a simu-
lation example of coupled repressilators. Throughout this
paper, matrix U ∈ RN × N is defined as an irreducible matri-
ces with zero row sums, whose off-diagonal elements are
all non-positive, and the other notations are defined in
the Appendix A.

Results
Theoretical results
Since we know very little about how the cellular noises act
on the genetic networks, a simple way to incorporate ran-
dom effects is to assume that certain noises randomly per-
turb the genetic networks in an additive manner. We
consider the following networks of N coupled genetic
oscillators with random noise perturbations

where F(·) defines the dynamics of individual oscillators,
vi(t) ∈ Rn × 1 is called the noise intensity vector, belongs to
L2 [0, ∞). As we will see in the following analysis, the
results hold no matter what vi(t) is and no matter where it
is introduced, so we do not explicitly express the form of
vi(t) here. vi(t) can also be a function of the variables (if so,
some minor modifications are needed in the following).
ni(t) is a scalar zero mean Gaussian white noise process.
Recall that the time derivative of a Wiener process is a
white noise process [19], hence we can define dwi(t) =
ni(t)dt, where wi(t) is a scalar Wiener process. Thus, the
above equation can be rewritten as the following stochas-
tic differential equation form:

The work can be easily extended to the case that vi(t) ∈

 and ni(t) = [ni1(t), �, (t)]T be an li-dimensional

mutually independent zero mean Gaussian white noise

process. D ∈ Rn × n defines the coupling between two
genetic oscillators. G = (Gij)N × N is the coupling matrix of

the network. If there is a link from oscillator j to oscillator

i (j ≠ i), then Gij equals to a positive constant denoting the

coupling strength of this link; otherwise, Gij = 0;

. Matrix G defines the coupling topol-

ogy, direction, and the coupling strength of the network.

For network (1), a natural attempt is to study the mean-
square asymptotic synchronization. But existing experi-
mental results show that usually the genetic oscillators
can not achieve mean-square synchronization (see, e.g.
experimental results in [1] and Appendix B for a theoreti-
cal discussion). Analogue to the stochastic stability with
disturbance attenuation (see, e.g. [20]), we give a less
restrictive (but more realistic) definition of the stochastic
synchronization as follows:

Definition 1: For a given scalar γ > 0, the network (1) is said
to be stochastically synchronous (under the combination
matrix U) with disturbance attenuation γ if the network
without disturbance (vi = 0, ∀i) is asymptotically synchro-
nous, and under the same initial conditions for all oscilla-
tors,

for all nonzero vi(t), where . Here, by

introducing the combination matrix U, we can flexibly
select the form of the matrix to obtain different error com-
binations.

By using the techniques described in the Appendix C, we
know that if there exist matrices P > 0, T ∈ Rn × n and U, and
a scalar ρ > 0, such that the following conditions are satis-
fied,

S2 ≡ 2(y1 - y2)TP[F(y1) - F(y2) - T(y1 - y2)] +

(y1 - y2)T(y1 - y2) < 0, ∀y1, y2 ∈ Rn (y1 ≠ y2),
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(U � P)(G � D + I � T) + (G � D + I � T)T(U � P) ≤ 0,
 (3)

U � P ≤ ρI,

then, the network (1) will achieve stochastic synchroniza-
tion with disturbance attenuation γ.

The above condition (3) is a general result for the stochas-
tic synchronization of coupled oscillators. But we do not
have general efficient method for verifying the first ine-
quality in (3) for arbitrary F due to its nonlinearity. Next
we consider a special structure of genetic oscillators to
obtain an easy-verified result.

Genetic oscillators are biochemically dynamical net-
works, which can usually be modelled as nonlinear
dynamical systems. Mathematically many genetic oscilla-
tors can be expressed in the form of multiple additive
terms, and the terms are monotonic functions of each var-
iable, which particularly, are of linear, Michaelis-Menten
and Hill forms. In our previous papers [7,23], we have
taken such special structure properties of gene networks
into account, and have shown that these genetic oscilla-
tors can be transformed into Lur'e form and can be further
analyzed by using Lur'e system method in control theory
[22]. In this paper, we also consider such special structure.
To make our paper more understandable and self-con-
tained, we will first introduce the approach briefly, and
after that we will analyze the stochastic genetic oscillator
networks theoretically. We consider the following general
form of genetic oscillator:

(t) = Ay(t) + B1f1(y(t)) + B2f2(y(t)), (4)

where y(t) ∈ Rn represents the concentrations of proteins,
RNAs and chemical complexes, A, B1 and B2 are matrices

in Rn × n, f1(y(t)) = [f11(y1(t)), �, f1n(yn(t))]T with f1j(yj(t))

as a monotonic increasing function of the form

, and

f2(y(t)) = [f21(y1(t)), � , f2n(yn(t))]T with f2j(yj(t)) as a

monotonic decreasing function of the form

, where H1j and H2j are

the Hill coefficients. Genetic oscillators of the form (4) is
by no mean peculiar. Many well-known genetic system
models can be represented in this form, such as the Good-
win model [24], the repressilator [25], the toggle switch
[26], and the circadian oscillators [27]. Undoubtedly, this
work can be easily generalized to the case of

, where there are more than

two nonlinear terms in each equation of the genetic oscil-
lator. From the synthetic biology viewpoint, genetic oscil-
lators with only linear, Michaelis-Menten and Hill terms
can also be implemented experimentally.

To avoid confusion, we let the jth column of B1,2 be zeros

if f1j,2j ≡ 0. Since

and letting f(·) = f1(·), we can rewrite (4) as follows:

(t) = Ay(t) + B1f(y(t)) - B2g(y(t)) + B2. (5)

Obviously, fi and gi satisfy the sector conditions:

 or equiva-

lently,

(fi(a) - fi(b)) [(fi(a) - fi(b)) - k1i(a - b)] ≤ 0, (6)

(gi(a) - gi(b)) [(gi(a) - gi(b)) - k2i(a - b)] ≤ 0,

∀a, b ∈ R(a ≠ b);i = 1, �, n,

Recall that a Lur'e system is a linear dynamic system, feed-
back interconnected to a static nonlinearity that satisfies a
sector condition [22]. Hence, the genetic oscillator (5) can
be seen as a Lur'e system, which can be investigated by
using the fruitful Lur'e system approach in control theory.

By substituting the individual genetic oscillator dynamics
(5) for F in the network (1), we obtain the following net-
work of N coupled genetic oscillators:

For this network, we have the following result:

Proposition 1: If there are matrices P > 0, Λ1 = diag(λ11,
�,λ1n) > 0, Λ2 = diag(λ21, �,λ2n) > 0, Q ∈ Rn × n, U as
defined above, and a positive real constant ρ such that the
following matrix inequalities hold
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where (1,1) = PA + ATP - Q - QT + I, K1 = diag(k11, �,

k1n), K2 = diag(k21, �, k2n). Then the network (7) is sto-

chastic synchronization with disturbance attenuation γ.

Proposition 1 can be proved by replacing F in S2 of (3) by
the dynamics of (5), and using the sector conditions (6).
The details are given in Appendix D. If we choose U
beforehand, the matrix inequalities in (8) are all LMIs,
which are very easy to be verified numerically [15]. For
some special G and D, we can further simplify the verifi-
cation process [21,7].

An example
To demonstrate the effectiveness of our theoretical results,
we consider a population of N coupled biological clocks,
and the individual genetic oscillator is the repressilator
[25]. The repressilator is a network of three genes, the
products of which inhibit the transcription of each other
in a cyclic way (10). Specifically, the gene lacI expresses
protein LacI, which inhibits transcription of the gene tetR.
The protein product TetR, inhibits transcription of the
gene cI, the protein product CI of which in turn inhibits
expression of lacI, thus forming a negative feedback cycle.

The quorum-sensing system is used for the coupling pur-
pose, which was described in [5]. The system achieves cell-
to-cell communication through a mechanism that makes
use of two proteins, the first one of which (LuxI), under
the control of the repressilator protein LacI, synthesizes a
small molecule known as an autoinducer (AI), which can
diffuse freely through the cell membrane. When a second
protein (LuxR) binds to this molecule, the resulting com-
plex activates the transcription lacI, as shown in Fig. 1. The
noise perturbations in the model can arise both intracel-
lularly, due to the intrinsically noisy property of the gene
regulation process, and extracellularly, due to environ-
ment fluctuations.

To model the system, we use ai, bi, ci, and Ai, Bi, Ci to rep-
resent the dimensionless concentrations of the genes tetR,
cI, lacI and their product proteins TetR, CI, LacI, respec-
tively. As in [5], assuming equal lifetimes of the TetR and
Luxl proteins, their dynamics are identical, and hence we
can use the same variable to describe both protein concen-
trations. The concentration of AI inside the ith cell is
denoted by Si. Consequently, the mRNA and protein
dynamics in the ith cell can be described by [5]:

where m is the Hill coefficient, Se denotes the extracellular
AI concentration, and the meaning of the other parame-
ters are standard in genetic network models. We assume
that the release of the AI is fast with respect to the times-
cale of the oscillators and becomes approximately homo-
geneous to establish an average AI level outside the cells.
In the quasi-steady-state approximation, the extracellular
AI concentration can be approximated by [5]

where 0 <Q0 < 1 is a constant. Thus the dynamics of Si can
be rewritten as

Clearly, the individual model in (9) is of the form (5), in

which f = [0, 0, 0, 0, 0, 0, Si/(μs + Si)]T, B1 is a 7 × 7 matrix

with all zero entries except for B1(3, 7) = k, g = [0, 0, 0,

/(μ + ), /(μ + ), /(μ + ), 0]T, B2 is a

7 × 7 matrix with all zero entries except for B2(1,6) = B2(2,

4) = B2(3, 5) = α/μ, and all the other terms are in linear

form. Obviously, the coupling term can also be written
into the form defined previously.

The purpose of this example is to demonstrate the effec-
tiveness and correctness of the theoretical result, instead
of mimicking the real biological clock system. We con-
sider a small size of network with N = 10 coupled oscilla-

tors. The parameters are set as m = 4, α = 1.8, d1 = d2 = d3 =
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0.4, μ = 1.3, k = 5, μs = 5, d4 = d5 = d6 = 0.5, β1 = β2 = β3 =

0.2, ks0 = 0.016, ks1 = 0.018, Q0 = 0.8 and η = 0.4. Since

Proposition 1 holds no matter what vi(t) is and no matter

where it is introduced, and the verification of Proposition
1 is independent of noise intensity vi, for simplicity, we set

vi = 0.015 as a scalar for all i, and the noise term vini(t) is

added to the first equation in (9), where ni(t) is a scalar

Gaussian white noise process. According to Proposition 1
(by letting U = -G, and using MATLAB LMI Toolbox), we
know that the above all-to-all coupled network can
achieve stochastic synchronization with disturbance

attenuation γ = 6. Although γ is a large value, it is easy to

show from (2) that the time average of E(∑i∑j|xi(t) -

xj(t)|2) is still rather small because  is very small. We

omit the computational details here. In Fig. 2(a) &2(b),
when starting from the same initial values, we plot the
time evolution of the mRNA concentrations of tetR (ai) of

all the oscillators, which behaviors are similar to the
experimental results (see, e.g. [1]). Fig. 2(c) shows the syn-
chronization error of ai - a1 for i = 2, �, 10.

In Definition 1, it requires that all the genetic oscillators
have the same initial conditions, so that V(x(0)) = 0. If the
genetic oscillators have different initial conditions,
V(x(0)) ≠ 0, and thus (12) in the Appendix C is replaced
by

Since in genetic networks, the variables usually represent
the concentrations of mRNAs, proteins and chemical
complexes, which are of (not so large) limited values, and
so is V(x(0)). For a long time scale, the last term of the
above inequality is usually much smaller than the abso-
lute value of the first term in the right-hand side, and thus
the last term can be ignored roughly. In Fig. 3, we show
the same computations as those in Fig. 2 except that the
oscillators are with different initial values (randomly in
the range (0, 1)). After a period of evolution, the network
behaviors are similar to those in Fig. 2, which verifies our
above argument. In other words, rigorously, according to
Definition 1, we need that all the oscillators have the same
initial conditions, but practically, for oscillators with dif-
ferent initial conditions, we can obtain almost the same
results.

For the purpose of comparison, in Fig. 4 we show the sim-
ulation results of a network without noise perturbations.
As we can conclude from Figs. 2, 3, 4, the networks with
noise perturbation, though can't achieve perfect synchro-
nization, can indeed achieve synchronization with small
error fluctuation, and the network behaviors are similar to
those of networks without noise perturbations.

Synthesis
In addition to providing a sufficient condition for the sto-
chastic synchronization, Proposition 1 can also be used
for designing genetic oscillator networks, which is a

vi
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Schematic representation of the coupled repressilator networkFigure 1
Schematic representation of the coupled repressilator network. In the left big circle, detailed regulation and coupling mecha-
nism are presented. The repressilator module is located at the left of the vertical dotted line, and the coupling module appears 
at the right.
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byproduct of the main results. From the synthetic biology
viewpoint, to minimize the influence of the noises (on the
synchronization), we can design genetic oscillator net-
works according to the following rule:

min γ, such that the LMIs (8) hold, (11)

which is obviously from the above theoretical result. This
is similar to the H∞ synthesis problem in control theory.

Discussion and conclusion
In this paper, we presented a general theoretical method
for analyzing the stochastic synchronization of coupled
genetic oscillators based on systems biology approach. By
taking the specific structure of genetic systems into
account, a sufficient condition for the stochastic synchro-

nization was derived based on LMI formalism, which can
be easily verified numerically. Although the method and
results are presented for genetic oscillator networks, it is
also applicable to other dynamical systems. In coupled
genetic oscillator networks, since there is a maximal activ-
ity of fully active promoters, it is more realistic to consider
a Michaelis-Menten form of the coupling terms. As argued
in [7], our theoretical method is also applicable to this
case. To make the theoretical method more understanda-
ble and to avoid unnecessarily complicated notation, we
discussed only on some simplified forms of the genetic
oscillators, but more general cases regarding this topic can
be studied in a similar way. For example: (I) The genetic
oscillator model (5) can be generalized to more general

Simulation results of the coupled repressilators with the same initial valuesFigure 2
Simulation results of the coupled repressilators with the same initial values. (a) The evolution dynamics of the mRNA concen-
trations of tetR (ai) of all the genetic oscillators. (b) Zooming in the range t ∈ [600, 700] of (a). (c) The evolution of the syn-
chronization error of ai - a1 for i = 2, � ,10.

0 100 200 300 400 500 600 700 800

1

1.5

2

2.5

 te
tR

600 610 620 630 640 650 660 670 680 690 700

1.5

2

2.5

 te
tR

0 100 200 300 400 500 600 700 800
−1

−0.5

0

0.5

1

t

er
ro

r

Page 6 of 11
(page number not for citation purposes)



BMC Systems Biology 2007, 1:6 http://www.biomedcentral.com/1752-0509/1/6
case such that fi, gi, the component of f(y(t)), g(y(t)), are

functions of y(t), not only of yi(t), and f and g can also be

of non-Hill form, provided that

, ∀a, b ∈ Rn (a

≠ b), i = 1, � , n, where c1i, c2i ∈ Rn are real vectors. (II) Bio-

logically, the genetic oscillators are usually nonidentical.
We can consider genetic networks with both parametric
mismatches and stochastic perturbations in similar ways
as those presented in this paper and [7]. (III) There are sig-
nificant time delays in the gene regulation, due to the slow
processes of transcription, translation and translocation.
Our result can be easily extended to the case that there are

delays both in the coupling and the individual genetic
oscillators.

As we know, noises can play both beneficial and harmful
roles (for synchronization) in biological systems. For the
latter case, the noise is a kind of perturbation, and it is
interesting to study the robustness of the synchronization
with respect to noise. In this paper, we addressed this
question. For the former case, in [13,14], the authors stud-
ied the mechanisms of noise-induced synchronization.

Methods
To simulate the stocahstic differential equaiton (t) = f(x)

+ g(x)ξ(t), the well-known Euler-Maruyama scheme is
most frequently used, which is also used in this paper. In
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- a1 for i = 2, � ,10.
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this scheme, the numerical trajectory is generated by xn+1

= xn + hf(xn) + g(xn)ηn, where h is the time step and ηn

is a discrete time Gaussian white noise with <ηn >= 0 and

<ηnηm > = δnm. For more details, see e.g. [18].

Appendices
A. Notations
Throughout this paper, AT denotes the transpose of a
square matrix A. The notation M > (<) 0 is used to define
a real symmetric positive definite (negative definite)
matrix. Rm denotes the m-dimensional Euclidean space;
and Rn × m denotes the set of all n × m real matrices. In this
paper, if not explicitly stated, matrices are assumed to
have compatible dimensions. E(·) denotes the expecta-

tion operator; L2[0, ∞) is the space of square-integrable
vector functions over [0, ∞); |·| stands for the Euclidean
vector norm, and ||·||2 stands for the usual L2[0, ∞) norm.
The Kronecker product A � B of an n × m matrix A and a
p × q matrix B is the np × mq matrix defined as

For a general stochastic systems

dx = f(t, x(t))dt + g(x(t))dw(t),

h

A B

A B A B

A B A B

m

n nm
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.

Coupled genetic oscillators without noise perturbation: (a) The evolution dynamics of the mRNA concentrations of tetR (ai) of all the genetic oscillatorsFigure 4
Coupled genetic oscillators without noise perturbation: (a) The evolution dynamics of the mRNA concentrations of tetR (ai) of 
all the genetic oscillators. (b) Zooming in the range t ∈ [600, 700] of (a). (c) The evolution of the synchronization error of ai - 
a1 for i = 2, � ,10.
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the diffusion operator L acting on Y(t, x(t)) is defined by

LY(t, x(t)) = Yt(t, x(t)) + Yx(t, x(t))f(t, x(t)) +

trace[g(x(t))gT(x(t))Yxx(t, x(t))].

B. Mean-square synchronization
For network (1), a natural attempt is to study the mean-
square asymptotic synchronization. Analogue to the defi-
nition of mean-square stability [19], we can define the
mean-square synchronization as follows:

Definition A1: The network (1) is said to be mean-square

synchronous if for every ε > 0, there is a δ(ε) > 0, such that

 <ε for |xi(0) - xj(0)| <δ(ε), ∀i, j. If in

addition, limt→∞ E|xi(t) - xj(t)|2 = 0 for all initial condi-

tions, the network is said to be mean square asymptoti-
cally synchronous.

In analyzing the synchronization of the network (1), we
use the Lyapunov function V(x(t)) = xT(t)(U � P)x(t) [21],
where � is the Kronecker product, and

. According to [21], this

Lyapunov function is equivalent to V(x(t)) = ∑i <j(-

Uij)(xi(t) - xj(t))TP(xi(t) - xj(t)).

By Itô's formula [19], we obtain the following stochastic
differential along (1)

dV(x(t)) = LV(x(t))dt + 2xT(t)(U � P)v(t)dw(t)

where v(t) = diag(v1, �, vN) ∈ RNn × N, L is the diffusion
operator, and

LV(x(t)) = 2∑i <j(-Uij)(xi - xj)TP[F(xi) - F(xj) - T(xi - xj)]

+ 2xT(t)(U � P)(G � D + I � T)x(t)

+ trace(v(t)vT(t)(U � P))

We discuss two special cases of the stochastic terms:

1. The genetic oscillators are perturbed by the same noise,
which can occur in the situation that genetic oscillators
communicate via a common environment. In this case,

vidwi are the same for all i. We let [ ] and dw

= dwi Since U is a matrix with zero row sums and vi is the

same for all i, it is easy to show that the last term of LV is

zero. Thus if the following conditions hold, we will have
E[dV(x(t))] = E[LV(x(t))dt] < 0.

(y1 - y2)TP[F(y1) - F(y2) - T(y1 - y2)] < 0,

∀ y1, y2 ∈ Rn (y1 ≠ y2)

(U � P)(G � D + I � T) + (G � D + I � T)T(U � P) ≤ 0.

Hence, if there are matrices P > 0, T ∈ Rn × n and U, such
that the above conditions hold, the network (1) will
achieve mean-square asymptotically synchronization. In
this case, roughly speaking, the noise will not affect the
synchronous state (since they are common for all oscilla-
tors), but it will affect the individual oscillator dynamics.

2. The noise intensity matrix vi is a function of ∑j GijDxj,
which means that if there is no coupling from oscillator j
to i, then j does not have contribution to the perturbation
of oscillator i. We further assume that vi can be estimated
by

Defining v = diag(v1, �, vN) ∈ RNn × N, w(t) = [w1(t), �,
wN(t)]T, and H = diag(H1, �, HN), and assuming U � P ≤
ρI, we have

trace(v(t)vT(t)(U � P)) ≤ λmax(U � P)trace(v(t)vT(t))

≤ ρ∑i (t)vi(t)

≤ ρxT(t) (G � D)T H(G � D)x(t).

So, the conditions for the mean-square asymptotically
synchronization of the network (1) in this case are

(y1 - y2)TP[F(y1) - F(y2) - T(y1 - y2)] < 0,

∀y1, y2 ∈ Rn (y1 ≠ y2)

(U � P)(G � D + I � T) + (G � D + I � T)T(U � P) +
ρ(G � D)TH(G � D) ≤ 0,

U � P ≤ ρI.

If we consider genetic oscillators of the form of (5), the
conditions for the mean-square asymptotically synchroni-
zation can be analyzed by the same method as that in the
following Appendix D.

1
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From Definition Al, we know that the definition of the
mean-square asymptotically synchronization is rather
restrictive, which requires that limt→∞ E|xi(t) - xj(t)|2 = 0,
∀i, j. If it is neither of the above two cases, that is neither
Vidwi are the same for all i, nor vi (∀i) reduce to zero when
x1 = � = xn, the network is hardly to achieve mean-square
asymptotically synchronization. Experimental results also
show that usually the genetic oscillators can not achieve
mean-square synchronization (see for example [1]). So,
we argue that the study of mean-square synchronization is
unrealistic (and therefore meaningless) in genetic net-
works.

In Ref. [28], the authors studied the mean-square asymp-
totic synchronization of two master-slave coupled Chua's
circuits. They assume that the noise intensity depends on
the difference of the states of the two systems, which is
also somewhat unrealistic.

C. Analysis of the general synchronization condition

To obtain the general synchronization condition (3) of
the network (1), we also use the Lyapunov function
V(x(t)) = xT(t)(U � P)x(t). By Itôs formula [19], we obtain
the stochastic differential dV(x(t))= LV(x(t))dt + 2xT(t)(U
� P)v(t)dw(t). According to Definition 1, we assume that
the oscillators have the same initial conditions, thus we

can derive E(V(x(t)) = . For γ > 0, we

define

Then, it is easy to show that for α > 0,

Assuming U � P ≤ ρI, and letting α = γ/ρ, we have

If E(S1) < 0, we will have J(t) < 0, and thus, (2) follows
immediately from (3).

D. Proof of proposition 1
Proposition 1 can be proved by replacing F in S2 of (3) by
the dynamics of (5), and using the sector conditions (6).
We have

By letting Q = PT and denoting the first matrix in (8) by
M1, we have S2 ≤ ξ(t)M1ξ(t) < 0 for all y1, y2 except for y1 =
y2, where ξ(t) = [(y1(t) - y2(t))T, (f(y1(t) - f(y2(t)))T, (g(y1(t)
- g(y2(t)))T]T ∈ R3n × 1. So, the first condition in (3) is satis-
fied. Substituting Q = PT, the second inequality in (3) is
equivalent to the second inequality in (8). Thus, Proposi-
tion 1 is proved.
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