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Abstract
Background: With the advent of systems biology, biological knowledge is often represented today by
networks. These include regulatory and metabolic networks, protein-protein interaction networks, and
many others. At the same time, high-throughput genomics and proteomics techniques generate very large
data sets, which require sophisticated computational analysis. Usually, separate and different analysis
methodologies are applied to each of the two data types. An integrated investigation of network and high-
throughput information together can improve the quality of the analysis by accounting simultaneously for
topological network properties alongside intrinsic features of the high-throughput data.

Results: We describe a novel algorithmic framework for this challenge. We first transform the high-
throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns
from microarray data). Then, given a network of genes or proteins and similarity values between some of
them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms
for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae
and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant
functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity
and higher specificity.

Conclusion: We have demonstrated that our method can accurately identify functional modules. Hence,
it carries the promise to be highly useful in analysis of high throughput data.

Background
The accumulation of large-scale interaction data on mul-
tiple organisms, such as protein-protein and protein-DNA
interactions, requires novel computational techniques
that will be able to analyze these data together with infor-
mation collected through other means. Such methods
should enable thorough dissection of the data, whose
dimensions have already extended far beyond the scope
that is amenable to traditional analysis and manual inter-
pretation. An important class of such biological informa-
tion can be represented in the form of similarity relations.
Quantitative molecular data, such as mRNA expression

profiles, are often analyzed in this context through cluster-
ing algorithms. Similarity between genes can also be
defined on other levels, such as function [1] or transcrip-
tion factor binding patterns [2].

Although many fruitful algorithmic approaches have been
developed for dissection of network and similarity data
separately, methods analyzing together both information
sources hold much promise. Several works have estab-
lished the interconnection between expression profile
similarity and protein interactions [3,4]. To exploit this
interconnection, pairwise gene expression similarities
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have been used together with other data sources for pre-
dicting pairwise protein interactions (e.g., [5]). Topologi-
cal properties of interaction networks induced by genes
active in different conditions were studied [6-9]. Several
software tools allow the visual inspection of the clustering
results in a network context [10]. However, ignoring the
network information in the clustering process and using
the rich and constantly growing network information
solely for cluster evaluation seems suboptimal, as the net-
work information can improve the cluster identification
process. The prevalence of modularity in molecular cell
biology has been widely recognized in the last decade. By
functional module one typically means a group of cellular
components and their interactions that can be attributed
a specific biological function [11]. Several approaches
sought modules by jointly analyzing network information
with gene expression data. Initial works [12,13] proposed
measures for scoring expression activity in metabolic
pathways (e.g. KEGG database [14]) and complexes [15].
Vert and Kanehisa [16] used kernel methods to identify
expression patterns that characterize gene sets matching
pathways in a given network.

The Co-clustering methodology [17] uses a distance func-
tion that combines similarity of gene expression profiles
with network topology. The network distance between
two nodes is an edge-weighted version of their topological
distance in the network. The expression distance is one
minus the Pearson correlation between the expression
patterns. The two distances are combined into a similarity
score, and standard hierarchical algorithms [18] are used
for clustering. While generally successful, this approach
sometimes produces clusters corresponding to highly dis-
connected subnetworks, since the network is only used as
one of the sources of distance information, without
requiring connectivity.

Ideker et al. [19] introduced a successful algorithm for
identification of active subnetworks, i.e., connected regions
of the network that show significant changes in expression
over a particular subset of the conditions. Unfortunately,
this method can be used only when one has an activity p-
value for every measurement, a situation which is rather
uncommon. In addition, the method cannot handle pair-
wise gene similarity input. The same methodology was
recently used in [20], utilizing shortest-path algorithms
for module finding. Segal et al. [21] provided another
interesting formulation of the integration problem, in
which a module is expected to contain a significant por-
tion of the possible interactions. A probabilistic graphical
model was used to extract a prespecified number of mod-
ules from gene expression measurements combined with
a protein interaction dataset.

In this study we seek functional modules by identifying
connected subnetworks in the interaction data that
exhibit high average internal similarity. We call such a
module a Jointly Active Connected Subnetwork (JACS). By
imposing network topology constraints on clusters of
expression data, the biological interpretation of the clus-
ters becomes easier, and, as we shall see, one can detect
weaker signals that were indistinguishable by extant
methods.

We develop a novel computational method for efficient
detection and analysis of JACSs, implemented in a pro-
gram called MATISSE (Module Analysis via Topology of
Interactions and Similarity SEts). The proposed method-
ology has a statistical basis, which allows confidence esti-
mation of the results. The algorithm assumes no prior
knowledge on the number of JACSs, and allows imposing
constraints on their size. We do not require precalculation
of the statistical significance of expression values. The
methodology is general enough to suit any type of net-
work data overlaid with pairwise similarities.

Our algorithm detects JACSs by identifying heavy sub-
graphs in an edge-weighted similarity graph while main-
taining connectivity in the interaction network. By
transforming edge weights to attain probabilistic mean-
ing, we are actually seeking subnetworks of maximum
likelihood. We show that this problem is computationally
hard, devise several heuristic methods and analyze their
practical performance.

When using gene expression similarity, analysis of known
pathways in yeast has shown that only a fraction of the
genes in a pathway are usually coherently regulated at the
transcription level (and thus highly similar) [22]. Our
method allows assignment of different priors to different
genes, reflecting their probability to be regulated at the
transcription level. We believe this is the first study to
allow such flexibility. In addition, the goal of our
approach is to detect non-overlapping JACSs rather than
to partition all the genes into clusters.

We first evaluate the performance of our algorithm on
synthetic data with planted modules, and verify its ability
to recover planted modules with high accuracy. Then, we
analyze two real systems for which large datasets are avail-
able: the osmotic shock response of S. cerevisiae, and the
cell cycle in human HeLa cells. For S. cerevisiae, we com-
piled and carefully annotated from diverse sources a pro-
tein-protein and protein-DNA interaction network
consisting of 6,230 nodes and 89,327 interactions. The
performance of MATISSE is shown to exceed that of extant
analysis schemes in terms of the ability to retrieve biolog-
ically relevant groups, as analyzed by four different anno-
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tation datasets. We identify specific subnetworks relevant
to different processes that are known to be activated and
repressed by the MAPK cascades following osmotic shock,
such as ergosterol biosynthesis and pheromone response.
In addition, we identify novel pathways, such as pyridox-
ine metabolism, as differentially expressed during
osmotic shock. Detailed analysis shows that some of the
involved processes can not be detected based on the
expression data alone. The human network contains
9,135 nodes and 25,086 protein-protein interactions col-
lected from several sources, including recently published
studies [23,24]. Our analysis identifies subnetworks active
in specific phases of the human cell cycle. These results
underly the ability of our approach to provide novel, pre-
viously undetected biological insights. The inspection of
"hubs" in the subnetworks delineated by MATISSE reveals
key regulators of the cell cycle.

Results and discussion
A framework for detection of jointly active subnetworks
Let us first state our problem abstractly. We are given an
undirected constraint graph GC = (V, E), a subset Vsim ⊆ V
and a symmetric matrix S where Sij is the similarity
between vi, vj ∈ Vsim. The goal is to find disjoint subsets U1,
U2,..., Um ⊆ V called JACSs, so that each JACS induces a
connected subgraph in GC and contains elements that
share high similarity values. We call the nodes in Vsim front
nodes and nodes in V\Vsim back nodes.

In the biological context, V represents genes or gene prod-
ucts (we shall use the term 'gene' for brevity), and E repre-
sents interactions between them. These can be known
protein-protein or protein-DNA interactions or alterna-

tively can originate from a known regulatory network
where arc orientations are ignored. Sij measures the simi-
larity between genes i and j, e.g., the Pearson correlation
between their gene expression patterns. The set Vsim may
be smaller than V as some of the genes may be absent
from the array, and others may show insignificant expres-
sion patterns across the tested conditions and thus
excluded. Hence, a JACS aims to capture a set of genes that
have highly similar behavior, and are also topologically
connected, and thus may share a common function, e.g.,
belong to a single complex or pathway. As elaborated in
Methods, we formulate the problem of JACS identifica-
tion as a hypothesis testing question. In this approach sta-
tistically significant JACSs correspond to heavy
subnetworks in a similarity graph, with nodes inducing a
connected subgraph in GC (Figure 1). The probabilistic
model we propose also accommodates the use of gene-
specific priors, reflecting our confidence that they are tran-
scriptionally regulated in the studied conditions.

As exact optimization is intractable, we designed and
tested several heuristics for solving the problem (see
Methods). The version that performed best on real biolog-
ical data had the following three phases: (1) detection of
relatively small, high-scoring gene sets, or seeds; for each
node, the set consisting of it along with the neighboring
nodes that are connected to it via positive-weighted edges
was a candidate seed; (2) seed improvement, and (3) sig-
nificance-based filtering (see Methods for full details).
This version, which we call MATISSE, was used in subse-
quent analysis.

Toy input exampleFigure 1
Toy input example. A toy example of an input problem with two distinct JACSs and with front and back nodes. Both JACSs 
(circled) are connected in the interaction network and heavy in the similarity graph. Note that the four front nodes in the left 
JACS form a connected subgraph only after the addition of the back node.
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Analysis of performance using simulated similarity values
In order to evaluate the ability of our method to detect
subnetworks of high pairwise similarity, we first tested its
performance on simulated similarity data. The simulation
used a connected subnetwork of 2,000 nodes from the S.
cerevisiae interaction network (described below) as the
constraint graph. The similarity data were generated by
"planting" a collection of JACSs with several defining
parameters in the network, using two similarity value dis-
tributions, where members of the same JACS tend to have
higher similarity, as described in Methods.

In order to test the effect of each parameter on the per-
formance of the different module finding algorithms, we
carried out simulations in which one parameter was var-
ied while keeping the rest at their default values. We also
tested simple clustering of the similarity data with the K-
means algorithm and with the Co-clustering approach of
Hanisch et al. [17], which proposes a distance measure
based on topology and expression. Since the latter
method does not readily provide clusters, we used that
measure with a K-means-like algorithm (with K = 15, and
moving genes between clusters based on average dis-
tance). Other methods (e.g., [21]) were not readily availa-
ble for comparison.

We evaluated the ability of the methods to recover the
planted components using Jaccard coefficient. The coeffi-
cient ranges between 0 and 1 with 1 indicating perfect
recovery (see Methods). The results are presented in Figure
2. MATISSE is able to retrieve the planted components
with good precision when there is a plausible separation
between the two similarity value distributions (above 1.3
standard deviations) and the fraction of the front nodes
exceeds 0.8. The performance of MATISSE exceeds that of
other methods for most of the parameter range.

Response to osmotic stress in S. cerevisiae
We generated a comprehensive S. cerevisiae protein-pro-
tein and protein-DNA interaction network by combining
information from the interaction databases SGD, BioG-
RID and BIND and recent high-throughput studies (e.g.,
[25], see our website for a complete list). This resulted in
a network containing 6,230 nodes and 89,327 interac-
tions. We also used 133 expression profiles of S. cerevisiae
under different perturbations and different environmen-
tal conditions focused on the osmotic stress response
[26]. The 2,000 genes whose patterns exhibit the highest
variation in the data were designated as front nodes. We
used Pearson correlation for scoring similarities between
expression patterns. The parameters of the probabilistic
model were assigned as described in Methods. Maps of the
subnetworks produced by MATISSE are provided on our
website and in the supplement [see Additional file 1].

Comparison of the modules produced by each method
We compared the performance of MATISSE to Co-cluster-
ing and to clustering based solely on the gene expression
data. We used the CLICK algorithm [27] for clustering, as
it was shown to outperform several extant gene expression
clustering algorithms, and since it can determine the
number of clusters and also leave some vertices unclus-
tered. The Ideker et al. method [19] could not be tested in
this setting, since measurement p-values could not be
computed.

Table 1 compares the properties of the modules produced
by every method. Expression homogeneity is calculated as
the average Pearson correlation between genes within the
same module. The edge density of a subgraph is the
number of edges it contains as a fraction of all its node
pairs. The clustering coefficient of a node is the fraction of
its neighbor pairs that are connected in the network [28].
The clustering coefficient of a module is the average coef-
ficient in the subgraph induced by the module. In the
"Random connected" and "Random" solutions, modules
were randomly sampled gene groups with and without
the requirement for network connectivity, respectively.
The sizes of the random groups were matched to the sizes
obtained by MATISSE.

Expression homogeneity
As expected, the most homogeneous clusters in terms of
expression similarity are obtained by CLICK, which opti-
mized this type of similarity. The homogeneity of the
MATISSE JACSs is higher than that of co-clusters. As previ-
ously reported [3], the expression homogeneity of a ran-
dom connected set is higher than that of a random
arbitrary set (average coherence of 0.063 for the random
connected solution, vs. 0.033 for random arbitrary solu-
tion).

Topological descriptors
MATISSE is designed to produce connected subnetworks.
The significance of this criterion is evident from the com-
parison to the other algorithms. In contrast to MATISSE,
both CLICK and Co-clustering produce modules that are
highly disconnected (averaging 80–90 components per
module). Interestingly, the subnetworks produced by
MATISSE are not denser than random connected compo-
nents in the network. This observation can be explained
by the fact that the network contains several dense com-
plexes that do not participate in the solutions, as their
components are not homogeneously expressed under the
examined conditions.

Functional enrichment
In order to compare the functional relevance of the mod-
ules found by the different methods we used four annota-
tion databases: (a) GO "biological process" ontology
(level 7; 474 categories) [29]; (b) GO complexes annota-
tion (subterms of "protein complex" term, 213 com-
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Table 1: Performance of the different module finding algorithms on the S. cerevisiae osmotic shock data

Solution No. of modules Total nodes Average size Expression 
homogeneity

Clustering coefficient Edge density No. of connected 
components

MATISSE 20 2107 105.35 0.361 0.073 0.035 1.00

Co-clustering 19 1991 104.79 0.354 0.035 0.010 89.67

CLICK 20 1988 99.40 0.438 0.030 0.011 77.61

Random connected 20 2107 105.35 0.063 0.050 0.036 1.00

Random 20 2105 105.35 0.033 0.004 0.003 89.78

Numbers in columns 4–8 are averages over all the modules in each solution.

Performance of different module finding procedures on simulated dataFigure 2
Performance of different module finding procedures on simulated data. Co-clustering: clustering based on the dis-
tance metric of [17]. K-Means: clustering of the similarity data. Random: random sampling of connected subnetworks matched 
in size and number to the planted components. The quality of solutions produced by the different procedures is evaluated by 
the Jaccard coefficient, (a) Performance as a function of the distance between the means of the mates and the non-mates distri-
butions (µm). (b) Performance as a function of the fraction of front nodes (pf). (c) Performance as a function of planted compo-
nent size (k).
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plexes); (c) MIPS deletion phenotype annotations [30]
(181 phenotypes); (d) KEGG molecular pathways (310
pathways) [14]. A relatively wide selection of annotations
was used to encompass diverse biological functions. Note
that the GO "molecular function" categories are not rele-
vant here, as the identified sets of genes are not expected
to have similar molecular mechanisms.

For each annotation and for each group of genes produced
by every method, the hypergeometric p-value was com-
puted (without correcting for multiple testing, see below).
We analyzed the percentage of the modules (Figure 3a)
and of the categories (Figure 3b) enriched with p-value ≤
10-3 in each solution. MATISSE exhibits high performance
in functional terms and in most cases the produced JACSs
show higher enrichment than expression clusters and co-
clusters. Co-clustering and CLICK perform slightly better
than MATISSE in covering KEGG categories. This is prob-
ably due to the overrepresentation of metabolic pathways
in KEGG. Metabolic pathways are generally poor in direct
protein-protein and protein-DNA interactions, and thus
less likely to be recognized by MATISSE, which relies also
on direct interactions, than by a clustering algorithm
based on expression alone.

As an additional comparison between MATISSE and Co-
clustering, we compared the p-values obtained by each
solution on each GO biological process (level 7) class
attaining enrichment of p ≤ 0.01 in at least one of the solu-
tions. The MATISSE modules gave better significance to
238 functions, while only 116 functions had higher signif-
icance in the Co-clustering solution.

In order to check the added value of incorporating net-
work constraints over using only expression profiles, we
compared the results to clustering of the expression pro-

files with CLICK. In the same pairwise comparison, 223
MATISSE functions exhibited a higher enrichment, com-
pared to 146 in CLICK. Several relevant functions, such as
pyridoxine metabolism, cellular response to phosphate
starvation, protein ubiquitination and post-Golgi trans-
port, were enriched with p < 10-5 in MATISSE, but were not
significantly enriched in any CLICK cluster. When seeking
functions enriched by the other clustering methods, the
only function enriched was "NAD biosynthesis" (p < 10-5)
discovered by CLICK. The six genes in our dataset that are
annotated with this category do not contain any interac-
tions between them and the average length of the shortest
path between them is 7.

Functional subnetworks identified by MATISSE
In the previous analysis we did not correct for multiple
testing since our goal was the comparison of the different
methods. To address the multiple testing problem, we
performed a GO functional enrichment analysis using the
TANGO algorithm [31]. The algorithm considers all levels
of the GO hierarchy and provides p-values corrected for
multiple testing and for category dependency using resa-
mpling (see Methods).

21 distinct functional terms were found to be enriched (p
< 0.05) in 14 distinct modules. The complete list of the
enriched functions and their respective JACSs is shown in
Table 2. Interactive maps of these JACSs can be found at
our website along with the corresponding expression data.
Note that JACSs were artificially limited to contain no
more than 120 nodes in order to provide a better separa-
tion between pathways with slightly similar expression
patterns. Nevertheless, it appears that this bound does not
cause substantial fragmentation of the true clusters, as
almost all the JACSs were enriched with distinct functions.
Reassuringly, most of the enriched functions are highly

Performance of different module finding algorithms on S. cerevisiae osmotic shock dataFigure 3
Performance of different module finding algorithmson S. cerevisiae osmotic shock data. (a) The fraction of the 
modules for which at least one category was enriched, (b) The fraction of the categories enriched in at least one module. 
Enrichment was defined as attaining hypergeometric p-value ≤ 10-3. Annotation sets: GO-Process: Level 7 of the GO "biological 
process" ontology; GO-Complex: subterms of "protein complex" term, GO:0043234; MIPS Phenotypes: MIPS deletion phenotype 
annotations; KEGG Pathways: KEGG molecular pathway participation.
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relevant to the conditions and the perturbations in the
data [32]. These include stress responses, such as repres-
sion of the translational machinery (JACSs 1–3) as well as
general stress response genes (JACS 11 and 17). In addi-
tion, a specific subnetwork relevant to the activation of
the pheromone response pathway following osmotic
shock in hog1 strain [32] was identified (JACS 5). Indeed,
since the HOG pathway shares protein kinases and phos-
phatases with other MAPK pathways, it was demonstrated
that perturbations in Pbs2 or Hog1 lead to osmostress-
induced stimulation of the pheromone response pathway
[33].

JACS 7 contains seven genes from the yeast membrane
ergosterol biosynthesis pathway which is strongly
repressed following osmotic shock in the WT strain but
not in hog1 strains. Lower levels of ergosterol make the
membrane more compact and less flexible and hence lead
to diminished transmembrane flux of glycerol, which is
important for recovery from both hyper-osmotic and
hypo-osmotic shock [32].

JACS 16 contains 19 genes members of the proteosome
complex. 9 of these are back nodes, underlying the ability
of MATISSE to use the network for linking co-activated
genes with biologically relevant partners. Inspection of
the expression data reveals a slight induction of the prote-
olysis genes following osmotic shock. This subtle
response is missed when clustering solely the expression
data, as no more than seven proteolysis genes are clus-
tered together in the CLICK solution. Ubiquitin-depend-
ent proteolytic mechanisms were linked to osmotic
responses before [32], and our findings support this
hypothesis.

Figure 4 shows JACSs 5 and 16. These subnetworks dem-
onstrate the use of different interaction types by MATISSE:
JACS 5 is dominated by protein-DNA interactions, involv-
ing the transcription factors (TFs) Tec1, Kss1 and Dig1;
JACS 16 is dominated by the protein interactions within
the proteosome and the mitochondrial ribosome com-
plexes. This subnetwork contains multiple back nodes
linking front nodes. In fact, Table 2 shows that some
JACSs make extensive use of nodes with no similarity
data.

Table 2: Functionally enriched modules found in the yeast osmotic shock data

JACS Size Front Enriched GO terms p-value TFs p-value

1 120 119 processing of 20S pre-rRNA < 0.001 Fhl1 4.82·10-16

rRNA processing < 0.001 Rap1 2.89·10-11

35S primary transcript processing < 0.001 Sfp1 2.98·10-8

ribosomal large subunit assembly and maintenance 0.019
rRNA modification < 0.001
ribosome biogenesis 0.029

2 120 118 translational elongation < 0.001 Fhl1 1.03·10-5

3 120 118 processing of 20S pre-rRNA < 0.001
rRNA processing 0.030

35S primary transcript processing 0.011
ribosomal large subunit assembly and maintenance 0.019

ribosomal large subunit biogenesis < 0.001
5 120 112 signal transduction during filamentous growth 0.010 Ste12 5.41·10-13

conjugation with cellular fusion < 0.001 Dig1 5.41·10-13

6 120 99 transcription from RNA polymerase III promoter < 0.001
transcription from RNA polymerase I promoter 0.006

7 120 107 ergosterol biosynthesis < 0.001
hexose transport 0.019

8 114 85 chromatin remodeling 0.050
11 120 114 pseudohyphal growth 0.010 Msn2 3.17·10-4

response to stress < 0.001 Msn4 1.82·10-12

14 120 102 ubiquitin-dependent protein catabolism 0.047
15 120 96 nuclear mRNA splicing, via spliceosome < 0.001
16 89 61 ubiquitin-dependent protein catabolism < 0.001 Rpn4 6.44·10-6

17 120 109 response to stress < 0.001 Msn4 1.74·10-3

mitochondrial electron transport < 0.001
18 87 59 nuclear mRNA splicing, via spliceosome 0.012
20 46 35 pyridoxine metabolism 0.045

The GO p-value was adjusted for multiple testing using the TANGO algorithm (see Methods). Enriched TF binding site motifs were detected using 
the PRIMA algorithm [35]. TF p-values were Bonferroni corrected for multiple testing.
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For several pathways, such as pyridoxine biosynthesis,
intracellular transport and chromatin-related complexes
(mainly SAGA, Cdc73, COMPASS and RSC) that were
linked by MATISSE to osmotic shock in S. cerevisiae, this
linking is novel. Pyridoxine was recently linked to osmotic
shock response in A. thaliana [34]. These findings underlie
the ability of MATISSE to produce testable hypotheses and
novel insights.

Promoter analysis
Based on the assumption that genes that exhibit similar
expression pattern over multiple conditions are likely to
be co-regulated and to share common cis-regulatory ele-
ments in their promoters, we searched for over-represen-
tation of known transcription factor binding site motifs in
the promoters of the genes in each JACS. When using the
PRIMA motif finding tool [35], six subnetworks showed
significant enrichment (p < 10-5) for at least one TF (Table
2). All the TFs corresponded to known regulators of the
processes enriched in the subnetworks. For example, JACS
5, enriched for pheromone response pathway genes, was
enriched with putative targets of Dig1 and Ste12, known
regulators of these pathways [36]. Subnetwork 11, associ-

ated with general stress response, contained multiple tar-
gets of the Msn2 and Msn4 stress TFs [37]. We validated
that these motif enrichments are not a byproduct of the
functional enrichment in the JACSs (p < 10-4, by random
sampling of gene groups with the same fraction of genes
from the corresponding functional category as in the
JACS). This analysis suggests that the JACS we obtained
indeed correspond to gene modules with a common tran-
scriptional regulation.

Cell cycle in human
We constructed a human protein-protein interaction net-
work by combining information from the BIND and
HPRD databases and from two recent large-scale yeast
two-hybrid studies on human cells [23,24]. The resulting
network contains 9,135 nodes and 25,086 interactions.
Expression profiles of the synchronized HeLa cell lines
from [38] were used. Only the 19 point time series
obtained for synchronization by thymidine-nocodazole
block was selected for the analysis, as it contains the
fewest missing values. Genes for which the maximal fold
change across the conditions was below 2 were filtered,
leaving 1,536 genes (front nodes).

Two of the JACSs identified in the S. cerevisiae analysisFigure 4
Two of the JACSs identified in the S. cerevisiae analysis. (a) The pheromone response subnetwork, (b) The proteolysis 
subnetwork. The front nodes are the yellow (light gray) rectangles and the back nodes and the blue (dark gray) ovals. The 
genes annotated with pheromone response (a) and proteolysis (b) are drawn with thicker border. Gene lists, expression matri-
ces and interactive display of all the subnetworks are available at the supplementary website.
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We performed MATISSE analysis using the All-Neighbors
heuristic, and the same parameters as in the previous sec-
tion, and obtained 14 significant JACSs. Maps of these
subnetworks are provided on our website and in the sup-
plement [see Additional file 1]. To check the ability to dis-
cover subnetworks active at different cell cycle phases, we
analyzed the overlap between the JACSs and annotations
of specific cell-cycle phases as provided in [38]. Indeed,
seven modules were enriched for specific phases of the cell
cycle with p < 0.05 after Bonferroni correction. The mod-
ule with the highest cell cycle enrichment (JACS 5, p =
2.85·10-17) is shown in Figure 5a.

The advantage of MATISSE is evident when comparing the
modules most enriched for the GO "cell cycle" category in
the MATISSE and the Co-clustering solutions. While the
MATISSE module is a single connected component of 120
genes, the corresponding co-cluster contains 110 con-
nected components and 519 genes, and thus is much less

amenable to interpretation in terms of the functional con-
nections between its genes.

Subnetwork hub analysis
We hypothesized that the topology of the JACSs obtained
by MATISSE can provide clues to the key players in the reg-
ulation of the cell cycle machinery. To test this, we looked
for "subnetwork hubs" in the JACSs, i.e., genes whose
degrees in a JACS were high both absolutely and relatively
to their network degree (see Methods). This analysis on
the 14 JACSs identified 52 hubs, 18 of them with "cell
cycle" annotation (p = 5.13·10-11). This set contained
many cell cycle master regulators such as p53, ATM, E2F1,
TGFβR, CDK4 and CDC42. Remarkably, 36 out of 52
hubs form a single connected subnetwork, displayed in
Figure 5b. This demonstrates that subnetwork hubs repre-
sent key regulators relevant to the experimental condi-
tions tested. The interactions between the subnetwork
hubs are putative regulatory interactions governing the
progression of the cell cycle. As only 33 of the 52 hubs are

Examples of the MATISSE analysis in the cell cycle data of human HeLa cellsFigure 5
Examples of the MATISSE analysis in the cell cycle data of human HeLa cells. Front nodes and back nodes are as 
indicated in Figure 4. (a) The highest scoring cell-cycle related JACS identified. The genes annotated with "cell cycle" are drawn 
with thicker border. Gene lists, expression matrices and interactive display of all the subnetworks are available at the supple-
mentary website, (b) Subnetwork hubs. The figure shows 36 nodes in the JACSs that were identified as subnetwork hubs and 
induced a connected component in the network. 16 additional hubs that had no interactions with other hubs are not shown. 
The known master regulators p53, ATM, E2F1, TGFβR, CDK4 and CDC42 are circled.
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front nodes in their respective JACS, this set could not be
identified using expression data alone.

Conclusion
We have developed a novel computational technique for
the integrated analysis of network and similarity data. The
method is aimed to dissect together topological properties
of gene or protein networks and other high-throughput
data. We used the method to analyze large-scale protein
interaction networks and genome-wide transcription pro-
files in yeast and human. The method was shown to iden-
tify functionally sound modules, i.e., connected
subnetworks with highly coherent expression showing
significant functional enrichment. In comparison to the
extant Co-clustering method, which aims to integrate sim-
ilar data, our method demonstrated substantial improve-
ment in solution quality. Comparison to solutions
produced by clustering highlights the advantage of utiliz-
ing topological connectivity in the hunt for functionally
sound modules. By construction, our method is specifi-
cally powerful in detection of regulatory modules, and
less fit for detection of metabolic modules. Our tech-
nique, implemented in the program MATISSE, is efficient
and can analyze genome-scale interaction and expression
data within minutes.

The proposed algorithm is very flexible and – unlike Co-
clustering – can handle situations where not all genes in
the network have similarity information or expression
patterns. In particular, MATISSE can determine the subset
on which similarity is computed using various criteria,
e.g., initial probe filtering, differential expression confi-
dence values, etc. As we demonstrate, even when only a
modest fraction of the overall network genes have expres-
sion/similarity information, the method finds meaningful
modules successfully.

The requirement for network connectivity as proposed in
our method can be viewed as problematic due to high rate
of false negative interactions. A natural extension of MAT-
ISSE which we intend to pursue is to take into account the
interaction confidence. As a first step towards this goal, we
assessed the composition of the interactions in the
reported subnetworks as follows: we compared the
observed and expected number of interactions within the
subnetworks, from each of the publications used as inter-
action sources in the S. cerevisiae interactions network. We
found a clear enrichment for interactions from recent
experiments, such as [39] and [40], opposed to an under-
representation of interactions from older works, such as
[41,42] and [43] (see supplementary table). As currently
the coverage of the protein interaction network is limited,
we suggest performing MATISSE analysis in addition to
standard clustering analysis.

The framework described in this work is directly applica-
ble to any kind of pairwise similarity data where the prob-
abilistic assumptions hold. While this study focused on
protein interaction networks and gene expression, the
approach is general enough to treat many other data
types. These include other types of interactions, such as
genetic interactions, regulation and protein-DNA binding
patterns, and other similarity measures, such as functional
similarity or similarity in protein-DNA binding profiles
[2]. We intend to extend MATISSE to these types of data as
well.

While the rapidly expanding resource of microarray data
is currently analyzed primarily using diverse clustering
techniques, methods for the analysis of network-type data
describing interrelations of genes and proteins are less
mature, and methods for joint analysis of the two data
types are in nascent stage. We expect the proposed method
to become widely used for dissecting expression data in
light of the interaction knowledge. Our initial results
show that despite the high complexity and the relatively
low coverage of the human interactome, biologically rele-
vant modules can be found in the human protein interac-
tion network through integrative analysis.

Methods
The probabilistic model

Recall that we formalize the problem as finding disjoint
node sets that induce connected subgraphs in the con-
straint graph and manifest high internal similarity. We
formulate this problem as a hypothesis testing question.
For this, we define a probabilistic model for the similarity
data, using ideas from [27] and [44]. Given a set U of k
genes, we compare two hypotheses: the null hypothesis H0:

U is a set of unrelated genes; and the JACS hypothesis H1: U

is a JACS. We assume that the observed pairwise similarity
values are a mixture of two Gaussian distributions: one for
pairs of genes that are highly co-expressed (such pairs are
called mates) and another for the rest. Let Mij denote the

event that i and j are mates. The similarity values between

mates (P(Sij|Mij)) are normally distributed with mean µm

and variance . The similarity levels of all non-mates

are distributed normally with the parameters µn and .

These assumptions are theoretically justified in certain sit-
uations [27]. Empirically, analysis using normal quantile
plots [45] indicates that they are valid for the biological
data analyzed in this paper (results not shown). We also
assume that the probability that a pair of genes are mates
is high if they belong to the same JACS and low otherwise.

σm
2

σn
2
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Differential regulation
Not all genes within the interaction network are regulated
on the expression level. Thus, when working with expres-
sion profiles, we would like the model to allow lower sim-
ilarity levels between genes that are not necessarily
regulated on the expression level, while penalizing heavily
for low similarity between transcriptionally regulated
genes. This allows flexibility on two levels in our setting.
First, the genes can be filtered prior to computing similar-
ities (e.g., only genes passing a threshold of observed fold
change or variation level are included in Vsim). Note that
genes that fail to pass the filter remain in the interaction
network and can be incorporated into a JACS, while not
used for its scoring. Second, a prior can be assigned to the
likelihood that a gene is regulated: we define Ri as the
event that gene i is regulated on the expression level under
the conditions studied and let P(Ri) designate the proba-
bility of that event.

The likelihood score
We assume that JACSs contain a much higher proportion
of mates than gene pairs that do not belong to the same
JACS. Specifically, we assume that a large fraction βm (e.g.
0.9) of the pairs of transcriptionally regulated genes
within the JACS are mates and thus their similarity levels
are distributed N(µm, σm). Then P(Mij|Ri ∧ Rj, H1) = βm. We
make the simplifying approximation that the scores of dif-
ferent gene pairs are independent. Consequently, the like-
lihood of a JACS U is decomposable on every pair of genes
in it:

Let  = βmP(Ri)P(Rj). Then:

P(Sij|H1) = P(Sij|Mij) + (1 - )P(Sij| )

The null hypothesis (H0) is that the fraction of mates in U

is not surprising: every two transcriptionally regulated
genes are mates with the probability expected from the
relative portion of mates among all the regulated genes,

denoted pm. Let  = pmP(Ri)P(Rj). The likelihood ratio

between the two hypotheses  is:

Define the similarity graph, GS = (Vsim, ES), where ES = (Vsim

× Vsim) and set

 as the weight

of the edge (vi, vj). The log-likelihood score for a given U

translates to the total edge weight of the subgraph induced
by U in GS.

JACS finding algorithm
Our goal is to find disjoint sets U1, U2,..., Um that induce
connected subgraphs in GC and heavy subgraphs in GS.
When weights can be both positive and negative (as is the
case in our formulation), even the problem of finding a
single heavy subgraph is NP-Hard (by a simple reduction
from Max-Clique using a complete constraint graph).
Hence, exact optimization is intractable, and we experi-
mented with several heuristic algorithms for solving the
problem. All the schemes share the following three
phases: (1) detection of relatively small, high-scoring gene
sets, or seeds, (2) seed improvement, and (3) significance-
based filtering.

Identifying seeds
We tested three different methods for generating high
scoring seeds. In all the methods a large set of non-over-
lapping potential seeds is first generated, and only seeds
passing a certain score threshold are passed to the next
phase.

Best-neighbors

In this method, high scoring seeds of a predefined size k
are constructed. The nodes of the graph are ranked based
on their total incident edge weights in GS (their weighted
degree). The algorithm repeatedly creates a seed and
removes its nodes from the graph. The seed generating
step picks the highest ranking node v, and selects a set of
k - 1 neighbors of v in GS that maximize the seed score. The
optimal neighbor set can be found through exhaustive
enumeration (enumeration is needed since the score for
different neighbor sets depends also on the weights of the
edges between them). When enumeration is computa-
tionally prohibitive, a heuristic that picks nodes with the
highest weighted degree within the immediate neighbor-
hood of v is utilized. Specifically, let Nv be the set of all the

immediate neighbors of v. For i ∈ Nv define

. The heuristic selects k - 1 nodes with

the highest wv values.

All-neighbors
This method is similar to Best-Neighbors, but instead of
selecting k - 1 neighbors for a potential seed, in this ver-
sion, all the neighbors of v with a non-negative edge score
(including neighboring back nodes with zero score) enter
the seed.
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Heaviest-subnet
This method is inspired by Charikar's 2-approximation
algorithm for the densest subgraph problem [46]. An
articulation node in a connected graph is one whose
removal disconnects the graph. The following algorithm
is executed independently on each connected component
in the constraint graph. The algorithm works in a "destruc-
tive" fashion: starting from the original constraint graph,
nodes are removed from the graph one at a time until
none remain. The next node to be removed is one with the
smallest weighted degree in the current similarity graph
that is not an articulation node in the current constraint
graph. It is easy to see that such a node always exists. After
each node removal, the overall score of the remaining
graph is recorded. After all nodes are removed, the high-
est-scoring (possibly size-constrained) subgraph that was
encountered is selected as the seed. That subgraph is then
removed from the graph and the next seed is sought.

Seed optimization
Once a set of high-scoring seeds is established, a greedy
algorithm aims to optimize all the seeds simultaneously.
In our tests, this strategy worked better than optimizing
each seed separately, as it produced more diverse JACSs.
The algorithm keeps a set of disjoint subnetworks at every
iteration and considers the following moves (Figure 6):

Node addition
Addition of an unassigned node to an existing JACS.

Node removal
Removal of a node from a JACS.

Assignment change
Exchange of a node between JACSs.

Toy examples of the moves performed by the optimization algorithmFigure 6
Toy examples of the moves performed by the optimization algorithm. (a) Node addition; (b) Node removal; (c) 
Assignment change; (d) JACS merge. In each case the affected nodes are in red (black).
Page 12 of 17
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JACS merge
A new JACS is formed by taking the union of the nodes in
two existing JACSs. This step is particularly beneficial
when the original seeds are relatively small.

At every step a move is selected only if (1) it improves the
overall score of the solution, i.e., the sum of the weights of
all the JACSs and (2) the move maintains the connectivity
of the JACSs. If no such step exists, a "cleanup" procedure
iteratively removes from every JACS non-articulation back
nodes that are not found on any simple path between
front nodes. If the clean-up step does not remove any
nodes, the optimization halts. Note that the algorithm is
guaranteed to converge, as the global score is monotoni-
cally increasing. In addition, in order to obtain biologi-
cally meaningful JACSs, an upper bound on the size of a
JACS can be employed throughout the optimization. If a
JACS reaches this upper bound in the course of the opti-
mization, any node added to it causes a removal of a low-
scoring node, maintaining the JACS size. Note that this
procedure can add only front nodes.

Filtering
After a collection of putative JACSs is obtained, it is fil-
tered based on the significance of the JACS score. For that
purpose, for every candidate JACS, an empirical p-value of
its score is calculated using sampling randomly gene
groups of the same size. Only candidate JACSs with p-
value below a threshold p pass the filtering stage (p = 0.05
after Bonferroni correction was used). In a second step, to
avoid possible bias in the score, we empirically test the
JACS significance using only expression similarity scores.
The same sampling procedure is performed using the
average raw expression pairwise similarity values, and
JACSs whose average similarity is not sufficiently high
compared to the sampled sets of the same size are
removed. An efficient computation of this step is done as
suggested in [15].

Implementation issues
For efficient implementation, several slight modifications
were made to the algorithm described above:

Removal of non-contributing nodes
As in our framework only front nodes are used for JACS
scoring, back nodes will be incorporated into the subnet-
work only if they appear on some path between two front
nodes. Thus, prior to algorithm execution we remove
from GC all back nodes that are leaves (nodes with degree
smaller than 2). The procedure is iterated until no such
leaves remain in the graph. In practice, due to the nature
of the protein interaction network used, this step signifi-
cantly reduces the size of the network, without influenc-
ing the quality of the solution.

Similarity graph adjustment
When finding Heaviest-Subnet seeds, low edge density in
the graph is crucial for efficiency. We therefore remove

edges with low absolute weight from the graph, as their
contribution to the overall JACS score is small. All the
edges are used in the subsequent phases.

Finding heaviest-subnet seeds
Efficient implementation of this algorithm can be done
using a data structure similar to the one developed for the
dynamic connectivity problem [47]. This would take
O(|V|log4 |V|) time per seed. Instead, we used a simple
algorithm for detection of articulation nodes in each iter-
ation. Articulation nodes can be detected during a depth-
first traversal of the graph, by calculating the "lowpoint"
values of every node (cf. [48]).

This implementation required complexity of O(|V||ES|)
time per seed. Since this time can be too long for very large
graphs, we use a sampling approach when the component
contains more than 1,500 nodes: a connected subgraph of
a more modest size is randomly sampled (as described in
[49]) and then used for seed finding. This sampling is
repeated several times, with the highest scoring seed used
for further optimization.

Implementation
MATISSE was implemented as a Java stand-alone applica-
tion. In addition to the algorithmic engine, it contains a
visualization tool allowing flexible inspection of the
obtained subnetworks and diverse post-process analyses.
Running times are efficient enough to accommodate large
interaction networks and gene expression datasets. For
example, on a constraint graph of 4, 543 nodes and 1, 996
expression profiles, the processing took less than 15 min-
utes for All-Neighbors and Best-Neighbors methods and
78 minutes for Heaviest-Subnet, on a Pentium 4 3 GHz
machine with 2 GB memory. About 10 – 20% of the time
is needed to learn the parameters using EM, and this time
is saved in all subsequent runs on the same data. The run-
ning time depends sublinearly on the bound on the max-
imum size of the JACS (Figure 7). The application will
soon be available at [50].

Simulation setup
Our simulations used the real connected network of 2,000
yeast proteins described in Results, and synthetic similar-
ity values, generated as follows. First, a set of m disjoint
connected subnetworks P1,..., Pm of equal size k was ran-
domly selected as in [49]. Then, from each subnetwork a
subset of size k·pf was randomly selected to be included in
Vsim (front nodes). The resulting Vsim was expanded by
additional randomly selected nodes, to contain nsim nodes
in total. Similarity values were generated as in [27] using
two Gaussian distributions - Nm with parameters µm, σm
for similarity between mates and Nn with parameters µn,
σn for all other pairs.

Similarity values were determined independently for each
node pair, as follows: If the two nodes reside in the same
JACS, the value was drawn from Nm with probability βm
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and from Nn with probability 1 - βm. Otherwise, the value
was drawn from Nm with probability pm.

The default values for the simulations were set to nsim = 1,
000 (out of |V| = 2, 000);

m = 6;k = 100;pf = 0.7;µm = 0.5;µn = 0;σm = σn = 0.3;βm =
0.95;pm = 0.01.

Evaluating performance

The success of an algorithm in recovering the planted
components was measured using the Jaccard coefficient

[51]. It is defined as , where n11 is the

number of node pairs included both in the same planted
component and in the same JACS, n10 is the number of

pairs included in the same planted component but not in
the same JACS, and n01 is the number of pairs in the same

JACS but not in the same planted component. Hence, a
perfect fit of the two solutions would get a score of 1, and
lower scores indicate reduced fit.

Parameter estimation

To obtain meaningful results, a good assessment of the
parameters of the probabilistic model is prerequisite. We
tested different schemes for assessing P(Ri), and selected

the following scheme. We ranked the genes based on the
variation observed across their expression patterns and
then applied a logistic function to the normalized ranks to

obtain: P(Ri) = α + (1 - α) , where xi is the

normalized rank of gene i. The logistic parameters were

empirically set to α = 0.6, β = 24 and γ = 0.25. To evaluate
the effect of the specific form of the prior on the results,
we reran the JACS finding algorithms with different logis-

tic parameter settings (α = 0.4..0.8, β = 1..24, γ = 0.2..0.7).
The average expression homogeneity and the average
functional homogeneity of the produced JACSs (com-
puted as described in [1]) of the JACSs did not change by
more than 6%.

We adjusted the standard EM algorithm used for learning
a mixture of Gaussians (cf. [52]) in order to estimate µm,
σn, µn, σn and pm. A detailed description of the EM algo-
rithm can be found at our website ([50]). The produced
JACSs were constrained to the size range of 5–120 and βm
was set to 0.9. We verified that the reported results are
robust to changes in the value of βm by varying it between
0.75 and 0.99 and analyzing the obtained solutions. We
found that both the average expression homogeneity and
the average functional homogeneity did not change by
more than 3% across this parameter range.

Comparison of the heuristics
We evaluated the three proposed heuristics both in our
simulation setting and on the osmotic shock response in
S. cerevisiae. The results of the comparison on simulation
data are presented in Figure 8. Overall, as can be seen in
Figure 8, all three MATISSE variants show similar per-
formance. All the methods exhibit poor performance in
detection of small planted components (k < 50). Best-
Neighbors seems to be the preferred method on the sim-
ulated data. Best-Neighbors and All-Neighbors is that
Best-Neighbors does not incorporate back nodes at all,
while All-Neighbors may include some. As we shall show
below, using back nodes is in fact advantageous in real
biological data. The performance of the Heaviest-Subnet
seeding is highly variable, probably due to its relatively
significant dependency on the structure of the similarity
graph.

The results of the comparison on simulation data are pre-
sented in Figure 9. The Best-Neighbors variant performs
slightly better than All-Neighbors in terms of the fraction
of enriched modules, but All-Neighbors performs signifi-
cantly better in terms of category coverage, due to its
inclusion of back nodes. We therefore carried out all sub-
sequent analysis using the modules produced with the
All-Neighbors variant.

Functional enrichment analysis
We used the TANGO algorithm [31] for finding GO terms
enriched in the JACSs. The algorithm considers all levels
of GO and corrects p-values for multiple testing and for
category dependency using resampling. Briefly, TANGO
repeatedly selects random sets of genes to compute an

n

n n n
11

11 10 01+ +

1

1 + − −e xiβ γ( )

Dependence of the running time on the size of the JACSFigure 7
Dependence of the running time on the size of the 
JACS. The running time of MATISSE with different maxi-
mum JACS size parameters. The execution did not include 
the weight calculation step, as it is not dependent on the 
JACS size.
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Performance of the three proposed heuristic in terms of annotation enrichmentFigure 9
Performance of the three proposed heuristic in terms of annotation enrichment. See Figure 3 for further details.

Performance of the three proposed heuristics on simulated dataFigure 8
Performance of the three proposed heuristics on simulated data. See Figure 2 for further details.
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empirical distribution of maximum p-values for func-
tional enrichment obtained across a random sample of
sets that maintain the same size characteristics of the ones
analyzed. TANGO uses this empirical distribution to
determine thresholds for significant enrichment on the
true clusters. The algorithm filters out redundant catego-
ries by performing conditional enrichment tests that
ensure that all the reported enriched categories are statis-
tically significant even after taking into account the
enrichment of their ancestor and children nodes in the
tree.

Extraction of subnetwork hubs
Given a JACS J, v ∈ J was called a hub if it satisfied three
requirements: (a) the degree of v within the subnetwork J
exceeds 7; (b) the degree of v in J is among the five highest
in J; (c) the degree of v in J is significantly high given its
degree in the whole network (p < 0.05 using hypergeomet-
ric distribution). Note that back nodes can also be hubs.
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