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Abstract
Background: We investigate the cycles in the transcription network of Saccharomyces cerevisiae.
Unlike a similar network of Escherichia coli, it contains many cycles. We characterize properties of
these cycles and their place in the regulatory mechanism of the cell.

Results: Almost all cycles in the transcription network of Saccharomyces cerevisiae are contained
in a single strongly connected component, which we call LSCC (L for "largest"), except for a single
cycle of two transcription factors. The fact that LSCC includes almost all cycles is well explained
by the properties of a random graph with the same in- and out-degrees of the nodes.

Among different physiological conditions, cell cycle has the most significant relationship with LSCC,
as the set of 64 transcription interactions that are active in all phases of the cell cycle has overlap
of 27 with the interactions of LSCC (of which there are 49).

Conversely, if we remove the interactions that are active in all phases of the cell cycle (25% of
interactions to transcription factors), the LSCC would have only three nodes and 5 edges, many
fewer than expected. This subgraph of the transcription network consists mostly of interactions
that are active only in the stress response subnetwork.

We also characterize the role of LSCC in the topology of the network. We show that LSCC can
be used to define a natural hierarchy in the network and that in every physiological subnetwork
LSCC plays a pivotal role.

Conclusion: Apart from those well-defined conditions, the transcription network of
Saccharomyces cerevisiae is devoid of cycles. It was observed that two conditions that were studied
and that have no cycles of their own are exogenous: diauxic shift and DNA repair, while cell cycle
and sporulation are endogenous. We claim that in a certain sense (slow recovery) stress response
is endogenous as well.

Background
Cycles have a central role in control of continuing proc-
esses (for an example, see Hartwell [1]). Therefore we
expect the regulatory mechanism of a cell to have many
cycles of interactions. Only some of these interactions
have the form of a transcription factor (TF for short) regu-

lating expression of a target gene. Our question is: given
that there are cycles of transcription interactions, are they
important in the regulation of life processes?

Graph properties of the regulatory networks have been
reported in a number of papers. Shen-Orr et al. [2] ana-
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lyzed the regulatory networks statistically and observed
certain characteristic motifs that are more frequent than in
the random model and which have functional signifi-
cance (while other small subgraphs are significantly less
frequent). Cycles, or feedback loops also may have some
typical regulatory role, e.g. they may be related to multiple
steady states [3-5].

Luscombe et al. [6] studied the dynamics of the regulatory
network of Saccharomyces cerevisiae as it changes for multi-
ple conditions and proposed a method for the statistical
analysis of network dynamics. They have found large
changes in the topology of the network and compared it
with random graphs. We have found that the transcrip-
tion network of Saccharomyces cerevisiae contains a single
large strongly connected component (a union of overlap-
ping cycles), which we call LSCC, and that the topology
changes discussed by Luscombe et al. [6] are well reflected
within LSCC, in spite of its small size.

Yu and Gerstein [7] have examined the structure of regu-
latory networks and showed that it exhibited a certain nat-
ural hierarchy. We propose another hierarchical partition
of the network: above the LSCC, the LSCC, below the
LSCC and "parallel" to the LSCC (see Fig. 1, 2) and we
show that this partition is in some sense natural.

Comparisons of biological networks with random graphs
were subject of methodological investigations of Barabasi
and Albert [8] who proposed a scale-free model. This
model is difficult to apply here. While the networks we
investigated have the key property of scale-free networks,
i.e. they have many nodes with degree much higher than
the average, the distribution of the degrees is too irregular
to match with a particular power law. In a scale free net-
work the ratio #{nodes with degrees k to 2k - 1} to
#{nodes with degrees 2k to 4k - 1} is convergent, but in
our networks it varies widely for different k's (for recent
study of scale-free nature on biological networks, see also
[9,10]). Therefore Milo et al. [11] (see also Newman et al.
[12]) proposed several methods of generating graphs that
have the same in- and out-degrees as the reference net-
work. We used their "matching algorithm" whenever pos-
sible, as well as faster and somewhat biased variants.

Results and Discussion
In the data set of Luscombe et al. [6] we can see the LSCC
with 25 TFs and one small strongly connected component
with two TFs.

To see if the cycles of the LSCC are significant, we checked
how the topological changes of the transcription network
during various physiological conditions are reflected
inside the LSCC, we checked several graph characteristics

of the TFs in the LSCC, and we compared the characteris-
tics of the LSCC to the cycles in random networks.

General characterization of the cycles
Size of LSCC is relatively small
The cycles form two connected components, one "degen-
erate", consisting of 2 TFs, and one "large", consisting of
25 TFs.

The degenerate component consists of two TFs with indis-
tinguishable interactions that have self-loops, thus they
are TFs of themselves, and of each other. This may be a
result of a relatively recent gene duplication. Thus we will
ignore this cycle in our discussions.

The size of the largest cyclic component, 25, is rather
small compared with random models (averages 42–43),
with p-value ca. 0.025. The number of nodes in the
remaining cycles, 2, is not very different from the average
(0.8 to 1.3).

Classifying TFs and TTs of Luscombe network by their posi-tions on the longest paths, note that class INT is emptyFigure 1
Classifying TFs and TTs of Luscombe network by 
their positions on the longest paths, note that class 
INT is empty. The paths are computed in the graph of 
scc's, in particular, we view LSCC as a single node. The entry 
in column i and row j shows the number of nodes with these 
properties: on the longest path through node u has i + j edges 
and the longest path from u to another node (a TT) has i 
edges (consequently, the longest path from another node to 
u has j edges). Note that the only way a node may be on a 
path of length 3 is when it has an edge from the node that 
corresponds to LSCC.
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By the way of contrast, the transcription network of
Escherichia coli is either devoid of cycles or it contains very
few of them (depending on the data set, see Cosentino
Lagomarsino et al. [13]).

LSCC connected very strongly to the cell cycle
The transcription network reported by Luscombe et al. [6]
has 142 TFs and 7074 interactions, of which we disregard
21 "self-loop" interactions of the remainder 254 are TF to
TF; we use ITF to denote the latter set (interactions to tran-
scription factors). 25 TFs and 49 interactions form the
LSCC. The subnetworks associated with the 5 stages of the
cell cycle have 64 interactions in common (we name this
set CCC, "common to cell cycle"), all of them directed to
TFs (hence in ITF) and 27 of them are present in the LSCC.
If even one of these two sets, LSCC or CCC, is random, the
expected number of common elements would be smaller
than 13 (49 × 64/254) and the probability of |LSCC ∩
CCC| ≥ 27 would be below 10-6 (estimated by binomial
formula). This shows that LSCC is very strongly related to
the cell cycle.

Cycles of subnetworks other than cell cycle
Stress response is special in the sense that it has cycles of
its own, all of which involve YAP6 that is not active in any
other subnetwork. It seems that the cyclic interaction of
this TF with two other TFs is a differentiating part of stress
response condition from other exogenous conditions,
diauxic shift and DNA damage. The latter have similar sets

of active interactions in LSCC, but they lack 5 interactions
involving YAP6.

One cycle consists of 3 interactions that are common to all
conditions, REB1 → SIN3 → HSF1 → REB1. Note that
HSF1 is a Heat Stress Factor, very important in the stress
response, but also in "basal level sustained transcription"
(see Mager and Ferreira [14]). One possible role of cycles
in stress response is slowing down the recovery transition
from the stress condition, so it can last several hours [14].
During the recovery, sporulation and cell cycle activities
are suppressed. In this sense, stress response is partially
endogenous to use the classification of Luscombe et al. [6]
(they group Cell Cycle and Sporulation as endogenous
and the other conditions as exogenous).

LSCC has an orderly layout
Fig. 3 shows the graph formed by the transcription factors
and interactions of LSCC, with nodes placed on a square
grid as to minimize the edge lengths.

In the diagram, al (apricot color) marks the nodes present
in the cycles of all subnetworks. The cycles in the diauxic
shift and DNA damage subnetworks contain only these
nodes. (Note that an interaction of LSCC can be active in
a subnetwork without belonging to a cycle in that subnet-
work.)

The diagram of LSCC, each node is TF in Table 6Figure 3
The diagram of LSCC, each node is TF in Table 6.
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Classifying TFs and TTs of Yu network by their positions on the longest paths, class INT is included in SIMPLEFigure 2
Classifying TFs and TTs of Yu network by their posi-
tions on the longest paths, class INT is included in 
SIMPLE. See explanations of Fig. 1.
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The cycles in the sporulation subnetwork sp contain apri-
cot and strawberry nodes.

The cycles in the cell cycle subnetwork cc contain apricot,
strawberry and cerulean nodes.

The cycles in the stress response subnetwork sr contain
apricot and sienna nodes.

Nodes that are not included in the cycles of any subnet-
work are black.

We managed to find an orderly layout for LSCC, in which
few edges are long while nodes with the same color are
grouped together.

LSCC has small feedback vertex set
Another property of LSCC is that it has a small and unique
minimum feedback vertex set, a set of nodes whose removal
destroys all cycles.

The fact that there exists a unique minimum feedback ver-
tex set with three nodes (vertices) can be clearly seen in
Fig. 4. Let us call this set F = {1, 3, 25}.

We can use F to distinguish three natural cyclic units
within LSCC, Sb for each b ∈ F. We can think that b is the
"boss" of Sb. We define Sb as the union of all simple cycles
that go through b but not through F - {b}. Only one node
can have two bosses: {4} = S1 ∩ S25. Because there is only
one path from 1 to 4 and three disjoint paths from 25 to
4, we remove 4 from S1 to make our units disjoint. The
three sets coincide well with functional categories: S3 = {3,
21, 24} are the nodes on cycles of LSCCsr, S1 are the nodes
on cycles of LSCCsp, and S25 are the nodes on cycles of
LSCCcc minus S1 (observe that S1 is contained in LSCCcc).
(Actually, S25 has 11 nodes and it has one node that is not
in LSCCcc, 18, and one node of the cell cycle network is
missed, 8.)

Thus the cyclic subnework has three cyclic parts, plus two
acyclic parts: 5 nodes on paths from S25 to S3, and 1 node
on a path from S25 to S1. We show this schematically in
Fig. 5.

Differences and similarities of subnetworks are reflected in LSCC
For subnetwork A we define LSCCA as the set of interac-
tions of A that are also in LSCC; to measure the difference
between two sets we use |A ⊕ B|, the number of elements
that are in one of the sets A and B but not in both.

One way that shows the importance of LSCC to regulatory
mechanism is that the differences and similarities
between physiological conditions tend to be "exagger-
ated" when we use LSCC as the "window". When we com-

pare a symmetric difference of |ITFx ⊕ ITFy| with |LSCCx ⊕
LSCCy|, the size of the latter should be, on the average, 49/
254 of the former. These comparisons are in Figure 6. In
general, sp is very related to cc, and the difference inside
LSCC is smaller than expected, while dd, ds and sr are
unrelated, and the differences in LSCC are larger than
expected, especially in the case of sr, the stress response.

Statistic profile of the TFs from the LSCC for three 
different original networks
We tested properties of LSCC in randomly generated net-
works. We also tabulated results of random tests based on
two larger data sets. In our tables, we refer to the networks
using names of the first authors of the paper in which they
were published [6,7,15], hence we call them Luscombe,
Yu and Balaji.

In our random networks we kept all original connections
from TFs to Terminal Targets (i.e. regulated genes which
are not TFs themselves. Later we refer to them with abbre-

The smallest feedback vertex set of LSCC and the subdivi-sion of LSCCFigure 4
The smallest feedback vertex set of LSCC and the 
subdivision of LSCC. At least three feedback vertices are 
needed because there exists three vertex-disjoint cycles – 
indicated by wide color strips. If a single vertex selection on 
an indicated cycle suffices for the feedback vertex set then it 
must intersect every cycle that is vertex disjoint with the 
other indicated cycles; cycles indicated with thin color strips 
show that such selections are unique. A pictorial proof that 
{1, 3, 25} is the unique minimum feedback vertex set.
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viation TTs). The remaining connections were "rewired" at
random, using three criteria, R, F and B. Criterion R was a
uniformly random permutation of the edge ends, condi-
tional on obtaining a "correct network" – no self-loops or
duplicated edges. Criterion F was creating a bias in the
selection of the permutation so the resulting number of
feed-forward loops was close to the actual value in the
original network. Criterion B was similar, but with bi-fans
rather than feed-forward loops.

When we refer to our computed average value we used
form x (y, z) to denote "average obtained using criterion R
(F, B)".

Average size and out-degree
The size of LSCC is quite a bit smaller than the average, 25
versus 42 (41, 43), with p-value of 0.025 (0.04, 0.02), and
the situation is similar for Yu and Balaji. (The sizes of
LSCC, as well as the classes defined in the next section in
terms of LSCC, are in Tables 1, 2, 3.)

The average number of targets for the TFs of the LSCC is
much higher than the average for all TFs, 128 versus 50.
This discrepancy is somewhat smaller when we make such
a comparison in a random model, 97 (96, 100) versus 50.
Because cycles are sets of edges, it is very clear that a node
with large out-degree has more chances to belong to a
cycle, or a union of overlapping cycles that is LSCC. For
example, in the actual network, almost half members of
LSCC (12 of 25) belong to the top 20 TFs if we rank them
by the number of the targets.

The lower average out-degree of the LSCC in random
models is perhaps a simple consequence of the fact that
they have, on the average, much larger LSCC, so the TFs
from the top 20 TFs do not dominate the average as much
as in the smaller LSCC of the actual network. Detailed
comparisons of average out-degrees can be found in Table
4.

Position of LSCC in the hierarchy
Only 9 TFs belong to the in-component of the LSCC
(denoted In-LSCC) in the sense that there are paths from
these TFs to the LSCC; of these 9 paths 8 are single edges
and one consists of two edges. If we consider that path to
be exception, collectively the LSCC has unambiguous
hierarchical position 2nd from the top. In a random net-
work, on the average we have 17 (16, 17.5) TFs in In-
LSCC. In this sense, the LSCC is higher in the hierarchy
than the average in the random models.

Almost all paths with more than 2 edges are related to the
LSCC in the following sense: either they include a TF from
the LSCC, or form the final part of a path that starts in the
LSCC. Two TFs form an exception to that rule, namely
they can start a path with more than 2 edges that is not
such a final part.

After collapsing scc's to single nodes we measured for each
TF the maximum path length (for paths to which it
belongs), and we call it MPL. For 38 TFs the value of MPL
is at most 2, and they form a rather separate part of the
transcription network which we call SIMPLE. 104 TFs
have MPL of at least 3. Maximum of MPL is 13, more than
the average in random networks that is 8.3 (8.4, 8.5). (The
maximum length of a simple path is perhaps a better
measure, but it requires a much more complex program to
compute it. It is closely related to the feedback vertex set
problem.)

Intersections and symmetric differences of functional subnet-works inside ITF and LSCCFigure 6
Intersections and symmetric differences of functional subnet-
works inside ITF and LSCC.
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p-value 0.032
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Average 23.7

Actual higher
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⏐ITFcc⊕ ITFsp⏐ = 83 ⏐LSCCcc⊕LSCCsp⏐ = 12
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Average 16.0

Actual lower

p-value 0.011

Three cyclic units of LSCC with connectionsFigure 5
Three cyclic units of LSCC with connections.
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Yu and Gerstein [7] propose a partition of networks
according to the length of shortest paths to those TFs that
have only TTs as their targets. This definition would not
work with the length of the shortest paths to TTs: this
length is 1 for all TFs but ten, and for that ten, it is 2, so
the hierarchy would be trivial. Because LSCC has such a
special and statistically significant position in the net-
work, we propose to partition TFs by their relation to
LSCC, as it is indicated in Fig. 1. In particular, TFs with a
path to or from LSCC are partitioned into hierarchy IN-
LSCC, LSCC and the out-component of LSCC (denoted
OUT-LSCC), while the remaining TFs are classified
according to MPL; if MPL is at most 2, they are in SIMPLE,
if it is more than 3, they are in EXCP, and if it is equal 3,
we place them in the intermediate class INT (which is
empty in Luscombe data set).

We performed our study using the data of Luscombe et al.
[6] because we wanted to compare the cycles with physio-
logical subnetworks described in their paper. Neverthe-
less, we compared our definition of a hierarchy with that
of Yu and Gerstein [7], who performed their investigation
in a larger transcription network.

When we apply our program to the latter network, the
proportions between the class sizes remain similar (here
we included INT in SIMPLE): IN-LSCC (20), LSCC (63),
OUT-LSCC (114), SIMPLE (83) and EXCP (5). Tables 1, 2,
3 show detailed comparison of class sizes.

We performed two tests applied by Yu and Gerstein to
their classes (see Fig. 2 for the partition of Yu network into
classes).

Table 2: Average sizes of classes compared with random model F

IN-LSCC LSCC OUT-LSCC SIMPLE SSCC INT EXCP

Luscombe
actual 9 25 68 38 2 0 2
average 16.2 40.7 45.0 34.1 1.25 2.9 3.15
p-value 0.043 0.041 0.004 0.081 0.30 0.086 0.555

Yu
actual 20 63 114 77 5 6 5
average 29.0 66.0 107.0 71.0 0.7 6.9 4.9
p-value 0.032 0.35 0.19 0.081 0.022 0.48 0.48

Balaji
actual 21 60 58 14 0 3 1
average 19.8 72.1 47.7 14.8 0.2 1.6 0.8
p-value 0.39 0.006 0.011 0.45 0.99 0.23 0.46

See explanations for Table 1. Generation of random graphs was altered to achieve the same number of feedforward loops as in the original 
network.

Table 1: Average sizes of classes compared with random model R

IN-LSCC LSCC OUT-LSCC SIMPLE SSCC INT EXCP

Luscombe
actual 9 25 68 38 2 0 2
average 17.1 42.3 43.2 33.8 1.00 2.8 2.8
p-value 0.02 0.025 0.001 0.062 0.6 0.097 0.58

Yu
actual 20 63 114 77 5 6 5
average 32.5 69.5 102.8 69.6 0.44 6.3 4.2
p-value 0.001 0.002 0.020 0.22 0.01 0.32 0.34

Balaji
actual 21 60 58 14 0 3 1
average 20.9 74.4 45.6 14.3 0.2 1.2 0.5
p-value 0.53 0.002 0.002 0.57 0.92 0.14 0.35

We use Sscc to denote small cyclic scc's. The TFs that are neither in LSCC nor in its in- or out-components are classified according to MPL, the 
maximal path length for a path that includes a given TF; when MPL is 1 or 2, TF is in SIMPLE, if MPL is more than 3, TF is in EXCP, and if MPL is 3, 
we could make either decision, so here we inluded intermediate class INT.
Random graphs were produced to get a uniform distribution among graphs in which TFs have the same in-and out- degrees as in the original 
network, without changing the TF-TT connections.
Page 6 of 11
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When we checked the percentage of essential genes in our
classes, we got 15% in IN-LSCC and LSCC, 13% in OUT-
LSCC and 12% in SIMPLE, a more uniform distribution
than among classes of Yu and Gerstein. A more striking
difference exists when we check the percentage of cancer
related genes: 10% in IN-LSCC, 9.5% in LSCC, 3.5% in
SIMPLE and 2.6% in OUT-LSCC.

The division we propose is closely related to the notion
proposed by Yu and Gerstein: a division of transcription
control mechanisms into reflex processes and cogitation
processes. SIMPLE clearly corresponds to reflex processes.
In a cogitation process, one that involves a long path of
interactions, we can partition the process into beginning,
middle and the ending part. As the various paths have very
different lengths, identifying LSCC as the middle is both
"objective" and independent from the path length, and in

the same time quite arbitrary. However, we show in the
next subsection that LSCC has a "switchboard" property
even in the physiological conditions in which paths do
not form cycles, and we just have seen that the percentage
of cancer related genes sharply drops as we move from the
middle to the final part of the long paths.

Topological changes inside LSCC
In Fig. 7 and Fig. 8 we can see the interactions of LSCC that
are active in various physiological conditions. We can
observe large difference between the subnetworks, both in
the composition and in topological characteristics like
average path length.

Luscombe et al. [6] measured the following topological
characteristic in the subnetworks: the average length of
shortest paths from TFs to TTs. By its very nature, LSCC is

Table 4: Average out-degrees compared with three random models

in LSCC among all TFs

OUT OUTF OUT OUTF
model R F B R F B

Luscombe
actual 128.08 4.92 49.67 1.79
average 97.68 100.67 96.55 3.88 3.97 3.85 - -
p-value 0.003 0.013 0.001 0.003 0.009 0.001 - -

Yu
actual 85.54 6.35 29.27 2.01
average 75.08 79.26 75.61 5.68 5.96 5.71 - -
p-value 0.030 0.148 0.032 0.037 0.169 0.038 - -

Balaji
actual 146.78 4.87 81.99 3.12
average 131.61 134.80 130.69 5.31 5.43 5.26 - -
p-value 0.002 0.015 0.002 0.005 0.031 0.009 - -

In this table, we have separate columns for results of random tests according to model R, F and B respectively. Columns OUT give the average 
number of targets, and columns OUTF give the average number of targets that are TFs. Note that in random networks the number of targets is the 
same for each TFs, so the average values for all TFs are always the same.

Table 3: Average sizes of classes compared with random model B

IN-LSCC LSCC OUT-LSCC SIMPLE SSCC INT EXCP

Luscombe
actual 9 25 68 38 2 0 2
average 17.5 43.0 42.5 33.4 0.85 2.7 2.7
p-value 0.018 0.017 0.001 0.05 0.26 0.105 0.57

Yu
actual 20 63 114 77 5 6 5
average 33.7 67.5 99.7 71.8 0.43 7.4 4.9
p-value 0.002 0.26 0.025 0.12 0.013 0.4 0.47

Balaji
actual 21 60 58 14 0 3 1
average 22.6 74.2 43.8 14.4 0.2 1.4 0.7
p-value 0.39 0.003 0.000 0.56 0.91 0.18 0.46

See explanations for Table 1. Generation of random graphs was altered to achieve the same number of bi-fan motifs (a pair of TFs regulating the 
same pair of targets) as in the original network.
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disproportionally involved in that characteristic. In the
full network there are 113,000 such paths, and the average
length is 4.81; among those paths, 100,910 go through
LSCC, and their average length is 5.11, while only 12,090
paths does not go through LSCC and their average length
is 2.63.

This domination of LSCC directly follows from the fact
that every TF in LSCC and In-LSCC has a path to every TT
that can be reached from LSCC, as a result, on the average
one can reach 2968 TTs from these TFs through LSCC (in
LSCC this number is contant, but in In-LSCC it can be
smaller because some TTs reachable through LSCC may
have shorter paths directly from In-LSCC). The average
number of TTs reachable not through LSCC is 103 (for
117 TFs outside LSCC).

In other words, only 12% of shortest connections between
TFs and TTs does not go through LSCC, and these paths
contribute only 5.8% to the sum of lengths.

Because so many TF-to-TT paths go through LSCC, the dif-
ferences between average path lengths that were observed
for different subnetworks by Luscombe et al. [6] are largely
caused by the different presence of these networks in the
LSCC. In Table 5 we use PERCENTPATH to denote the
percentage of the shortest paths from transcription factors
to the terminal targets that either originate or go through

LSCC, and PERCENTLENGTH to denote the similar per-
centage for the sum of lengths of shortest paths.

Table 5 shows that even in DNA damage and diauxic shift
subnetworks the majority of shortest paths between TFs
and TTs goes through LSCC; we may say that LSCC has a
role of a switchboard (each node is TF in Table 6).

Conclusion
We inspected graph-theoretic properties of the cycles in
the transcription network of Saccharomyces cerevisiae.
While in general cycles are "avoided" by the network,
interactions common to all phases of the cell cycle form a
big exception, and interactions specific to the stress
response form a smaller exception. In spite of their mod-
est number (they involve 25 of 142 transcription factors
that were included in the data set), the transcription fac-
tors that are included in cycles have a large topological
impact: most of the shortest paths between transcription
factors and terminal targets go through them.

One should compile many kinds of data to establish the
exact role of the cycles of transcription interactions in con-
trolling life processes. In particular, cell cycle, which is
closely related to cancer, possesses a long cycle that can be
easily interrupted at many different points, and the proc-
ess itself can be interrupted by a number of different con-
ditions (like DNA damage).

Parts of LSCC that are active during endogenous condition (or, conditions with larger number of active cycles)Figure 7
Parts of LSCC that are active during endogenous condition (or, conditions with larger number of active 
cycles). Cell cycle: Interaction between 5 and 15 appears to repress stress response. Sporulation: Most of the cell cycle inter-
actions are present, but the cycle interactions leaving node 25 are not. Replication of DNA is an activity shared with the cell 
cycle. Stress response: When we compare the part of LSCC that is active during stress response with parts of LSCC that are 
active during cell cycle and sporulation, we note that in the latter cases the stress response cycle is totally inactive, but it is par-
tially active during the diauxic shift and DNA damage, which are related to stress (damage – obvious, diauxic shift – the shift 
toward less favored nutrition source). Center of the cell cycle is activated during stress response, which can be part of a 
repression mechanism.
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We have shown that LSCC is a key part of the regulatory
network and that it can be divided into functional subu-
nits. Further work will yield fuller and clearer picture of
these subunits and their interactions under various condi-
tions.

Methods
Data
We used supplementary materials for [6] ; we also used
supplementary materials of [7,15] and the list of yeast

homologs of human cancer genes personally communi-
cated by Haiyuan Yu.

Graph-theoretic definitions
A graph of a network consists of nodes (which correspond
to TFs, transcription factors and TTs, terminal targets) and
directed edges/interactions.

Table 6: Proteins that form nodes in Fig. 3

node code TF node code TF

1 YBR049C REB1 14 YLR183C TOS4
2 YDR207C UME6 15 YLR256W HAP1
3 YDR259C YAP6 16 YML007W YAP1
4 YDR501W PLM2 17 YML027W YOX1
5 YER111C SWI4 18 YNL068C FKH2
6 YGL073W HSF1 19 YNL216W RAP1
7 YIL122W POG1 20 YOL004W SIN3
8 YJR060W CBF1 21 YOR028C CIN5
9 YKL043W PHD1 22 YOR372C NDD1
10 YKL062W MSN4 23 YPL177C CUP9
11 YKL112W ABF1 24 YPR065W ROX1
12 YLR131C ACE2 25 YPR104C FHL1
13 YLR182W SWI6

Parts of LSCC that are active during exogenous condition (or, conditions with the fewest active cycles)Figure 8
Parts of LSCC that are active during exogenous condition (or, conditions with the fewest active cycles). DNA 
damage: The activity is, with small exception, subset of stress response, but without the cycle-closing activity of node 3. 
Diauxic shift: Part of stress activated too, like for DNA damage.
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Table 5: Importance of LSCC in the paths of different 
subnetworks

subnetwork cc sp sr ds dd

average path length 4.64 3.55 2.31 2.10 1.94
PERCENTPATH 87.1 69.4 72.1 57.8 54.6
PERCENTLENGTH 94.2 78.0 81.6 64.4 59.0

In each physiological subnetwork we consider the set P of pairs of the 
form TF-TT such that there is a chain of interactions (a path) from the 
TF of the pair to the TT; for p ∈ P we define �p, the length of the 
shortest path for this pair; moreover, Q is the subset of P such that 
the respective path has to go through LSCC. Then average path 
length = ∑p∈P�p/|P|, PERCENTPATH = |Q|/|P|, and PERCENTPATH = 
∑p∈Q�p/∑p∈P�p.
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A path in a graph is a sequence of nodes (u0, ..., uk-1) such
that each consecutive pair (ui-1, ui) is an edge. If addition-
ally there exists an edge (uk-1, u0) we say that this is a cycle.

A single node (u) forms a degenerate cycle.

Nodes in a graph are partitioned into strongly connected
components, or SCC's. A node u is contained in SCC(u)
which is the union of the node sets of all cycles that con-
tain u.

SCC's with one node are called trivial.

For graph G we define strong component graph GSCC, the
graph of SCC's of G. Nodes of GSCC are scc's of G, and
edges are pairs of the form (SCC(u), SCC(v)) such that (u,
v) is an edge of G.

GSCC cannot have cycles of its own, and therefore it is easy
to compute longest paths in that graphs (the algorithm is
considered folklore). The paths lengths in that graph are
used in Fig. 1.

We use LSCC to denote the largest strongly connected
component in a graph. We apply this definition when the
majority of elements of non-trivial scc's belongs to one of
them, so there is no ambiguity as to which one is "the larg-
est".

Algorithms
To compute non-trivial scc's we first obtained a "diction-
ary" protein code ↔ number followed by pairs of num-
bers representing the edges. We computed scc's and the
graph of scc's using the method described in section 22.5
of Cormen et al. [16].

Shortest paths used in subsection on Position of LSCC in
the hierarchy were computed using breadth first search.

Defining motifs, generating random graphs
We define a feed-forward loop (3 for short) as a triple of
nodes {u0, u1, u2} such that there exists three edges: two
form a path (u0, u1, u2) while the third forms a shortcut,
(u0, u2). A bi-fan is a quadruple of nodes (u0, u1, v0, v1)
such that all of the 4 possible edges of the form (ui, vj)
exist.

When we count ffl's and bi-fans we remove the self-loops
(edges of the form (u, u)) from the graph.

Moreover, every triple/quadruple is counted separately,
even when they share nodes.

To count ffl's and bi-fans we made a table Overlap that for
a pair of TFs stored the number of common targets. For

every positive entry k = Overlap(a, b) we add k(k - 1)/2 to
the count of bi-fans, and if there is an edge from a to b, we
add Overlap(a, b) to the count of ffl's.

We generated networks to make statistic comparisons.
First, we generated random networks, or R. For Luscombe
network, we permutated TF entries of adjacency lists at
random. After permutation, lists could contain errors; a TF
that "owns" the respective list, or a TF that has another
copy earlier on the list. We repeated random permuta-
tions until error-free list were obtained, a process that
took 1–2 seconds.

For Yu and Balaji, this provably unbiased approach [11]
had no results within 30 minutes, so we used a variation
of metropolis random walk. Starting from the original
network, we repeatedly selected pairs of edges at random
to swap their endpoints; a swap introducing new errors
was performed with probability β and rejected otherwise.
We set β so the process would result in an error-free net-
work in a reasonable time (several seconds or several mil-
lions attempts on the average)

Random networks were modified to boost the number of
motifs, either feed-forward loops (version F) or bi-fans
(version B). Boosting was performed via a metropolis
process in which a randomly selected swap was rejected if
it decreased the number of desired motifs by k (more pre-
cisely, such a swap was rejected with probability 1 - αk for
some α), or if it increased the number of errors by l (a
swap was rejected with probability 1 - βl). Parameter α was
adapted by the algorithm; decreased if the number of
motifs was too small and not growing, and increased
when it was too large.

Abbreviations
TF, transcription factor. TT, terminal target. LSCC,
large(st) strongly connected component. SCC, strongly
connected component. SSCC, small cyclic SCC's. Various
networks in Luscombe et al. [6] data: al, all interactions,
cc, interactions of the cell cycle, dd, interactions of the
DNA damage, ds, interactions of the diauxic shift, sp,
interactions of sporulation, sr, interactions of the stress
response. Ccc, interactions in common in 5 stages of the
cell cycle. ITF, interactions from TF to TF. For a class of
interactions X (like ITF and LSCC) and a subnetwork yy
(like cc and dd), Xyy denotes the intersection. F, feedback
node set. MPL, the maximal path length for a path that
includes a given TF. IN-LSCC, the in-component of LSCC.
OUT-LSCC, the out-component of LSCC. SIMPLE, TFs
whose longest paths to which they belong is at most 1 or
2. INT, TFs whose longest paths to which they belong is at
most 3. EXCP, TFs that are not in any of IN-LSCC, LSCC,
OUT-LSCC, or SIMPLE. ffl, feed-forward loop. In tables,
we used Luscombe, Yu and Balaji to refer to networks
Page 10 of 11
(page number not for citation purposes)



BMC Systems Biology 2008, 2:12 http://www.biomedcentral.com/1752-0509/2/12
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

from the data sets published in [6,7,15] respectively, and
we used R, F and B to refer to random models generated
with simple metropolis method (R), a variation of that
method that increased the number of ffls (F) to the actu-
ally observed value, and a similar variation for the bi-fan
motifs (B). The terms PERCENTPATH and PER-
CENTLENGTH are explained in detail in the caption of
Table 5.
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