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Abstract
Background: Autoantigens have been reported in a variety of tumors, providing insight into the
interplay between malignancies and the immune response, and also giving rise to novel diagnostic
and therapeutic concepts. Why certain tumor-associated proteins induce an immune response
remains largely elusive.

Results: This paper analyzes the proposed link between increased abundance of a protein in
cancerous tissue and the increased potential of the protein for induction of a humoral immune
response, using ovarian cancer as an example. Public domain data sources on differential gene
expression and on autoantigens associated with this malignancy were extracted and compared,
using bioinformatics analysis, on the levels of individual genes and proteins, transcriptional
coregulation, joint functional pathways, and shared protein-protein interaction networks. Finally, a
selected list of ovarian cancer-associated, differentially regulated proteins was tested
experimentally for reactivity with antibodies prevalent in sera of ovarian cancer patients.

Genes reported as showing differential expression in ovarian cancer exhibited only minor overlap
with the public domain list of ovarian cancer autoantigens. However, experimental screening for
antibodies directed against antigenic determinants from ovarian cancer-associated proteins yielded
clear reactions with sera.

Conclusion: A link between tumor protein abundance and the likelihood of induction of a
humoral immune response in ovarian cancer appears evident.

Background
An intriguing interplay between cancer cells and the body's
immune system has been reported, and includes both
humoral and cellular pathways [1-3]. Research into links

between cancer and the immune system has aimed to
acquire further understanding of the mechanisms involved
[4], but also addresses applications in diagnostics, disease
surveillance, and therapeutic approaches [5-9].
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The antibody profile triggered in the course of tumor
development (i.e., the spectrum of antibodies directed
against tumor-associated components) may be an immu-
nologic fingerprint of the malignant tissue, in turn provid-
ing information on disease-associated proteins.
Experimental technologies for identification of such
autoantigens include display methods such as phage dis-
play, serological expression cloning analysis (SEREX), or
protein arrays [10-14]. These approaches share the use of
selected antigenic determinants to screen for autoantibod-
ies in sera of cancer patients, so that clinically relevant
tumor antigens may be indirectly detected. Over the last
decade an impressive number of autoantigens have been
identified, and SEREX data have been made publicly
accessible as a web database [15]. Drawbacks of most dis-
play methods, as presently applied, include their limita-
tion to linear epitopes and selection biases arising from
various experimental procedures [16]. Protein arrays
might overcome both shortcomings, as structural epitopes
are amenable to display, and, if processed correctly, may
also take post-translational modification into account.
Only a limited number of proteins are presently available
in arrays, however, and the arrays fail to attain significant
and unbiased coverage even of the hitherto-annotated
human proteome. Furthermore, aberrant protein modifi-
cation (such as unusual glycosylation) may be an impor-
tant source of antigens generating autoantibodies [17], a
fact not considered in most screening approaches.

To date, no conclusive explanation has been put forward
for why certain proteins become autoantigens in the
course of tumor development, whereas others do not.
However, autoantibodies are frequently found to react
with structures previously not displayed to the mature
immune system, such as fetal or viral proteins expressed
by malignant cells [18-20]. Further examples include
intracellular proteins released by cancer cells into the
microenvironment, and the expression of abnormal
splice variants [9,16]. Antibodies targeted against
mutant proteins are the most direct explanation for the
stimulation of an immune response, and the antibodies
may well exhibit cross-reactivities with native proteins.
Such data have been reported for the proteins encoded
by p53 (TP53) and CDX2 [21,22]. It was also shown,
however, that autoantibodies against p53 protein did not
recognize the mutated part of the native protein
[16,23,24]. Interestingly, p53 mutations frequently cause
increased stability of the protein, thereby increasing the
relative concentration. This 'concentration effect' leads
directly to another proposed cause of autoantigenicity,
namely a high (local) abundance of a gene product in
cancerous tissue [25]. Thus, significant upregulation of a
gene, followed by attainment of a high local concentra-
tion of the gene product, may trigger a humoral immune
response against such a protein.

In the present study, we tested the hypothesis that the
abundance of a protein in cancerous tissue is related to the
probability that the protein will induce a humoral
immune response. Our analysis is based on data on differ-
ential gene expression in ovarian cancer (and the assumed
direct relationship between changes in gene expression
and changes in effective protein concentration) derived
from a meta-analysis including publications comparing
normal and cancerous tissue. A second major dataset is
composed of public domain ovarian cancer autoantigens
as derived by SEREX [15]. These two datasets represented
the startpoint for study of the assumed interrelationship
between differential gene expression and altered protein
abundance on the one hand, and the occurrence of
autoantibodies triggered by high abundance of proteins
on the other. Because of the excellent availability of both
gene expression and SEREX data, ovarian cancer was cho-
sen as a study case. A previous analysis of similarities of
gene expression profiles in different tumors as stored in
the Cancer Immunome Database [26] showed significant
variability between tumors [27], as did comparisons of
SEREX datasets for different malignancies. We therefore
focused our analysis on one particular tumor, namely
ovarian cancer.

We have applied two procedures aimed at unraveling the
postulated link between transcriptome and immunome.
First, bioinformatics was utilized to compare transcrip-
tional upregulation with experimentally verified autoanti-
genicity. The work included direct comparison of given
gene or protein lists, and exploration of dataset interrela-
tionships at the levels of transcriptional coregulation and
protein-protein interaction networks. Second, a selected
group of differentially regulated proteins were explicitly
tested for autoantigenic propensity in an experimental set-
ting, following in silico antigenicity profiling and candi-
date epitope selection.

Results and Discussion
Analysis workflow
Datasets derived from a literature-based meta-analysis, as
well as an experimentally derived list of autoantigens,
formed the startpoint of analysis aimed at elucidating any
relationship between differential gene expression and
protein abundance on the one hand, and the propensity
of such proteins to induce humoral immune responses on
the other.

In a first analysis, 86 genes showing concerted upregula-
tion in ovarian cancer, as identified by differential gene
expression meta-analysis (the Meta-UP dataset), were
directly compared to the 81 public domain autoantigens
identified by SEREX (SEREX-ovarian dataset), thereby
identifying three joint entries. These genes included the
BRCA1 associated RING domain 1 (BARD1), Keratin 8
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(KRT8), and Mesothelin (MSLN). Although this number
of conjoint entries is computed as statistically significant
(chi2 test) when compared to the number of conjoint
members of randomly generated datasets, the number of
direct overlaps of upregulated genes and autoantigens is,
from a biological viewpoint, less than impressive. We
identified only one entry in Meta-DOWN as an autoanti-
gen, namely the platelet-derived growth factor receptor
alpha polypeptide (PDGFRA). The gene encoding PDG-
FRA has been reported as mutated in cancerous tissue
[28,29], providing an explanation for the identified
autoantigenic propensity independent of any differential
abundance.

Based on this direct comparison of Meta-ALL and SEREX-
ovarian datasets, no obvious link between upregulation in
gene expression and a subsequent higher abundance of
gene products with autoantigenic potential could be
derived. However, both datasets most likely provide only
a sample of the overall differential gene expression profile
or the spectrum of autoantigens.

To overcome the shortcomings of such partial datasets,
bioinformatics analysis was performed to bridge the gap
between differential gene expression and assumed
changes in protein abundance, and presumed autoanti-
genicity. Concerted expansion of both datasets was under-
taken. Procedures used included transcriptional
coregulation analysis, studies on conjoint pathways, and
exploration of protein interaction networks. The goal of
these procedures was to identify conjoint elements
amongst transcription factors, pathways, or protein inter-
action networks, indirectly linking gene expression and
autoantigenicity at the level of particular gene lists.

Differentially expressed genes
The Meta-UP dataset contained 86 genes, ranked by
reported literature frequency of differential expression.
For example, the gene encoding Mucin was reported as
upregulated in seven publications, and as downregulated
in one report. As listed in Table 1, some known cancer-
associated autoantigens, including several not present in
the SEREX-ovarian dataset, were included in the Meta-UP
list (these entries are marked in bold), of which the most
prominent was Mucin 1 (MUC1) [30]. The tumor-associ-
ated calcium signal transducer 1 (TACSTD1/Ep-CAM)
[31,32], Mesothelin (MSLN) [33], Heat shock protein 90
(HSPCA) [34], Keratin 8 (KRT8) [35] and BRCA1-associ-
ated RING domain 1 (BARD1) [36] are included.

Interestingly, MUC1 and TACSTD1 were ranked among
the top upregulated genes, thus supporting a link between
enriched protein concentration and likelihood of autoan-
tigenicity. This finding was further supported by our fail-
ure to find known autoantigens in the list of
downregulated genes, Meta-DOWN.

Transcriptional coregulation
Scanning the upstream regions of genes in the Meta-UP
dataset resulted in the identification of 32 transcription
factors (TFs) with significantly enriched numbers of bind-
ing sites when compared to the distribution of transcrip-
tion factor binding sites found in randomly picked
sequences (chi2 test). Among the most significant TFs were
those encoded by E2F, HIF1, NFY or ETS1, all previously
reported to activate a number of genes overexpressed in
various cancers [37-40]. In the SEREX-ovarian dataset, six
TFs were detected with enriched binding site numbers,
namely those encoded by GATA1, MYOD, NFKB, IK1,
HIF1 and ARNT. GATA1 features in the growth and matu-
ration of a diverse set of tissues. MYOD is important in
muscle differentiation, and may be involved in inhibition
of cell proliferation. NFKB is a well-known regulator of
cell growth. More interestingly, HIF1 is a master regulator
coordinating oxygen homeostasis, and allows the cell to
survive a lack of oxygen, a relevant situation in malignant
tissue.

Genes listed in Meta-UP share significantly more tran-
scription factors than do genes in the SEREX-ovarian data-
set. The ovarian cancer gene list derived by our literature
meta-analysis thus appears to be under more stringent
control than the SEREX-ovarian gene set, exerted by a
defined set of transcription factors.

The number of shared motifs in the SEREX-ovarian data-
set is lower than that in the Meta-UP collection, although
comparable numbers of sequences were analyzed (81 in
SEREX-ovarian and 86 in Meta-UP). Joint regulatory con-
trol seems more evident in the gene expression dataset
and less pronounced in the list given by SEREX-ovarian.
Amongst the six TFs enriched in the SEREX-ovarian data-
set, however, four, namely GATA1, MYOD, IK1 and HIF1,
were also found in the Meta-UP dataset, indicating a weak
link between the datasets with respect to transcriptional
regulation.

Conjoint pathway analysis
For the approximately 25,000 genes stored in the RefSeq
nonredundant sequence database, about 8,000 distinct
assignments of gene identifiers and respective pathways are
currently defined in the KEGG (Kyoto Encyclopedia of
Genes and Genomes) database [41]. For the Meta-UP gene
dataset we found 21 distinct pathways, and for the SEREX-
ovarian gene dataset 25 such pathways, where each path-
way held at least one gene from the given gene lists.

Of this total of 46 pathways, 9 conjoint elements (i.e.,
pathways containing at least one gene from both datasets)
were found. These were cell communication, cytokine-
cytokine receptor interaction, TGF-beta signaling, focal
adhesion, ECM receptor interaction, adherence junctions,
tight junctions, leukocyte transendothelial migration, and
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Table 1: List of 86 upregulated genes (Meta-UP) derived from literature meta-analysis. Only genes reported at least twice in the 20 
publications reviewed were considered. The total numbers of reported upregulated (U) and downregulated (D) genes are provided. 
Rows in bold indicate protein products that are autoantigens, either reported in the literature or in the SEREX-ovarian dataset.

Symbol Gene Name (short) U D Symbol Gene Name (short) U D

MUC1 mucin 1, transmembrane 7 1 H2AFZ H2A histone family, member Z 2 0
FOLR1 folate receptor 1 5 0 HIST1H2AC histone 1, H2ac 2 0
KLK7 kallikrein 7 5 0 HIST1H2BD histone 1, H2bd 2 0
TACSTD1 tumor assoc. calcium signal 

transducer 1
6 1 HMGB1 high mobility group box 1 2 0

CD47 CD47 antigen 5 1 HP hyptoglobin 2 0
CLDN4 claudin 4 5 1 HSPCA heat shock 90 kDa protein 1, 

alpha-like 3
2 0

CP ceruloplasmin 4 0 IGLL1 immunoglobulin lambda-like 
polypeptide 1

2 0

CRABP1 cellular retinoic acid binding protein 1 4 0 ITGB8 integrin beta 8 2 0
KLK6 kallikrein 6 5 1 JAG2 jagged 2 2 0
PRAME preferentially expressed antigen in 

melanoma
4 0 KLK5 kallikrein 5 2 0

WFDC2 WAP four disulfide core domain 2 4 0 KLK8 kallikrein 8 2 0
APOE apolipoprotein E 3 0 KRT8 keratin 8 2 0
CD24 CD24 antigen 4 1 LCN2 lipocalcin 2 3 1
CD9 CD9 antigen 3 0 LOC389831 hypothetical gene supported by 

AL713796
2 0

CKS1B CDC28 protein kinase regulatory 
subunit 1B

3 0 LU lutheran blood group 2 0

HLA-DPB1 MHC class II, DP beta 1 3 0 MAL Mal, T-cell differentiation protein 3 1
KRT18 keratin 18 3 0 MAL2 Mal, T-cell differentiation protein 2 2 0
PRKCI protein kinase C 3 0 MEIS1 Meis 1, myeloid ecotropic viral 

integration site
2 0

SLPI secretory leukocyte protease inhibitor 4 1 MP14 matrix metalloprotease 14 2 0
SPINT2 serine protease inhibitor 3 0 MSLN mesothelin 2 0
ADAMTS5 disintegrin-like, metalloprotease 2 0 MYCl1 V-myc myelocytomastosis viral 

oncogene
2 0

ANK3 ankyrin 3 2 0 PAX8 paired box gene 8 3 1
ATF3 activating transcription factor 3 2 0 PEA15 phosphoprotein enriched in astrocytes 

15
2 0

BARD1 BRCA1 associated RING domain 
1

2 0 PRKCBP1 protein kinase C binding protein 1 2 0

BCL2L1 Bcl-2 like 1 2 0 PRKCH protein kinase C 2 0
BMP7 bone morphogenetic protein 1 3 1 S100A1 S100 calcium binding protein A1 3 1
CD44 CD44 antigen 2 0 SCGB2A1 secretoglobin family 2A member 1 2 0
CKB creatine kinase, brain 2 0 SCNN1A sodium channel, non-voltage gated 2 0
CLU clusterin 2 0 SDC4 syndecan 4 2 0
COL5A1 collagen type V alpha 1 2 0 SIAHBP1 fuse binding protein interacting 

repressor
2 0

COL9A2 collagen type IX alpha 2 2 0 SLC7A5 solute carrier family 7, member 5 2 0
CRABP2 cellular retinoic acid binding protein 2 2 0 SOX9 SRY-box 9 2 0
D2S448 melanoma associated gene 2 0 SPON1 spondin 1, extracellular matrix protein 2 0
DPM1 dolichyl-phosphate 

mannosyltransferase polypeptide 1
2 0 VEGF vascular endothelial growth factor 2 0

EDD E3 identified by differential display 2 0 CLDN3 claudin 3 2 1
EFNA1 ephirin A1 3 1 IGKC immunoglobulin kappa constant 2 1
ELF3 E74 like factor 3 2 0 KLK10 kallikrein 10 2 1
EYA2 eyes absent homolog 2 (Drosophila) 2 0 KRT19 keratin 19 2 1
FLJ20171 hypothetical protein FLJ20171 2 0 NMU neuromedin U 2 1
FLT1 fms-related tyrosine kinase 1 2 0 PTPRF protein tyrosine phosphatase, receptor 

type, F
2 1

FOXJ1 forkhead box J1 2 0 SFN stratifin 2 1
G1P3 interferon alpha-inducible protein 2 0 TACSTD2 tumor associated calcium signal 

transducer 2
2 1

GPX3 glutathione peroxidase 3 2 0 UBE2C ubiquitin conjugating enzyme E2C 2 1
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regulation of the actin cytoskeleton. To determine the sta-
tistical significance of this finding, we utilized a dataset
generation procedure to derive 1,000 random gene lists
holding the same number of entries (i.e., 86 for the Meta-
UP controls and 81 for the SEREX-ovarian controls). For
each of the randomly composed datasets, the numbers of
conjoint pathways were computed. This procedure
resulted in a normal distribution of conjoint pathways,
showing a mean of 6.7 pathways jointly held by two ran-
domly generated datasets, compared to the nine conjoint
pathways populated by Meta-UP and SEREX-ovarian
genes. Therefore, no significant enrichment of conjoint
pathways between Meta-UP and SEREX-ovarian datasets
was noted.

Protein-protein interactions and networks
We expanded the lists of genes encoded by the datasets using
nearest neighbor expansion based on OPHID protein-pro-
tein interaction data [42]. This approach is based on the
rationale that proteins showing differential abundance
might show interactions with other proteins embedded in
the same functional context (i.e., their nearest neighbors).
The resulting interaction networks, as well as their aggrega-
tion indices [27] with respect to a reference curve based on
random gene selections, are shown in Figure 1.

For Meta-UP, the procedure resulted in networks consist-
ing of 476 nodes and 477 edges. The largest subnetwork

was composed of 329 nodes and 354 edges. Thirty of the
61 detected genes stored in the Meta-UP dataset were
found in the largest subnetwork, resulting in an Index of
Aggregation (IA) of 0.49. Corresponding IAs for the Meta-
DOWN, Meta-ALL, and SEREX-ovarian datasets were
0.46, 0.61, and 0.34, respectively.

To permit statistical evaluation of these aggregation indi-
ces, a reference curve holding mean IAs and standard devi-
ations for 1,000 randomly generated datasets containing
5–200 genes was computed. This procedure is based on
the following rationale: Datasets derived by a systematic
selection procedure (such as differential gene expression
analysis) may be characterized by aggregation indices
clearly exceeding the IAs of randomly generated datasets if
they show IAs at least one standard deviation above the
mean IA of reference datasets with equal numbers of ele-
ments. We additionally constructed an interaction net-
work based on genes stored in Meta-UP including
(previously predicted) enriched transcription factors. The
resulting network showed an IA of 0.697, and this was
highly significant when compared to the distribution
obtained from random datasets. Despite putative biases in
this dataset generation procedure (well-studied proteins
reported, for example, in the context of cancer, show bet-
ter coverage in protein interaction data), all datasets
exhibited internal structures on the level of protein-pro-
tein interaction networks. However, datasets derived by

Protein networks based on protein-protein interaction data in OPHIDFigure 1
Protein networks based on protein-protein interaction data in OPHID. A: Individual interaction networks of Meta-UP, Meta-
DOWN, Meta-ALL and SEREX-ovarian datasets as visualized using ProteoLens http://bio.informatics.iupui.edu/proteolens/
index.stm. B: The indices of aggregation (IA) for the given datasets with respect to the IA of ensembles of randomly generated 
datasets used as references are shown (means and standard deviations).
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differential gene expression clearly showed higher pro-
tein-protein interaction network complexity than did the
SEREX-ovarian dataset.

Direct comparison of gene identifiers in the Meta-UP and
SEREX-ovarian datasets resulted in three joint entries, as
noted above. The number of genes shared between the
datasets after performing nearest neighbor expansion at
the level of protein-protein interactions is presented in
Table 2.

As clearly indicated by respective pairwise comparisons of
original datasets and expanded datasets, the overlap
between gene expression and SEREX-ovarian datasets is
still minor. The Meta-UP dataset including associated
transcription factors and nearest neighbors at the level of
protein-protein interaction resulted in a list of 756 pro-
teins of which, in addition to the three entries already
identified via direct comparison, only three additional
entries (STUB1, UBE3A, ACVR2B) were also listed in the
SEREX-ovarian dataset.

Information derived by comparison of gene expression
and SEREX-ovarian datasets, although expanded by coreg-
ulation and network analysis, indicated no major link
between local abundance of a protein and its potential for
autoantigenicity, at least at the level of given datasets. Dif-
ferential gene expression appears to affect functional
dependencies identified on the basis of transcription fac-
tors involved in regulation, and protein interaction part-
ners, whereas particular autoantigens appear to be
random selections from the human proteome.

To ascertain if the given datasets were biased selections,
therefore failing to provide significant overlaps, or if
abundance (as estimated based on differential gene
expression) might not be linked to increased propensity
for autoantigenicity at all, explicit experimental testing
was performed.

Immunogenicity profiling
To finally test whether upregulation might increase the
autoantigenic potential of a protein (i.e., that a break in
immune tolerance might result from a local concentration
effect), in silico immunogenicity screening of proteins
encoded by upregulated genes was performed. Identified
candidate epitopes were subsequently tested experimen-
tally for identification of reactive antibodies in ovarian
cancer patient sera.

We included all sequences from the Meta-UP dataset
which were reported as upregulated in at least three pub-
lications (as distinct from the two reports required for
membership in the Meta-UP dataset used in earlier analy-
ses). We further included three sequences listed in Meta-
UP which were also reported in the SEREX-ovarian data-
set. Further, the top five upregulated genes of the two gene
expression raw datasets at hand were selected [43,44], as
was TP53, a well-known cancer autoantigen [24,34], serv-
ing as a positive control.

In total, 61 proteins were identified for virtual immuno-
genicity profiling by our selection procedure. We utilized
E-Score to identify candidate linear epitopes on the pro-
teins. E-Score uses the primary sequence of a protein and
combines structural features via 2D/3D structure predic-
tion and solvent accessibility analysis with a neural net-
work-based immunogenicity scoring function. The
outputs of the scoring procedure are linear candidate B-
cell epitopes (with a mean length of 17 aa). Thirty-one of
the 61 proteins gave promising immunogenicity profiles;
the remaining 30 proteins were not analyzed further.
From the 31 proteins providing good immunogenicity
profiles, 88 individual candidate epitopes were selected,
synthesized, and experimentally used. As a reference data-
set, 88 candidate epitopes from 31 proteins randomly
picked from the Meta-DOWN dataset were selected.

Table 2: Number of conjoint genes found by directly comparing gene identifiers as stored in primary datasets, and by comparing 
datasets expanded by transcription factors and nearest neighbor protein-protein interactions. Meta-UP, Meta-ALL, and SEREX-
ovarian are the original source datasets. Meta-UP+TFs represents the upregulated genes of Meta-ALL additionally enriched by 
identified transcription factors. Meta-UP, expanded, is the original Meta-UP gene list expanded by nearest neighbor protein-protein 
interactions. Meta-UP+TFs, expanded, additionally includes associated transcription factors. Meta-ALL, expanded, and SEREX, 
expanded, are the original datasets expanded by nearest neighbor protein-protein interactions.

Meta-UP (86) Meta-ALL (192) SEREX (81)

Meta-UP - - 3
Meta-ALL - - 4
SEREX-ovarian 3 4 -
Meta-UP+TFs - - 3
Meta-UP, expanded - 88 5
Meta-UP+TFs, expanded - 92 6
Meta-ALL, expanded - - 6
SEREX-ovarian, expanded 6 9 -
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Experimental epitope verification
The peptides were screened in a peptide-ELISA setting,
mounting biotinylated candidate epitopes on streptavi-
din-coated microtiter plates. Peptides were then screened
utilizing sera from ovarian cancer patients and sera from
healthy controls to determine the prevalence of antibod-
ies which showed reactivities with the peptides. All 88
peptides of each dataset were screened using a tumor sera
pool (composed of 20 sera) obtained from ovarian cancer
patients and a reference sera pool (composed of 10 sera)
from non-cancer female patients.  3 lists the clinical char-
acteristics of patients whose sera were used.

Figure 2 gives the raw ELISA signal intensity distributions
for all peptides tested using the tumor sera pool (20 sam-
ples) and the reference sera pool (10 samples), and com-
pares candidate epitopes selected from upregulated (UP)
and downregulated (DOWN) genes.

ELISA signal intensities were compared between the sam-
ple groups using Student's t-test, and a significant differ-
ence was found when reactivities of healthy and diseased
sera on epitopes derived from upregulated genes were
compared (p = 0.0011). In contrast, no significant differ-
ence was observed between tumor and reference sera
pools reacting with epitopes derived from Meta-DOWN
proteins. When all candidate epitopes were included in
the statistical analysis, however, the absolute difference
between reference and tumor sera was small also for Meta-
UP candidate epitopes. First, it is likely that not all upreg-

ulated genes provide proteins triggering autoantibody
production because of various host factors. Second, the in
silico epitope prediction may have missed important
immunogenic determinants. Figure 3A shows sera reactiv-
ity of tumor and reference sera for the 12 of the 31 pro-
teins showing the largest reactivity differences; Figure 3B
provides the data for the remaining 19 proteins.

Among the upregulated and most-reactive proteins, four
well known autoantigens reported in various tumors were
found, namely MSLN (mesothelin), BARD1 (BRCA1 asso-
ciated RING domain 1), LNX (ligand of numb-protein X
1) and TP53 (tumor protein 53), which we included as an
internal control. Interestingly, a series of receptor mole-
cules was identified as potential autoantigenic compo-
nents in ovarian cancer. These included the folate receptor
(FOLR1), the protein tyrosine phosphatase receptor type
F (PTPRF), the G protein-coupled receptor 25 (GPR25),
ATPase subunit B1 (ATP6V1B1), and the tumor-associ-
ated calcium signal transducer 2 (TACSTD2). In particu-
lar, the identification of TACSTD2 is interesting. This
protein belongs to a family including at least two Type I
membrane proteins, one of which is the widely investi-
gated TACSTD1, better known as epithelial cell adhesion
molecule (Ep-CAM). Autoantibodies in the sera of tumor
patients, in particular those with ovarian cancer, have
been reported for Ep-CAM [31].

Box-plots giving means, errors of means, and standard devia-tions of triplicate measurements of ELISA signals (OD, opti-cal density) for the 12 proteins exhibiting the highest signal differences when a tumor sera pool (20 sera) and a reference sera pool (10 sera) were compared (A), and the correspond-ing data for the remaining 19 proteins (B)Figure 3
Box-plots giving means, errors of means, and standard devia-
tions of triplicate measurements of ELISA signals (OD, opti-
cal density) for the 12 proteins exhibiting the highest signal 
differences when a tumor sera pool (20 sera) and a reference 
sera pool (10 sera) were compared (A), and the correspond-
ing data for the remaining 19 proteins (B). Where more than 
one epitope was tested for a given protein the signal based 
on the epitope showing strongest reactivity is provided. 
Black box-plots indicate tumor sera reactivity and white box-
plots give reference sera reactivity. Each protein is named 
from its gene symbol.

Box-plots giving means, errors of means, and standard devia-tions of ELISA signal intensities from the tumor sera pool (tumor) and the reference sera pool (reference), using equal numbers of antigenic peptides from Meta-UP (UP) and Meta-DOWN (DOWN) proteinsFigure 2
Box-plots giving means, errors of means, and standard devia-
tions of ELISA signal intensities from the tumor sera pool 
(tumor) and the reference sera pool (reference), using equal 
numbers of antigenic peptides from Meta-UP (UP) and Meta-
DOWN (DOWN) proteins. The OD values are ELISA signal 
readouts. A double asterisk indicates a highly significant dif-
ference based on Student's t-test (p = 0.0011).
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Figure 4 shows the reactivities of epitopes selected from
the 12 proteins shown in Figure 3A, at the level of individ-
ual tumor patient sera. ELISA data are given as log2-trans-
formed differences between individual tumor sera signals
and signals derived using a control peptide as a back-
ground reference. An attempt to link available clinical
data (Table 3) with sera reactivities (Figure 4) did not
show any significant association.

It is important to note that the screening results given in
Figures 3 and 4 are based on data indicating upregulation
at the level of differential gene expression, not necessarily
correlating with changes in protein abundance. We there-
fore scanned both the literature and the human protein
atlas [45] for indications of increased protein abundance
of the sequences included in Figure 3A and Figure 4. For 5
(MSLN, BARD1, FOLR1, UBE2C, TP53) of the 12 pro-
teins, clear evidence for increased protein concentrations
in ovarian cancer tissue compared to normal ovarian epi-
thelium is available [46-50], supporting the link between
upregulation at the gene expression level and increased
protein abundance.

Conclusion
In our work, ovarian cancer was used as a test system to
investigate whether high expression of cancer-associated
proteins is linked to an increased propensity towards
autoantigenicity in the context of a humoral immune
response. The startpoint of our analysis was the integra-
tion of datasets derived from public domain differential

gene expression analyses, as well as reported SEREX data
on ovarian cancer autoantigens.

Heat-map representation of ELISA signal intensities for the 12 most reactive epitopes of 12 individual proteins screened with 20 individual ovarian cancer patient seraFigure 4
Heat-map representation of ELISA signal intensities for the 
12 most reactive epitopes of 12 individual proteins screened 
with 20 individual ovarian cancer patient sera. Signals are 
color coded for the interval [-1,1] and represent the log2-
transformed differences between the ELISA signals using 
tumor serum and signals derived using a control peptide as a 
background reference. Red coloring indicates increased reac-
tivity of an individual tumor serum.

Table 3: Characteristics and clinical parameters of the 20 ovarian cancer patients whose sera were used in this study. All patients had 
adenocarcinomas.

Sample No. Year of birth Year of 
diagnosis

Year of sample 
collection

Sample taken 
after relapse

Grade FIGO Stage

1 1934 1998 2004 Yes 3 Ic
2 1928 2002 2004 Yes 3 IIIc
3 1941 2002 2005 Yes 3 IIIA
4 1937 2004 2004 No - -
5 1931 1997 - - 2 IIIc
6 1954 2002 2005 Yes 3 IV
7 1955 2002 2005 Yes 3 IIIc
8 1937 1996 2005 Yes X X
9 1937 1994 2005 Yes 3 IIIc
10 1956 2001 2005 Yes 3 IIIc
11 1941 2002 - - 3 IIIc
12 1942 1996 2004 - 3 Iic
13 1940 2004 2004 No 2 IIIa
14 1923 1997 2004 - 2 Ia
15 1933 2004 2004 No 1 IV
16 1941 2004 2005 - 2 IIIc
17 1947 2002 2004 No - IIIc
18 1941 1995 2005 Yes 3 Ic
19 1928 1999 2004 Yes 3 III
20 1935 2002 2005 Yes 3 IIIc
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The meta-analysis of 20 publications showed differential
gene expression of more than 1,700 genes. Only 192
genes, however, were reported in more than one publica-
tion, clearly reflecting shortcomings in experimental pro-
cedures and downstream processing of differential gene
expression analyses, as well as the heterogeneous nature
of this tumor entity [51]. Amongst the 192 genes, 86 were
reported as upregulated (Meta-UP) and 106 as downregu-
lated (Meta-DOWN).

In a first step, we explicitly compared our literature-
derived Meta-UP gene set with the SEREX-defined autoan-
tigens for ovarian cancer (SEREX-ovarian; 81 genes).
Three conjoint genes were identified, whereas only one
protein represented in Meta-DOWN (106) was also
present in the SEREX-ovarian dataset. Additionally, a set
of literature-reported cancer autoantigens was found in
Meta-UP but not in Meta-DOWN, including Mucin 1
(MUC1), the tumor associated calcium signal transducer
1 (TACSTD1), and the heat-shock protein 90 (HSPCA)
[7,34,52]. These examples indicated a link between gene
overexpression and protein autoantigenic potential,
whereas a direct comparison between gene expression
data and SEREX-ovarian genes did not suggest such a cor-
relation.

Presentation to the humoral immune system is manda-
tory for triggering the production of antibodies, a process
facilitated either by antigen presenting cells, or occurring
via direct antigen access. Consequently, autoantigens may
accumulate in the extracellular space or cell wall, or may
be secreted. However, SEREX-defined gene products show
a tendency towards nuclear location. One explanation for
this finding might be cell breakage and consequent necro-
sis in the course of tumor progression.

In any case, both datasets most likely represented but
small selections of differentially expressed genes or
autoantigens. In light of this, transcriptional coregulation
analysis, pathway analysis, and protein-protein interac-
tion analysis were performed to identify indirect links
between the given datasets. On the level of transcriptional
coregulation, we identified a series of well-known, cancer-
associated TFs as over-represented in Meta-UP, signifi-
cantly overlapping with enriched TFs also found in the
common cancer profile dataset of Rhodes et al. ([53], data
not shown). A smaller number of TFs characteristic of the
SEREX-ovarian dataset was identified, but, amongst the
six TFs found, four were also characteristic of the Meta-UP
gene set.

After protein-protein interaction analysis, interaction net-
works derived from both the SEREX-ovarian and Meta-UP
datasets showed increased IAs; however, even after a first
neighbor expansion, the overlap between the datasets did

not increase significantly. The protein-protein interaction
analysis revealed a systematic logic in and inherent com-
plexities of both the Meta-UP and SEREX-ovarian datasets.
However, the datasets could not be convincingly linked
via one-neighbor extension. Weak correlation was also
found when searching for conjoint KEGG pathways [41].
Nine of 46 pathways were identified as jointly populated
by entries from the Meta-UP and SEREX-ovarian datasets.

Based on these results, a tight linkage between high abun-
dance as identified by differential gene expression analy-
sis, and autoantigenic potential as found by membership
of the SEREX-ovarian dataset, could not be shown. The
gene expression dataset on its own appears conclusive,
exhibiting a significant number of joint transcription fac-
tors, good integration with KEGG pathways, and a high IA
at the level of protein-protein interactions. The SEREX-
ovarian dataset showed a less integrated picture, but is
clearly set apart from randomly selected gene lists. The
true set of autoantigens might therefore still be linked to
concerted intracellular events, not necessarily coupled to
massive changes in expression, in contrast to a profile
appearing as random, as would result if cell breakage and
necrosis were the sole sources triggering a humoral
response against intracellular proteins.

To further study potential links between protein overex-
pression and autoantigenicity, we explicitly tested 31 pro-
teins showing strong upregulation in an experimental
setting. After identifying candidate epitopes on these pro-
teins with an in silico prediction procedure, we conducted
ELISA screenings using sera from ovarian cancer patients
and from healthy subjects. Although reactivities varied
notably amongst different patient sera, we successfully
identified 18 epitopes on 12 proteins. Proteins were
ranked with respect to sera reactivities. The well-described
autoantigen TP53 was found amongst the top-ranked pro-
teins, supporting the validity of our approach. Even
higher serum reactivity than found for TP53 was observed
for six proteins, namely MSLN, BARD1, PXDN, FOLR1,
DDX21 and UBE2C. Proteins MSLN and BARD1 are well-
known autoantigens of ovarian cancer and have also been
found by SEREX. Protein PXDN is a melanoma-associated
protein and the ubiquitin-conjugating enzyme E2C
(UBE2C) is believed to play a role in tumor progression
[54,55]. Folate receptor 1 has often been reported as sig-
nificantly upregulated in ovarian cancer and is also
known as ovarian carcinoma-associated antigen [49]. To
date, no link to cancer or to a humoral autoimmune
response has been reported for the RNA helicase DDX21,
indicating that this is a newly-described autoantigen. In
contrast to results obtained by comparing the Meta-UP
and SEREX-ovarian datasets, our experimental data point
towards a link between protein overexpression and
autoantigenicity. Following an integrated analysis
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approach, diverse links between the various layers of dif-
ferential gene expression, transcriptional coregulation,
protein-protein interactions, and autoantigenicity, can be
drawn, as schematically represented in Figure 5.

Figure 5 provides a detailed view of selected protein-pro-
tein interactions as embedded in a protein interaction
graph when all elements of Meta-UP, SEREX-ovarian, and
identified transcription factors are included. Starting with
differentially expressed genes (including the newly identi-
fied autoantigen DDX21) and central control elements
such as TP53, JUNB and NFKB, further transcription fac-
tors are linked, finally also including selected elements
from the SEREX-ovarian dataset. Analysis of the gene

ontologies of involved elements results in conclusive
functional groups, namely apoptosis, cell proliferation,
cell cycle control, nucleic acid metabolism, and develop-
mental processes. These clearly link the integrated net-
work of differentially expressed genes, transcription
factors, and autoantigens, to molecular processes associ-
ated with cancer development and progression. Our data
indicate that changes in gene expression are closely asso-
ciated with processes occurring in malignant cells, and
some proteins relevant in this context appear to exhibit
increased autoantigenic propensities. A wide range of
additional effects come into play, however, including only
a partial correlation between upregulation of gene expres-
sion and protein abundance, variations in the efficiencies

Data integration scheme: Protein-protein interaction networks unravel the link between gene expression and SEREX-ovarian data, via identified transcription factorsFigure 5
Data integration scheme: Protein-protein interaction networks unravel the link between gene expression and SEREX-ovarian 
data, via identified transcription factors. One of the newly identified autoantigens, DDX21, is included. The protein network 
was generated using genes identified by Meta-UP and SEREX-ovarian dataset searches. Genes shown in the upper right present 
a sample of the network, linking the various data sources to the newly identified autoantigen DDX21. In the lower left of the 
Figure, ELISA signal intensities of the 20 individual ovarian cancer sera tested on DDX21 are given as bar plots. Genes involved 
can be further grouped using gene ontology terms, showing typical gene categories involved in cancer.
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of epitopes in triggering generation of antibodies, and the
general immune status of tumor patients. These condi-
tions may be responsible for the heterogeneous autoanti-
body spectrum found in cancer patients. The use of
available data on differential gene expression as a start-
point for the screening of large numbers of patient sera
may, however, be a valuable strategy for identifying
autoantigens prevalent in cancer, concomitantly contrib-
uting to the establishment of novel immunotherapies.

Methods
Datasets
Peer-reviewed publications on ovarian cancer gene expres-
sion analysis were identified in PubMed [56], accessed in
June 2005, applying a keyword search (ovarian cancer,
gene expression, microarrays). All array platform technol-
ogies were included. In total, 25 publications were
retrieved, and 20 papers published from 1999–2005 were
gene expression studies comparing ovarian cancer tumor
tissue with either healthy tissue or ovarian epithelial cell
lines as references. This list of publications was included
in our meta-analysis and is presented in Table 4. From
these papers, differentially expressed genes (given by their
GeneIDs) were manually extracted and used for subse-
quent analysis.

Based on the gene identifiers from the 20 publications, a
non-redundant gene set was generated. In total, more
than 1,700 unique genes were reported as being differen-

tially expressed when healthy and diseased cells were
compared. To account for biological and technical vari-
ances inherent in this meta-analysis, only genes reported
in more than one publication as differentially regulated
were kept in our core dataset. This led to a list of 192 genes
(dataset Meta-ALL). Amongst these 192 unique genes, 86
were reported as significantly upregulated (dataset Meta-
UP) and 106 genes were reported as significantly down-
regulated (Meta-DOWN). The list of upregulated genes as
derived by our analysis is given in Table 1. Besides the
Meta-ALL gene list, a publicly available dataset holding
cancer autoantigens as identified by SEREX was retrieved
from the Cancer Immunome Database [26]. A database
search for the tissue 'ovary' (in December 2005) revealed
81 non-redundant genes represented by their GeneIDs.
This dataset was termed SEREX-ovarian.

Consensus analysis of given gene tables
A range of bioinformatics analyses were conducted, utiliz-
ing the datasets derived from the meta-analysis covering
differential gene expression and SEREX. Procedures
included identification of joint elements via direct com-
parison of GeneIDs, but focused, in particular, on the
level of indirect control by analyzing transcriptional
coregulation, concerted pathways, and protein-protein
interaction networks. Given genes (and the proteins they
encode) may show no direct overlap, but may still be
under joint control on the transcriptional level, or might
populate the same protein pathways.

For identification of transcriptional coregulation, a tran-
scription factor binding site (TFBS) analysis was per-
formed. First, the regulatory regions of genes stored in the
datasets Meta-UP and SEREX-ovarian were extracted. Reg-
ulatory regions were identified utilizing the CONFAC tool
for deriving human-to-mouse orthologous promoter
sequences within 2,000 bp upstream of transcription start
sites [57]. Single TFBSs were predicted in these regulatory
regions using known binding site motifs as stored in the
TRANSFAC database (matrix and core similarity values of
0.85 and 0.95 were employed) [58]. A Mann-Whitney U
test was employed to identify TFs with enriched numbers
of binding sites in the regulatory regions of a given gene
set (i.e., the Meta-UP and SEREX-ovarian datasets) when
compared to randomly selected reference datasets. For
identification of joint promoter modules (as combina-
tions of TFBSs) a genetic algorithm was applied as
described in Perco et al.[59]. The outputs of coregulation
analysis are lists of transcription factors and combinations
of transcription factors enriched in Meta-UP or SEREX-
ovarian, or jointly enriched in both datasets.

Pathway analysis of given datasets was performed utiliz-
ing the KEGG database [41] to unravel functional protein
networks covered by the given gene lists. All known regu-

Table 4: Twenty publications (1999–2005) comparing ovarian 
cancer tissue with healthy ovarian tissue or ovarian cell lines, 
utilizing differential gene expression. Genes reported as 
differentially expressed represent the Meta-ALL dataset. Papers 
are listed by first author only.

Publication – journal Reference

Zhang, Int. J. Gynecol. Cancer (2005) [69]
DeCecco, Oncogene (2004) [70]
Donninger, Oncogene (2004) [71]
Lancaster, Soc. Gynecol. Investig. (2004) [72]
Lee, Int. J. Oncol. (2004) [73]
Santin, Int. J. Cancer (2004) [74]
Collins, Int. J. Mol. Med. (2004) [75]
Hibbs, Am. J. Pathol. (2004) [76]
Adib, Br. J. Cancer (2004) [77]
Zorn, Clin. Cancer. Res. (2003) [78]
Matei, Oncogene (2002) [79]
Sawiris, Cancer Res. (2002) [80]
Welsh, Proc. Natl. Acad. Sci. USA (2001) [44]
Shridhar, Cancer Res. (2001) [81]
Hough, Cancer Res. (2001) [82]
Mok, J. Natl. Cancer Inst. (2001) [83]
Hough, Cancer Res. (2000) [84]
Ismail, Cancer Res. (2000) [85]
Ono, Cancer Res. (2000) [86]
Schummer, Gene (1999) [87]
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latory networks were retrieved from the public domain
data repository, provided that such individual networks
held at least one element of a given dataset. Datasets were
then compared at the level of pathways populated by the
different gene datasets. The significance of findings was
evaluated by comparison of the number of conjoint path-
ways found for the given datasets with the number of con-
joint pathways found using randomly generated datasets
of the same sizes.

Human protein-protein interactions (PPIs) as provided by
OPHID were used to determine the interactions of pro-
teins encoded by genes stored in the different datasets
[42]. The goal of this procedure was the construction of
protein-protein interaction graphs and a subsequent com-
parison of subgraphs identified through the use of partic-
ular gene expression and autoantigen datasets. The high
quality interaction subsets provided by BIND [60], MINT
[61], MIPS [62], HPRD [63], RikenDIP and RikenBIND
[64], in total representing 20,289 pairwise protein interac-
tions, were used. PPI networks were generated using the
nearest neighbor expansion method as proposed by Chen
and colleagues [65]. Levels of aggregation and complexi-
ties of derived interaction networks were quantified by
computing IA values [27], which are the percentages of
selected nodes in the largest subnetwork with respect to
all selected nodes in a network generated from a given
gene list. The IAs of networks derived from given gene sets
were compared with the IAs of randomly selected gene
lists to identify statistically significant levels of protein
interaction in gene expression and autoantigen datasets.

The integrated application of differential gene expression,
coregulation analysis, and protein network exploration,
based on the datasets retrieved, was the basis for compar-
ison of the ovarian cancer transcriptome and immunome.
Further details on our methodological workflow are out-
lined in Perco et al.[66].

In silico and experimental antigenicity analysis
Consensus analysis of given gene lists focused on identifi-
cation of joint elements, as well as on elucidation of indi-
rect control, by considering individual elements in the
lists. For identification of novel autoantigens in a given
gene expression list, information on subcellular location
and on potential antigenic determinants (epitopes) of
candidate proteins was derived. Subcellular locations of
proteins were predicted using PSORT for eukaryotic
sequences [67,68]. Linear B-cell epitopes were predicted
using the antigenicity classification function E-score
(emergentec biodevelopment, Vienna, Austria). E-scores
are based on sequence descriptors derived from extended,
experimentally verified B-cell epitope and reference data-
sets, combined in a neural network-type classification
function.

Predicted immunogenic determinants on disease-associ-
ated proteins were subjected to experimental verification.
Sera from 20 ovarian cancer patients and from 10 presum-
ably healthy subjects were used for identification of reac-
tive antibodies prevalent in given sera. Usage of sera was
approved by the Ethical Committee of the Medical Uni-
versity of Vienna. Confidentiality of study subjects was
assured by sample coding.

Candidate epitopes (17 aa in length) were synthesized
(Mimotopes Pty Ltd., Clayton Victoria Australia) with N-
terminal biotin, followed by a four aa spacer sequence
(SGSG). For experimental screening, streptavidin-coated
96-well microtiter plates (Mimotopes) were blocked with
200 μl/well of 2% (w/v) bovine serum albumin (Sigma-
Aldrich, St. Louis, MO) in PBST (PBS [0.1 M sodium phos-
phate, 0.15 M NaCl, pH 7.0] + 0.1% [v/v] Tween 20) over-
night at 4°C. Subsequently, the wells were washed four
times with PBST and incubated with the biotinylated pep-
tides for 2 h at room temperature. Blank wells were incu-
bated with PBST in the absence of peptides. The wells were
washed four times with PBST, and 100 μl of sera diluted
1:400 or 1:800 was added to each well. Incubation for 2 h
at room temperature followed. After further washing, anti-
body binding was detected using 100 μl/well of alkaline-
phosphatase conjugated goat anti-human IgG (BETHYL
Laboratories, Inc., Montgomery, U.S.) diluted in blocking
buffer (1:1000), with incubation for 1 h. After 6 washes
with PBST, 200 μl of a 1.0 mg/ml p-nitrophenylphosphate
substrate solution in 0.2 M Tris-buffer (Sigma-Aldrich)
was added to each well. Absorbance was measured on a
BDSL Immunoskan PLUS spectrophotometer at 405 nm
after 90 min. All measurements were performed in tripli-
cate. Control wells for testing the secondary antibody, as
well as a reference peptide serving as a negative control,
were included [18].

Patient sera
Ovarian cancer and reference sera were collected at the
Medical University of Vienna after receiving patient con-
sent. Twenty individual sera of patients with diagnosed
ovarian cancer, at different cancer stages (Table 3), and 10
reference sera from healthy women aged 20–30 years,
with no indications of cancer or ovarian pathology, were
collected.
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