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Abstract
Background: The relationship between the regulatory design and the functionality of molecular
networks is a key issue in biology. Modules and motifs have been associated to various cellular
processes, thereby providing anecdotal evidence for performance based localization on molecular
networks.

Results: To quantify structure-function relationship we investigate similarities of proteins which
are close in the regulatory network of the yeast Saccharomyces Cerevisiae. We find that the
topology of the regulatory network only show weak remnants of its history of network
reorganizations, but strong features of co-regulated proteins associated to similar tasks. These
functional correlations decreases strongly when one consider proteins separated by more than two
steps in the regulatory network. The network topology primarily reflects the processes that is
orchestrated by each individual hub, whereas there is nearly no remnants of the history of protein
duplications.

Conclusion: Our results suggests that local topological features of regulatory networks, including
broad degree distributions, emerge as an implicit result of matching a number of needed processes
to a finite toolbox of proteins.

Background
Contemporary systems biology have provided us with a
large amount of data on topology of molecular networks,
thereby giving us glimpses into computation and signal-
ing in living cells. It have been found that 1) regulatory
networks have broad out-degree distributions [1,2], 2)
transcriptional regulatory networks contains many feed
forward motifs [3], and 3) highly connected hubs are
often found on the periphery of the network [4]. These
findings are elements in understanding the topology of
existing molecular networks as the result of an interplay

between evolution and the processes they orchestrate in
the cell.

In this paper we consider properties of proteins in the per-
spective of how they are positioned relative to each other
in the network. This is in part motivated by the existence
of highly connected proteins (hubs) and their relation to
soft modularity [4,5] in regulatory networks. In particular
one may envision broad degree distributions and possible
isolation of hubs as a reflection of a local "information
horizon" [6] with partial isolation between different bio-
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logical processes. We here address this problem by consid-
ering the yeast regulatory network [7] with regards to
protein properties. Using the Gene Ontology (GO) Con-
sortium annotations[8] we will show that locality in the
regulatory network primarily is associated to locality in
biological process, and only weakly related to functional
abilities of a protein.

Results
Figure 1 show the regulatory network [7] for the yeast Sac-
charomyces Cerevisiae and the color coded GO-graph for
annotations of biological processes. The GO-graph is
colored such that processes that are close are colored with
similar colors. The proteins in the yeast network are then
colored with the color of their annotation, with hubs
being colored according to the average of their targets. If
the targets of a given hub take part in a very broad range
of biological processes the color of the hub fades (gray).
We see a fairly scattered distribution of colors, with a ten-
dency that proteins in close proximity indeed are more
similar.

More precisely, a GO-graph is an acyclic directed graph
which organize proteins according to a predefined catego-
rization. A lower ranking protein in a GO-graph share
large scale properties with higher ranking proteins, but are
more specialized. In the GO-database, proteins are catego-
rized into three networks according to different annota-
tions, ranking known gene products after respectively: P)
biological process, F) functional ability/design of the pro-
tein and C) cellular components where the protein is
physically located. For each of these three ways of catego-
rization we examined two distinct ways to measure GO
annotation difference (see box in Fig. 1).

Figure 2 presents the average GO-distance as function of
distance l in the regulatory network for each of the three
different GO-categories. The regulatory distance is calcu-
lated by finding the shortest path distance using breadth-
first search disregarding the directionality of the links. The
upper panels show that closely connected proteins are
involved in closely related cellular processes, P. On the
other hand, the middle and lower panels show a weaker
relation between position in the regulatory network and C
respectively F based GO-distances.

In particular Fig. 2(a) shows that proteins separated by
one or two links are involved in similar processes. Here
distance l = 1 mostly count proteins on the periphery of a
hub and their directly upstream and highly connected reg-
ulator. Distance l = 2 count proteins regulated by the same
highly connected regulator. Note that we are averaging
over all pairs in the whole regulatory network including
connections to less well-connected regulators. In this way
the highly connected nodes are counted for each of their

downstream targets and therefore the larger hubs will
make the dominant contributions to this calculation.

Figure 2(b) investigate the differences in GO-annotations,
but with the hierarchical distance that emphasize differ-
ences close to the root of the GO-graph for processes(P).
The fact that this measure correlate to larger distances in
the regulatory network implies that proteins in a larger
neighborhood of the regulatory network tends to be on
the same larger subbranches on the GO(P)-hierarchy.

In all the panels in Fig. 2 we also compare to a null model,
generated by keeping the regulatory network, but ran-
domly reassigning which proteins from the GO-graph that
are assigned to which positions on the network. This ran-
domization maintain the positions of all nodes in the reg-
ulatory network exactly. By doing this randomization one
loose any P, F or C correlation between a regulator and its
downstream targets. Any conceivable GO-distance there-
fore becomes independent on the regulatory distance.

Figure 3 quantify the correlations observed for Fig. 2(a)
and 2(b) by comparing with another null model, which
explicitly conserves the GO annotations but allow for
complete reorganizations of the transcription network.
That is, we generate families of null models by randomiz-
ing the regulatory networks while maintaining the in- and
out-degree for the nodes and with a bias for neighbor-
hood correlations of a GO annotation (see Fig. 3(g)). In
detail, for a bias parameter ε = 0, the correlations are max-
imal given the available nodes in the original network. For
finite ε there are imperfections in the sampled networks,
which implies that there is some probability that the link
rewiring increases the GO distance. Figure 3 show result-
ing GO-distances as a function of distance in the yeast net-
work for three values of ε.

From Fig. 3(a) we see that in order to reproduce the
observed local correlations of GO(P) in a random sample
of networks, these need to be generated with maximal
bias. That is, the network generated with ε = 0 reproduce
observed correlations between processes of proteins
which are downstream of the same regulator i.e. at dis-
tance l = 2 in the regulatory network. At distances l > 2
there are no detectable correlations, which in turn is
reproduced by allowing small imperfections (ε ~ 0.15) in
the rewiring.

In Fig. 3(b) we repeat the investigation from a), but with
respect to the hierarchical GO(P) distance. In this case we
see that ε ~ 0.15 → 0.30 reproduce the observed correla-
tions between protein processes out to larger regulatory
distances (l ~ 3). Figure 3(c)–(f), on the other hand, show
that function or cellular localization are only moderately
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(a) Gene Ontology (GO) annotation graph for biological processesFigure 1
(a) Gene Ontology (GO) annotation graph for biological processes. The network is color coded according to overall 
classification of different processes. (b) Regulatory network of S. Cerevisiae, including known transcription and enzymatic 
interactions. The nodes represent proteins which have been colored according to their position in the above GO-graph. (c) 
The direct distance between two nodes A and B in a GO-annotation network is the length of the shortest path between the 
two nodes using the breadth-first search method, disregarding directions. Since each protein could have several GO-annota-
tions, the distance between a pair of proteins is the shortest among all possible assigned annotations. (d) the hierarchical dis-
tance between node A and B is defined from the smallest total downstream region n(A, B) of any node that include both A and 
B. The hierarchical distance is the normalized D(A, B) = n(A, B)/N where N is the number of GO-nodes that has a protein in the 
shown regulatory network. D(A,B) captures that the distance between A and B is smaller if one is below the other, than if they 
are on separate branches.

(b)

(a)

(c) (d)
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GO-distance between two nodes as a function of separation in number of steps in the regulatory network of S.Cerevisiae [7]Figure 2
GO-distance between two nodes as a function of separation in number of steps in the regulatory network of 
S.Cerevisiae [7]. The upper, middle and lower panel refer to respectively the Process, Function and Component GO-annotation. 
In left and right side of the figure we analyze respectively the direct GO-distance and the hierarchical GO-distance, as 
explained in Fig. 1.
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related within the same hub (l ~ 2), and unrelated at all
larger distances.

Discussion
Protein regulatory networks are highly functional infor-
mation processing systems, evolved to perform a diverse
sets of tasks in a close to optimal way. It is of no surprise
that they are not random, also in ways that can be detected
without knowing much about what actually goes on in
the living system they regulate. However we do not, a pri-
ori, know much about the relative importance of function
versus history: Is the topology of a network primarily gov-
erned by the processes it direct, or is its topology influ-
enced by random gene duplications [9,10] and "link"
rewirings [11]?

Concerning gene duplications [9,12-19], we detected 581
paralogous pairs among the 848 gene products in YPD,
see methods. Of these 581 pairs, only ~15% significantly
retained their common regulator, and only ~0.6% of the
proteins pairs at distance l = 2 are detectable paralogs.
Therefore the contribution from duplication events to any
GO-similarity within hubs can be ignored.

Our analysis in Figs. 2, 3 emphasize the strong correla-
tions between network localization and process, in partic-
ular very strong (maximally possible) correlation between
process annotation of proteins in the same hub. In addi-
tion, we see some functional similarities between proteins
in the same hub, in particular when considering the hier-
archical GO distances at l = 2 in Fig. 3(d). However we
also find that the functional diversity within hubs are
large in terms of the direct GO distance (l = 2 in Fig. 3(c)).
Combined Fig. 3(c,d) therefore show that proteins in the
same hub have quite large direct function-GO distances,
but rarely belong to entirely different function-GO catego-
ries.

In any case we emphasize that we primarily find GO-proc-
esses localized on hubs, and only weak correlations of the
functional abilities between proteins involved in the same
process.

The idea that process similarity are associated to network
localization is not new, and implicitly behind attempts to
infer gene networks from similarity in gene expression
[20]. In the supplement we use gene expression from
micro-arrays to re-investigate the correlation between
process and locality in the regulatory network. Thereby,
we provide a broader support for our findings, and
present a quantitative illustration of the extent to which
gene-expression studies can be used to deduce co-regula-
tion.

Average GO-distances for biological process, molecular func-tion and cellular component for the regulatory network of S. Cerevisiae (black curve), and its randomized counterpartsFigure 3
Average GO-distances for biological process, molec-
ular function and cellular component for the regula-
tory network of S. Cerevisiae (black curve), and its 
randomized counterparts. As ε → 0 one increase the 
bias for generating random networks with maximal proximity 
(similarity) of the GO-annotations of neighboring proteins. 
Left column (a,c,e) analyze the direct GO-distances, whereas 
the right column (b,d,f) analyze the hierarchical GO-distances 
as function of distance in the real and the randomized regula-
tory networks. In (g) is shown how we randomize the net-
works with probability ε : A random regulatory network is 
generated from the real one by multiple rewirings of pairs of 
regulatory links. For each rewiring one select two random 
connections A → B, X → Y and consider rewiring to a net-
work where instead A → Y and X → B. With probability ε 
one always rewire. With probability 1 - ε one finds a random 
pair of links where the GO-distances after are smaller or 
equal to the GO-distances before the swap. That is, D(A,Y) ≤ 
D(A,B) and D(X,B) ≤ D(X,Y), here symbolized by nodes of 
similar colors being brought closer together.
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Support for the ubiquity of the "one hub-one process"
association is also found from the fact that the likelihood
that a regulatory protein is essential is nearly independent
on how many proteins it regulate [2]. That is, the question
of whether a null mutant of a certain protein is viable is
keyed to the essentiality of the regulated process, and not
to whether the process needs many or few different
"tools" to be performed.

Conclusion
Overall we suggest that the topology of the yeast regula-
tory network is governed by processes located on hubs,
each consisting of a number of tools in the form of pro-
teins with quite different functional abilities. This is con-
sistent with a network evolution where gene duplication
occur, but where rewiring of regulatory links plays a bigger
role [14,19,21-23]. The regulatory network is designed to
co-regulate processes, and its evolutionary history must
include a bias towards hub-regulation of individual proc-
esses. Degree distributions are not broad because of dupli-
cation events, but because a given biological task
sometimes needs many, but typically require few tools.

Finally our analysis have consequences for development
of null models for network topologies, and thereby for
identifying functionally important network motifs [3].
While the previous null model [4] maintain in- and out-
degrees of each protein, it ignore correlations associated
to cellular process. When nearby proteins are associated to
the same processes one statistically expect an increased
probability for cliques [24,25]. We therefore expect that
some of the many feed-forward loops in transcription net-
works [3] will be explained by a new type of null model:
A null model where proteins contributing to a given proc-
ess are forced to remain close in the randomized network.

Methods
The GO-annotations are used without any filtering. This
does not preclude bias introduced from using inferred
annotations. Of the 848 genes in the YPD, 52 are not
annotated and were thus not included in the analysis. 142
genes has more than one molecular function, 314 genes
takes part in more than one cellular component and 463
genes participates in more than one biological process. To
accommodate this the analysis was carried out by choos-
ing the annotations which minimized the mutual distance
for each pair of proteins. This choice maximally resolves
significant signals, since we minimize the effect of the
finite size of the GO-tree, and in the case of no signal this
choice introduces no bias.

Of the 848 gene products in YPD, we found 581 paralo-
gous pairs using BLASTP with E-value cutoff of 10-10

[14,26]. For the YPD network 132 of these paralogous
pairs are at distance l = 2. This should be compared to a

null expectation of 50 ± 6 paralogous pairs at l = 2 found
by randomizing the YPD network while keeping in- and
out-degrees [4]. Therefore at max 132-50 = 82 of the par-
alogous pairs are in the same hub due to their history of
common origin. This correspond to 82/581 ~15% of
duplicated proteins in YPD. The excess of 82 paralogous
pairs at distance 2 should also be compared to the total of
13554 protein pairs that the YPD network have at distance
l = 2. Thus only ~0.6% of all proteins pairs at l = 2 are
detectable paralogs.

As seen in our Additional file 1, we reach the same basic
conclusion of hubs being functionally isolated using a
completely different approach based on gene expression
data. Analyzing micro-array data from 482 stress experi-
ments from Saccharomyces Genome Database [27] and
managing the false discovery rate as in [28] we indeed find
localization of perturbations on our regulatory network.
Thus the appendix supports the robustness of our results
to an independent categorization of protein processes.
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