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Abstract

Background: The hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and
morphogenesis in a wide range of tissues, including epithelial cells, on binding to the receptor tyrosine
kinase c-Met. Abnormal c-Met signalling contributes to tumour genesis, in particular to the development
of invasive and metastatic phenotypes. The human microbial pathogen Helicobacter pylori can induce
chronic gastritis, peptic ulceration and more rarely, gastric adenocarcinoma. The H. pylori effector protein
cytotoxin associated gene A (CagA), which is translocated via a type IV secretion system (T4SS) into
epithelial cells, intracellularly modulates the c-Met receptor and promotes cellular processes leading to
cell scattering, which could contribute to the invasiveness of tumour cells. Using a logical modelling
framework, the presented work aims at analysing the c-Met signal transduction network and how it is
interfered by H. pylori infection, which might be of importance for tumour development.

Results: A logical model of HGF and H. pylori induced c-Met signal transduction is presented in this work.
The formalism of logical interaction hypergraphs (LIH) was used to construct the network model. The
molecular interactions included in the model were all assembled manually based on a careful meta-analysis
of published experimental results. Our model reveals the differences and commonalities of the response
of the network upon HGF and H. pylori induced c-Met signalling. As another important result, using the
formalism of minimal intervention sets, phospholipase Cyl (PLCyl) was identified as knockout target for
repressing the activation of the extracellular signal regulated kinase 1/2 (ERK1/2), a signalling molecule
directly linked to cell scattering in H. pylori infected cells. The model predicted only an effect on ERK1/2
for the H. pylori stimulus, but not for HGF treatment. This result could be confirmed experimentally in
MDCK cells using a specific pharmacological inhibitor against PLCyl. The in silico predictions for the
knockout of two other network components were also verified experimentally.

Conclusion: This work represents one of the first approaches in the direction of host-pathogen systems
biology aiming at deciphering signalling changes brought about by pathogenic bacteria. The suitability of
our network model is demonstrated by an in silico prediction of a relevant target against pathogen infection.
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Background

H. pylori is a highly successful micro-aerophilic spiral-
shaped bacterium that has colonized the gastric epithe-
lium of half of the human population [1,2]. H. pylori is a
major risk factor for peptic ulcer disease, gastric cancer
and gastric mucosa-associated lymphoid tissue (MALT)
lymphoma [3]. It was the first bacterial pathogen to be
classified as a class I carcinogen by the WHO. Gastric can-
cer remains the second deadliest cancer worldwide, which
makes H. pylori infection, also in light of growing bacterial
resistances to antibiotics, a significant global health prob-
lem [4].

H. pylori has evolved elaborate mechanisms to manipulate
host cells during infection. Following colonization of the
gastric epithelial apical surface and adhesion, various H.
pylori virulence factors interfere with signalling pathways
in gastric epithelial cells. The presence of a pathogenicity
island (cag PAI) in H. pylori is strongly associated with the
development of gastric diseases. The cag PAI encodes a
T4SS that mediates translocation of bacterial virulence
factors into the host cell [5]. The three major H. pylori vir-
ulence factors involved in bacterial-epithelial interactions
that are associated with an increased risk of severe gastri-
tis, gastric atrophy and/or gastric cancer, are the cag path-
ogenicity island (cag PAI), the vacuolating cytotoxin A
(VacA), and the blood group antigen-binding adhesionA2
(BabA2), which binds Lewis B on gastric epithelial cells
[3]. CagA, one of the main virulence factors of H. pylori,
also encoded in the PA], is translocated via the T4SS into
the host cell cytoplasm, where it modulates cellular func-
tions. Attachment of CagA-positive H. pylori induces cell
scattering in human gastric epithelial cells [6]. Cell scatter-
ing comprises cell spreading and elongation, and the cells
become motile. Therefore, cell scattering is one readout
for the motogenic response of H. pylori infected cells.
Recent studies have shown that CagA intracellularly mod-
ulates the receptor tyrosine kinase c-Met [6]. Binding of
the natural ligand HGF to c-Met stimulates mitogenesis,
motogenesis, and morphogenesis in epithelial cells [7].
Abnormal c-Met signalling has been strongly related to
tumour genesis, in particular to the development of inva-
sive and metastatic phenotypes [8]. Numerous experi-
ments indicate a particular role of HGF and the proto-
oncogene c-Met in tumour invasive growth [6]. It has been
shown that c-Met signalling induced by H. pylori leads to
the activation of ERK1/2 in AGS cells [6]. ERK1/2 activity
promotes cell scattering in a transcription independent
manner. It has also been shown that activation of ERK1/2
is critical for the induction of cell scattering in H. pylori-
infected epithelial cells [6], which could contribute to the
invasiveness of tumour cells. Therefore, blocking the acti-
vation of ERK1/2 represents a promising intervention goal
to prevent H. pylori induced signalling changes, which
could play a role for cancer metastasis.
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The induction of cell scattering by H. pylori in epithelial
cells, is an example how human microbial pathogens
modulate signal transduction in the cell by translocated
bacterial proteins. The presented work aims at translating
these complex interactions into a logical network model.

Signalling networks have not yet been modelled at a scale
comparable to metabolic and regulatory networks. More
than 500 members of the protein kinase superfamily of
enzymes alone are encoded in the human genome, which
allows for an enormous complexity of signalling. The
wealth of data generated, describing signalling networks
in molecular detail at a rapidly increasing rate makes the
reconstruction of such large networks a difficult task
[9,10]. The most often used formalism to model cellular
networks is kinetic analysis, which has been applied to
signalling networks of smaller size [11] or for modelling
single pathways [12]. A large scale reconstruction of sig-
nalling networks relying on kinetic data has not yet
appeared due to the lack of available kinetic data for the
interactions in the network. The data obtained by recent
Genomics and Proteomics high throughput technologies
are often only qualitative or semi-quantitative. Therefore,
qualitative (i.e. parameter-free) modelling seems to be the
only feasible approach at the moment to represent and
analyse large-scale signalling networks in a computer. A
functional analysis of the network structure already ena-
bles to address important issues, such as detection of net-
work-wide  interdependencies,  identification  of
intervention strategies and qualitative predictions on the
effect of perturbations.

In our view it would be invalid to try to construct a com-
plete network model of H. pylori infection due to the lim-
ited number of detailed information about the cellular
processes triggered by this pathogen. Thus, in contrast to
a H. pylori infection model, we explicitly only considered
the signal transduction events that directly arise from c-
Met-receptor-mediated signalling, which becomes modu-
lated by the H. pylori virulence factor CagA.

In order to construct a qualitative network model of c-Met
activation by HGF and H. pylori we used here a methodol-
ogy introduced previously [13,14] relying on logical inter-
action hypergraphs (LIH). Our model reveals the
differences and commonalities of the response of the net-
work upon HGF and H. pylori induced c-Met signalling.
Another goal of this study was to use the logical model to
generate in silico predictions and to verify these experi-
mentally. As one case study demonstrating the predictive
capabilities of our model, we determine suitable interven-
tions that prevent an activation of ERK1/2, because of the
above mentioned decisive role of ERK1/2 for cell scatter-
ing and tumour invasive growth.
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Results and Discussion

Logical modelling of signal transduction networks

For the reconstruction and qualitative analysis of the sig-
nal flow network we employ a logical modelling frame-
work (Boolean networks represented as logical interaction
hypergraphs) as introduced previously [13,14]. Boolean
network modelling for biological systems has so far
mainly been applied to the analysis of medium-scale reg-
ulatory networks [15-18]. In contrast to regulatory net-
works (whose behaviour is mainly determined by their
regulatory feedback loops), signalling networks are much
stronger structured in input, intermediate and output lay-
ers and the input signals usually govern the response of
the network. For this characteristic network topology we
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introduced logical interaction hypergraphs (LIHs) [13] as a
special representation of Boolean networks, which is well
suited to formalize, visualize and analyse logical models
of signal transduction networks. As in all Boolean net-
works, nodes in the network represent species (e.g.
kinases, adaptor molecules or transcription factors) each
having an associated logical state (in the binary case as
used herein only "on" (1) or "off" (0)) determining
whether the species is active (or present) or not. Signalling
events are encoded as Boolean operations on the network
nodes. For example, protein kinase C alpha (PKCa) can
be activated (gets "on", i.e. value 1) if the level of calcium
AND of diacylglycerol (DAG) is high, i.e. calcium and
DAG must be "on" to activate PKCa. (see connection 46 in
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Logical model of HGF and H. pylori induced c-Met signalling. Hyperarcs are numbered corresponding to the network

description in the text.
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Table I: Hyperarcs of the logical model

-> c-Met
-> HGF

-> H. pylori
-> PIP2

-> PTEN
ATF2 ->
a-catenin/B-catenin/E-cadherin ->
Calpain ->
c-Myc ->
Elkl ->
ETSI ->
NF-kB ->
Talin ->
c-jun ->
STAT3 ->

0l.) HGF-c-Met -> HGF/c-Met
02.) HGF/c-Met -> Gab|
03.) Gabl -> SHP2

04.) HGF/c-Met -> SHP2
05.) HGF/c-Met -> Grb2
06.) Gabl -> PI3K

07.) HGF/c-Met -> c-Cbl
08.) c-Cbl -> PI3K

09.) Gabl -> Crk/CrkL

10.) HGF/c-Met -> Shcl

I'1.) Shel -> Grb2

12.) c-Cbl -> Crk/CrkL

13.) Crk/CrkL -> DOCK 180
14.) DOCK180 -> Racl

15.) RACI -> STAT3

16.) HGF/c-Met -> STAT3
17.) PI3K -> ILK

18.) tPTEN-PI3K-PIP2 -> PIP3
19.) PIP3 -> PDKI

20.) PDKI“ILK -> AKTI

21.) AKTI -> RACI

22.) AKTI -> PAKI

23.) Racl -> PAKI

24.) Racl+Calmodulin -> IQGAP-I|
25.) PAKI -> MKK4

26.) MKK4 -> JNK

27.) JNK -> c-JUN

28.) JNK -> ELKI

29.) JNK -> ATF2

30.) PAKI -> IKK

31.) IKK -> IkBa

32.) !lxBo. -> NF-kB

33.) !ISHP2:Gab| -> RasGAP
34.) Grb2 -> SOSI

35.) 'RasGAP-SOS| -> Ras
36.) Ras -> Rafl

37.) Rafl -> MEK

38.) MEK -> ERK /2

39.) ERK1/2 -> ELKI

40.) ERK1/2 -> c-Myc

41.) ERK1/2 -> ETS

42.) Gabl -> PLCyl

43.) PLCyI-PIP2 -> IP3

44.) PLCyI-PIP2 -> DAG
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Figure 1). Usually, a node can be activated by more than
one signalling event, which are then OR-connected, e.g.
the MAPKKK Rafl becomes active if either Ras OR PKCa.
is active (Figure 1).

In general, in LIHs we make only use of the Boolean oper-
ators AND (-), OR (+), and NOT (!), which are sufficient
to represent any logical relationship. A signalling event in
a LIH is an AND connection of nodes (negation of node
values using the NOT operator are allowed) describing
one opportunity how the target species of this connection
can be activated. Hence, for the first example described
above we would write

DAG AND Ca2+ — PKCo or shorter DAG - Ca2+ — PKCa

In a graphical representation of the network (see PKCa
node in Figure 1), such an AND connection is displayed
as a hyperarc. In contrast to arcs in graphs, a hyperarc (in
hypergraphs) may have several start or end nodes. Clearly,
in some cases, only one species is involved in activating
another as in the case

Ras — Rafl.

In these special cases, the hyperarc is a simple arc as occur-
ring in graphs; we will nevertheless refer to it as a hyperarc.
As already pointed out, a species may be activated via sev-
eral distinct signalling events (hyperarcs), i.e. all these sig-
nalling events are OR-connected. This is illustrated by
Raf1, which can be activated via

Ras — Rafl OR PKCa — Rafl.

Accordingly, all the hyperarcs pointing into a species are
OR connected. In this way we can easily interpret Figure 1,
which displays graphically the interactions given in Table
1.

Once we have constructed an LIH, we may start to analyse
it. A typical scenario is that we apply a pattern of inputs to
the network and we would like to know how the nodes in
the network will respond to this stimulation. As explained
in [13], by propagating input signals along the logical
(hyperarc) connections (which is equivalent to compute
the logical steady state resulting from the input stimuli)
we obtain the qualitative response of the network. It
depends on the functionality of positive or negative feed-
back loops in the network whether we can resolve a com-
plete and unique logical response of all nodes for a given
set of input stimuli (for example, negative feedback loops
may prevent the existence of a logical steady state [13]).
Feedback loops are usually present in signalling networks,
however, one can often identify at least one connection in
each loop that becomes active at a later time-scale and
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Table I: Hyperarcs of the logical model (Continued)

45.) IP3 -> CaZ*

46.) DAG-Ca?* -> PKCa

47.) PKCa. -> Rafl

48.) Ca2* -> Calmodulin

49.) NIQGAP-1 -> a-catenin/B-catenin/E-cadherin
50.) c-SRC:-FYN-H. pylori -> CagA
51.) 'H. pylori -> CSK

52.) CagA -> CSK

53.) ICSK -> ¢-SRC

54.) ICSK -> FYN

55.) CagA -> Crk/CrkL

56.) CagA -> SHP2

57.) ISHP2 -> FAK

58.) FAK -> PIPKIy661

59.) PIPKIy661 -> Talin

60.) FAK-ERK /2 -> Calpain 2
61.) CagA-c-Met -> CagA/c-Met
62.) CagA/c-Met -> PLCyl

Exclamation mark denotes a logical NOT and dots within the equation

indicate AND operations.
does not play a significant role for the early signalling
events. Setting these late-event connections inactive, one
obtains an acyclic network for which always a unique net-
work response for a given set of inputs can be computed.
Using this technique, one can easily perform in silico
experiments, for example check how knockouts (or
knockins) alter the network response.

With the idea of minimal intervention sets (MISs,
[13,14]) one may even directly search for those interven-
tions that enforce a desired response (e.g. inactivation of
a transcription factor). As described by Klamt et al. [14],
MISs can be computed by testing systematically which
combinations of knockouts (KOs) and knockins (KIs) ful-
fil a specified intervention goal. One usually starts with
the single KOs and KIs: one clamps the logical value (0 or
1, respectively) of the respective node, computes the
resulting logical steady state (as explained above) and ver-
ifies whether the intervention goal is achieved. All those
KOs and KIs, that were not successful are then combined
in pairs which may lead to some MISs of size two. Then all
combinations with 3 interventions (that are not a superset
of the MISs of size one or two) are tested and so forth.
Obviously, especially computing the MISs of higher cardi-
nality becomes a highly combinatorial problem and one
usually restricts oneself to the low cardinality MISs. There
are also some heuristics that can be used to accelerate the
computation [14].

Another advantage of LIHs is, that we can easily derive the
(signed and directed) interaction graph underlying the
logical model: we only have to split hyperarcs with two or
more start nodes (i.e. the AND connections) into simple
arcs. Interaction graphs cannot be used to give on/off pre-
dictions, however, they provide an appropriate formalism

http://www.biomedcentral.com/1752-0509/2/4

to search for signalling paths and feedback loops. Another
useful feature that can be extracted from interaction
graphs is the dependency matrix as introduced in [13,14]
which displays network-wide interdependencies between
all pairs of species. For example, a species A is an activator
(inhibitor) of another species B, if at least one path leads
from A to B and if all those paths are positive (negative).
This kind of information can be very useful for predicting
effects of perturbations.

The model studied in this work was implemented in and
analysed with CellNetAnalyzer, a comprehensive toolbox
for functional analysis of cellular networks [14].

Logical network of HGF and H. pylori triggered c-Met
signal transduction

The logical network of HGF and H. pylori induced c-Met
signal transduction was constructed as a bottom up
approach. We restricted our network model explicitly to
the signal transduction events that arise from stimulation
or modulation of the c-Met receptor. Other virulence fac-
tors of H. pylori than CagA that target different receptors of
the host epithelial cell are therefore not included in the
model. The modeling objective was to construct a logical
network model that is capable to predict qualitatively how
CagA modulates the c-Met receptor, and to compare HGF
versus CagA induced c-Met signal transduction. Only
accurate and well-defined interactions were included in
the model. The molecular interactions were all assembled
manually by extensive use of literature search engines and
databases (see Methods). Only data obtained from epithe-
lial cell lines were considered for the model. The data were
subjected to a careful meta-analysis; only data that were
consistent with the current knowledge and did not inter-
fere with recent publications were taken.

Activation of the c-Met receptor by its endogenous ligand
HGF leads to autophosphorylation of specific tyrosine res-
idues in its cytoplasmic domain within the intracellular
activation loop (Y1234 and Y1235) resulting in an activa-
tion of the intrinsic kinase activity. Subsequently, a multi-
functional signal transducer docking site is formed by
phosphorylation of Y1349 and Y1356 [19]. This docking
site recruits intracellular adapters via Src homology-2
domains (SH2), phosphotyrosine binding domains (PTB)
and Met binding domains (MBD).

Recent studies have shown that infection of gastric epithe-
lial cells by the bacterial pathogen H. pylori targets the c-
Met receptor and provokes some c-Met-related cellular
responses [6]. This includes especially the enhancement
of cell scattering, which is mainly mediated by the bacte-
rial virulence factor CagA, translocated during infection
via a T4SS into gastric epithelial cells.
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In the following, the biochemical steps included in the
logical model will be described briefly. The numbering
corresponds to the hyperarcs in Figure 1 and Table 1.

1. HGF is the natural ligand of c-Met. Upon ligand bind-
ing, c-Met undergoes autophosphorylation of specific
tyrosine residues within the intracellular region. Phos-
phorylation of Y1230, Y1234 and Y1235 located within
the activation loop of the tyrosine kinase domain activates
the intrinsic kinase activity of c-Met [19].

2. Gab1 is subsequently recruited to activated c-Met by
direct binding to the tyrosine phosphate residues Y1349
and Y1356 of the receptor [20].

3.-7. The c-Met/Gab1 complex forms a multivalent bind-
ing site for a number of downstream molecules, including

SHP2, PI3K, Grb2.

3. Fusion of Gab1 with c-Met induces tyrosine phosphor-
ylation and interaction with SHP2 [21].

4. Activated c-Met also interacts with SHP2 independently
of Gab1 [22].

5. The adaptor protein Grb2 binds to the Y1356 docking
site of c-Met [23].

6. c-Met associates withPI3K via Gab1 [23,24].

7. c-Cbl is a substrate of the activated tyrosine kinase
receptor c-Met [25].

8. PI3K can also be activated by c-Cbl [26].
9. Gab1 interacts with Crk and CrkL, two proteins with
SH2 and SH3 protein interaction domains. This interac-

tion is mediated via the SH2 domains [27].

10. The c-Met receptor associates with the Shcl adaptor,
via the SH2 domain [28].

11. Grb2 binds to Shc via its SH2-domain [29].

12. Phosphorylated c-Cbl interacts with the SH2 domain
of Crk/CrkL [25].

13. Activated Crk/CrkL recruits DOCK180 through its
SH3 domain [30].

14. DOCK180 binds and activates Racl [31].

15. Racl directly binds and phosphorylates the transcrip-
tion factor STAT3 [32].

http://www.biomedcentral.com/1752-0509/2/4

16. Activated c-Met directly phosphorylates STAT3 [33].
17. PI3K activates ILK [34].

18. PI3K converts the plasma membranelipid PIP2 to
PIP3 [35]. The phosphatase PTEN selectively removes the
3-phosphate of PIP3 to regenerate PIP2, counteracting
PI3K activity [36].

19. PDK1 is a key PIP3-binding protein [37].

20. Aktl is subsequently activated by PDK1 and ILK
[34,38].

21. Aktl phosphorylates a single serine residue of Racl
[39].

22. Akt1 activates PAK1 [40].

23. Activation of Racl leads to the activation of PAK1
[39,41].

24. Racl interacts with IQGAP-1, thereby crosslinking
actin filaments. Under these conditions IQGAP-1 does
not bind to B-catenin and cannot dissociate a-catenin
from the cadherin-catenin complex, leading to strong
adhesion. When Racl is not active, activated Calmodulin
allows IQGAP-1 to interact with B-catenin to dissociate o.-
catenin from the cadherin-catenin complex [42].

25.,26. PAK1 stimulates JNK activity through a MAP
kinase regulatory cascade. PAK1 regulates the activity of
an unknown MAP kinase kinase kinase, which controls
activity of MKK4. We used a dotted hyperarc between
PAK1 and MKK4 to indicate an unknown compound that
links PAK1 to MKK4 [43].

27.JNK phophorylates the transcription factor c-Jun [44].
28. JNK phosphorylates the transcription factor Elk1 [45].
29. JNK phosphorylates ATF2 on Thr-69 and Thr-71 [46].

30.-32. HGF activates NF-kB through an Aktl -> PAK1
pathway [40]. PAK1 is required for the activation of NF-kB
by activating the IKK complex through an unknown
kinase. The hyperarc connecting PAK1 and IKK is there-
fore also shown as unknown link. IxBa is phophorylated
by the IKK complex and undergoes ubiquitin-mediated
degradation, allowing nuclear translocation of NF-xB
[40].

33. Gabl1 interacts with RasGAP SH2 domains, only under
conditions when SHP2 is not activated. SHP2 downregu-
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lates RasGAP by dephosphorylating RasGAP binding sites
on Gab1 [47,48].

34. Grb2 forms a complex with SOS1 and recruits it to the
plasma membrane [49].

35. SOS1 is an exchange factor and activator of Ras, which
is downregulated by RasGAP [50].

36.-38. Activated Ras activates the Rafl kinase, which in
turn activates the MAP kinase MEK. MEK activation leads
to ERK1/2 activation [51,52]. Ras proteins activate at least
three families of downstream effector signalling path-
ways, involving Raf kinases, phosphatidylinositol 3 (PI
3)-kinase, and Ral-specific guanine nucleotide exchange
factors (Ral-GEFs) [53]. PI3K is also a downstream com-
ponent of the adaptor Gab1, as such it is included in our
model. We did not include the Ras/PI3K/PIP3 and the
Ras/Ral-GEF/Ral pathways, because they are not described
in the context of c-Met signaling. For our model, we there-
fore only considered the Ras-Raf-MEK-ERK pathway.

39. ERK1/2 phosphorylates Elk1 on its C-terminal activa-
tion domain [54].

40. ERK1/2 phosphorylates and stabilizes c-Myc [55].
41. ERK1/2 phosphorylates ETS1 [56].
42. Phosphorylated Gab1 recruits PLCy1 [57].

43.,44. PLCy1 hydrolyses PIP2 to produce IP3 and DAG
[58].

45. IP3 raises the Calcium level by opening Ca2+-channels
[59].

46. The activation of PKCa. is Ca2+-dependent. Provided a
high Ca?+-level, DAG binds to and activates PKCa
[59,60].

47. PKCa promotes activation of Rafl by direct phospho-
rylation [61,62].

48. Calmodulin is a Ca2+-receptor protein and is regulated
by the Ca2+-level [63].

49. IQGAP-1 is a regulator of E-cadherin mediated cell-
cell adhesion. When Racl is not active, activated Calmod-
ulin allows IQGAP-1 to interact with p-catenin to dissoci-
ate o-catenin from the cadherin-catenin complex. This
leads to a reduction of cell-cell adhesions [42,64,65].

50. Attached H. pylori translocates CagA via T4SS [66].
Upon membrane localization translocated CagA under-

http://www.biomedcentral.com/1752-0509/2/4

goes subsequent tyrosine phosphorylation by c¢-Src and
Fyn [67]. Thus the node CagA in the logical network cor-
responds to phosphorylated CagA.

51. Whereas resting host cells are characterized by almost
inactive Src kinases due to phosphorylation of their regu-
latory loops by C-terminal Src kinase (CSK), it is known
that H. pylori can transiently activate src family kinases by
an unknown mechanism, which is figuratively shown as
an inactivation of CSK [68].

52.-54. Nascently phosphorylated CagA activates CSK and
thereby leads to a subsequent inactivation of ¢-Src and Fyn
[69]. As the activation of CSK via CagA occurs significantly
later than the activation of other downstream events in
the network, we set the time scale parameter of connec-
tion 52 on 2. Experimental data presented by Tsutsumi et
al. in 2003 [69] provide the basis for setting up two time
scale scenarios. In the early events the translocated CagA
protein undergoes tyrosine phophorylation by Src family
kinases (see step 51). In the later events tyrosine phopho-
rylated CagA binds and activates CSK, which in turn phos-
phorylates and inactivates Src family kinases. The
phosphorylation of CagA has to occur at an earlier time-
point, because CagA-CSK interaction involves the SH2-
domain of CSK and is strictly dependent on CagA tyrosine
phophorylation [69]. CSK then works as a negative regu-
lator of CagA-Shp2 signalling, because the inactivated Src
family kinases lead to a down-regulation of the levels of
CagA phophorylation and subsequent diminished CagA-
Shp2 complex formation.

In 2002 Mimuro et al. published data, that suggested that
CagA could interact with Grb2 and thereby activate Ras-
Raf-Mek-ERK [70]. This observation was clearly contra-
dicted later by other groups. The groups of Hatakeyama
[71] and Naumann [6] were not able to reproduce the
published results of Mimuro et al.. In light of these results
and after careful evaluation of the available data we
decided not to include the direct interaction between
CagA and Grb2 in our network model.

55. Phosphorylated CagA directly binds to the adaptor
proteins Crk and CrkL [72].

56. Phosphorylated CagA binds and activates SHP2 [73].

57. SHP2 inactivates FAK by dephosphorylation and
thereby induces/enhances cell scattering [74].

58. FAK phosphorylates PIPKIy661 [75].

59. Tyrosine phosphorylated PIPKIy661 associates with
Talin [75].
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60. FAK physically associates with Calpain2 and spatially
couples it to its upstream regulator ERK1/2 [76].

61. CagA intracellularly interacts with phosphorylated c-
Met [6].

62. In contrast to HGF activated c-Met, CagA replaces
Gab1 and/or Grb2 and leads to PLCy1 activation [6].

The model was built on the current understanding of the
biochemical processes involved in HGF and H. pylori
induced c-Met signal transduction and iteratively
improved by validation with published experimental
results. If the proposed model failed to reproduce the
experimental results, it was modified accordingly.

In total, the network model contains 54 species and 62
hyperarcs (plus 15 input and output arcs). The set of
nodes includes 5 input elements (HGF and H. pylori as the
events starting the signalling cascade, PTEN as externally
regulated signal and PIP2 and c-Met as externally pro-
vided constituents that are always present in the cell) and
10 elements in the output layer (among these the seven
transcription factors STAT3, ATF2, Elkl, cJun, c-Myc,
ETS1, NF-«B).

Network analysis: induction of the signalling cascades by
HGF and by H. pylori

We first analysed the interaction graph underlying the log-
ical network. Two (negative) feedback loops can be found
in the network regulating CagA phosphorylation by src
family kinases. These loops, however, are not active dur-
ing the early events because both feedback loops involve
connection 52 (CagA — CSK) having a time-scale param-
eter of 2. The computation of signalling paths revealed
that 86 paths connect the input node HGF with one of the
output nodes, whereas H. pylori may influence the ouput
nodes only via 63 signalling paths (but every output node
can still be reached). Below we will discuss the reason for
this difference in the number of signalling paths and show
what the consequences of this reduced flexibility is.

The dependency matrix of the interaction graph (com-
puted for time scale 1, Figure 2) displays all functional
dependencies between each pair of species. In the follow-
ing we discuss some of these dependencies. HGF is an acti-
vator for the transcription factors STAT3, ATF2, ¢-Jun and
NF-«B, i.e. there are only positive paths from HGF to these
nodes which can thus only mediate activating effects. In
contrast, HGF is an ambivalent factor for ERK1/2 and its
downstream effectors Elk1, c-Myc and ETS1, i.e. there is at
least one inhibiting and one activating path emanating
from HGF to these species. The reason is that HGF has a
positive effect on ERK1/2 via Grb2-Sos1-Ras-Raf1-MEK
but does also signal through RasGAP, which has an inhib-

http://www.biomedcentral.com/1752-0509/2/4

itory effect on Ras and therefore on the MAP kinase cas-
cade. However, we notice that the activity of RasGAP on
the other hand is downregulated by SHP2 so that the
above pathway running over Ras is functional. In contrast
to HGF, H. pylori is an activator for all seven transcription
factors because ERK1/2 cannot be activated via Grb2-
Sos1-Ras-Raf1-MEK- and therefore only through the posi-
tive pathway PKCa-Raf1-MEK-ERK1/2 (the latter is also
functional with HGF). Another example for coexisting
positive and negative effects is the a-catenin/f3-catenin/E-
cadherin-complex, for which both H. pylori and HGF are
ambivalent factors, because they signal through Racl,
which has an inhibitory effect on IQGAP-1, and via cal-
modulin with a positive effect.

We then used the logical model to compute the response
of the network (i) when the network is triggered with HGF
(Figure 3; H. pylori stimulation is off) and (ii) when c-Met
is stimulated by H. pylori (Figure 4; HGF = 0), both for the
early events (connection 52 is off).

Interestingly, the resulting on/off states for the output
nodes are identical for both triggers, but the signalling
pathways that lead to these differ significantly (Figures 3
and 4). The main cause for these differences lies in the fact
that H. pylori modulates the c-Met receptor by translocat-
ing CagA, which replaces adaptor molecules like Gabl
and Grb2 at the c-Met receptor and leads to PLCy1 activa-
tion [6]. Therefore, signalling events, including the whole
PI3K pathway, that originate from the c-Met/Gab1 bind-
ing site in the HGF stimulated network are thus not
included in the H. pylori triggered network. That is also the
reason why the number of paths connecting H. pylori with
the output layer is lower compared to the HGF case.

Target identification: deactivation of ERKI/2

To evaluate the usefulness and robustness of our model
for the generation of in silico predictions, deactivation of
ERK1/2 in the H. pylori triggered network was defined as
an intervention goal having biomedical relevance. In silico
identified targets would provide clues for anti-cancer ther-
apies, as prevention of ERK1/2 activation would have an
impact on cell scattering and thus invasiveness of tumour
cells [6].

A strong feature of CellNetAnalyzer (CNA) is the possibil-
ity to compute minimal intervention sets (MISs). This
function can be used to predict targets for knockouts (or
possibly knockins) that lead to a desired response defined
by an intervention goal. Accordingly, ERK1/2 repression
(i.e. a logical level of 0) was defined as intervention goal
and H. pylori input was set to 1 and HGF input set to 0.
When searching only for single interventions (i.e. the car-
dinality of the intervention sets was restricted to 1), CNA
calculated 15 minimal intervention sets each proposing
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Dependency matrix. The dependency matrix displays network-wide interdependencies in the logical model. The colour of
matrix element m; defines the type of the impact of element i on j (green: (strong) activator; red: (strong) inhibitor, yellow:

ambivalent factor; black: no effect (see [13])).

one knockout target (H. pylori, c-Met, CagA/c-Met, CagA,
c-Src, Fyn, PLCy1, PIP2, IP3, CaZ+, DAG, PKCa, ERK1/2,
MEK, Raf1l). When HGF was the stimulus (H. pylori input
was set to 0 and HGF input set to 1), CNA finds only 6
knockout targets for ERK1/2 repression (HGF, c-Met,
HGF/c-Met, ERK1/2, MEK, Raf1).

By comparing the MISs for the two scenarios ((i) stimula-
tion with H. pylori and (ii) stimulation with HGF) we can
identify targets, that imply a deactivation of ERK1/2 for
scenario (i) but not for (ii). Among those we chose PLCy1
for further evaluation.

Figures 5 and 6 show the computed network response for
the in silico knockouts of PLCy1 for H. pylori and HGF

stimulation, respectively. In agreement with the com-
puted MISs, ERK1/2 is deactivated in the case of H. pylori
stimulation (Figure 6), but is still activated in the case of
HGF activation (Figure 5), demonstrating the different
response of the network for the two stimuli. Our model
shows that the knockout of PLCy1 can be bypassed via
Grb2 - SOS1 - Ras - Rafl - MEK in the case of HGF stim-
ulation. Next we wanted to verify this prediction experi-
mentally. Apart from PLCy1, we also selected PI3K (no
qualitative effect on ERK1/2 in both scenarios) and MEK
(which is, for both cases, a MIS for deactivating ERK1/2)
as two further knockout candidates to be tested in experi-
ments.
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Figure 3

HGF triggered signalling network (screenshot of CellNetAnalyzer). Each species and each hyperarc has an associated
text box displaying a logical value. Blue boxes indicate clamped (fixed) values prior computing the logical steady state (i.e. the
network response). Green boxes ("on") indicate an active species or activating signal flow, respectively. Red boxes ("off") indi-
cate inactive (or absent) species or, in the case of hyperarcs, connections along which no activation of the end species of the

hyperarc takes place.

Experimental validation of the predicted results from the
model

MDCK cells were used as a model system for the epithelial
cells of the human gastric mucosa. The cells were stimu-
lated with HGF or infected with H. pylori and the effect on
ERK1/2 phosphorylation was evaluated via Western Blot
analysis after cell lysis using anti-ERK1/2 and phospho-
specific ERK1/2 antibodies. As shown in Figure 7a, ERK1/
2 was activated after stimulation of the cells with HGF, as
well as after infection with H. pylori, as demonstrated by
the Western Blot analysis.

We then repeated the above experiments with different
specific inhibitors to inhibit MEK, PI3K and PLCy1. When

treating the cells with the pharmacological inhibitor
PD98059, which specifically inhibits MEK, our experi-
mental results clearly indicated that ERK1/2 phophoryla-
tion was effectively reduced in the case of HGF
stimulation as well as after infection with H. pylori (Figure
7b). This corresponds to what we expect since MEK is the
only upstream effector of ERK1/2 in our model.

Inhibition of PI3K using the specific inhibitor LY294002
had no effect on ERK1/2 phosphorylation for both stim-
uli, again in agreement with the model prediction.

For the inhibition of PLCy1 we used the specific inhibitor

U73122. The Western Blot analysis could show that in the
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H. pylori stimulated network. See also legend of Figure 3.

case of HGF stimulation, ERK1/2 activation was similar
strong as in the untreated cells, but in the case of H. pylori
infection ERK1/2 phophorylation was strongly reduced
(Figure 7b). This result confirms the prediction of the in
silico knockout of PLCy1 in the logical model, which pre-
dicted no effect in the case of HGF simulation and a sup-
pressive effect in the case of H. pylori infection (Figures 5
and 6).

Conclusion

A logical model of HGF- and H. pylori induced c-Met sig-
nal transduction was presented. We used the formalism of
logical interaction hypergraphs for network representa-
tion and analysis and it turned out that this qualitative
approach is suitable for analysing a number of important
aspects in this signalling network.

In a case study we could demonstrate the capability of the
model to identify targets for ERK1/2 deactivation using
the formalism of minimal intervention sets. Three net-
work species (PI3K, MEK and PLCy1) were chosen for in
silico knockout. The effects on ERK1/2 activity predicted
from the model for both HGF and H. pylori stimulus could
all be confirmed by experimental results in MDCK cell
culture, demonstrating the suitability of our logical model
to generate in silico predictions for the effect of certain
knockouts of species. This approach can also be used for
the in silico identification of new targets against pathogen
infection, as demonstrated here by the identification of
PLCy1 as a target for ERK1/2 deactivation. Inhibition of
PLCy1 prevents H. pylori induced cell scattering, providing
a possible intervention strategy against invasive gastric
cancer.
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In silico knockout of PLCyl in the HGF stimulated signalling network. A knockout of PLCy| does not influence the
ERK /2 pathway in the HGF stimulated network, ERK1/2 is still active. Regarding the text box colors see figure 3.

As a major finding, our work shows that PLCy1 represents
a key factor in H. pylori-induced ERK activation. Further,
the identification of PLCy1 as a target for inactivation of
ERK could also have therapeutic implications. Inhibition
of ERK1/2, which is critically important for the induction
of cell scattering in H. pylori-infected epithelial cells, could
represent a target for the treatment of invasive stomach
cancers caused by H. pylori infection.

In the light of our observation, that the activation of ERK
by growth factor induced c-Met signalling is not influ-
enced by a PLCy1 inhibition, the use of specific pharma-
ceutical inhibitors for PLCyl might thus represent a
promising therapeutic strategy to prevent the pathogenic
effects in H. pylori infection. Furthermore, H. pylori eradi-
cation therapy however is complicated by increasing glo-
bal antibiotic resistance in the pathogen. Understanding

of important epithelial signal transduction pathways (e.g.
c-Met) modulated by H. pylori could delineate potential
chemopreventative agents to target oncogenic pathways.
Therefore, our study discovered PLCyl as a potential
novel therapeutic target that has the advantage that the
microorganism can hardly develop resistances.

This work represents one of the first approaches in the
direction of host-pathogen systems biology and is a first
step to decipher signalling changes brought about by
pathogenic bacteria. The need for the identification of
new targets in treating pathogen infection in light of the
growing emergence of resistance against antibiotics is a
formidable task for the discovery of novel anti-infectives.
In this context host-pathogen systems biology can provide
highly relevant clues, not only for the elucidation how the
pathogen captures the host signalling mechanisms, but
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In silico knockout of PLCyl in the H. pylori stimulated network. In contrast to the HGF activated network scenario,
knockout of PLCyl in the H. pylori stimulated network leads to deactivation of ERK/2. Regarding the text box colors see fig-

ure 3.

also for the identification of novel targets for therapeutic
interventions.

In our future work, the presented logical network will be
systematically extended. This includes in particular the
incorporation of relevant processes related to the cytoskel-
eton, tight junctions and adherence junctions. The three
output nodes o-catenin/B-catenin/E-cadherin, Talin and
Calpain2 represent starting points for this future work.

Methods

Model generation, data collection and meta-analysis
Literature mining for the assembling of the biochemical
data for the construction of the network model was done
using databases for protein-protein interaction data and
by manually searching the published literature in the rel-

evant fields through Pubmed. We used two comprehen-
sive, manually literature-curated databases on human
protein-protein interaction, the Human Protein Reference
Database (HPRD.org) [77] and IntAct [78]. For a query
usually the protein name or the gene name respectively
was used and the obtained hits were all evaluated manu-
ally by checking the primary literature.

Published data were evaluated carefully and only
approved results, which are not contradicted by recently
published data, were incorporated into the model. Only
results obtained from epithelial cell cultures were consid-
ered for the model. This meta-analysis of the utilized
experimental data included evaluation of all the primary
data and published figures. Only data that were consistent
and in agreement with the current knowledge were taken.
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Figure 7

Differential regulation of ERK1/2 activity in response
to stimulation with HGF and H. pylori infection. a)
MDCK cells were infected with H. pylori or stimulated with
HGF as indicated, or left untreated. Total cell lysates were
subjected to SDS-PAGE and immunoblotted. The basal level
of ERK was used as load control. b) MDCK epithelial cells
were pretreated with pharmacological inhibitors of PI3K
(LY294002), MEK (PD98059) or PLCyl (U73122) and
infected with H. pylori or activated by HGF. The basal level of
ERK was used as load control. Western blot analysis shows
that inhibition of PI3K has no effect on ERK1/2 activation.
Treatment of the cells with MEK inhibitor blocks ERK /2
activation by H. pylori and HGF. Inhibition of PLCy| blocks
ERK /2 activation in H. pylori transfected cells, but not in
HGF activated cells.

Building and analysing the network model using
CellNetAnalyzer

The logical network model (Table 1 and Figure 1) was
implemented and analyzed with CellNetAnalyzer
[13,14,79]. The network diagram was drawn using the
CellDesigner Software (Version 3.5, The Systems Biology
Institute, Tokyo, Japan) and then exported as an image file
to CellNetAnalyzer.

http://www.biomedcentral.com/1752-0509/2/4

Experimental part: materials and methods

Cell stimulation, and H. pylori infection

MDCK (Madin-Darby Canine Kidney) cells were grown in
RPMI 1640 medium containing 4 mM glutamin (Invitro-
gen), 100 U ml! penicillin, 100 pg ml-! streptomycin, and
10% FCS (Invitrogen) in a humidified 5% CO, atmos-
phere at 37°C. The cells were seeded in tissue culture
plates for 48 h before infection. 16 h before infection, the
medium was replaced by fresh RPMI 1640 without serum.

H. pylori wild-type strain P1 [6] was cultured on agar
plates containing 10% horse serum under microaer-
ophilic conditions at 37°C for 48 h. For the infection, bac-
teria were harvested in PBS, pH 7.4, and added to the host
cells at a multiplicity of infection of 100.

The cells were infected with H. pylori, or were treated with
50 ng/ml HGF (Calbiochem). Pharmacological inhibitors
for the inhibition of MEK (PD98059, 50 uM, Calbio-
chem), PLCy1 (U73122, 5 uM, Calbiochem), and PI3K
(LY294002, 25 uM, Calbiochem) were added to the cells
30 min before stimulation with HGF, or infection with H.

pylori.

Cell lysis and Western Blots

For Western Blot analysis, MDCK cells were harvested at
different time points after infection, and stimulation with
HGEF respectively, in lysis buffer (50 mM Tris-HCI, pH 7.5,
5 mM EDTA, 100 mM NaCl, 1% Triton X-100, and 10%
glycerol) containing 2 mM Na;VO,, 1 mM PMSF, 1 mg/
ml aprotinin, and 1 mg/ml pepstatin. Total cell lysates
were subjected to SDS-PAGE and immunoblotting.
Immunoblots were developed using enhanced chemilu-
minescence (ECL, Amersham Biosciences). Antibodies
used in this work were anti-ERK 2 (K-23) (Santa Cruz Bio-
technology), and phospho-p44/p42 MAPK (Thr202/
Tyr204) antibody (Cell Signaling). The secondary anti-
body used was HRP conjugated anti-rabbit (Dianova).

Abbreviations
AKT1 Protein kinase B

ATF2 activating transcription factor 2
Ca?* Calcium-lons
CagA cytotoxine-associated gene A

c-Cbl Cas-Br-M (murine) ecotropic retroviral transform-
ing sequence

¢-JUN v-jun sarcoma virus 17 oncogene homolog
c-Met met proto-oncogene (hepatocyte growth factor

receptor)
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c-Met/HGF Complex

c-Myc avian myelocytomatosis virus oncogene cellular
homolog

CNA CellNetAnalyzer
Crk/CrkL v-crk sarcoma virus CT10 oncogene homolog
CSK c-src tyrosine kinase

¢-SRC v-src sarcoma (Schmidt-Ruppin A-2) viral onco-
gene homolog

DAG Diacylglycerol

DOCK180 dedicator of cytokinesis 1

ELK1 member of ETS oncogene family

ERK1/2 extracellular signal-regulated kinase 1/2
ETS E26-AMV virus oncogene cellular homolog
FAK focal adhesion kinase

FYN FYN oncogene related to SRC, FGR, YES
Gab1 GRB2-associated binding protein 1

Grb2 growth factor receptor-bound protein 2

H. pylori Helicobacter pylori

HGF Hepatocyte growth factor

IkBa Inhibitor of kBa

IKK IxB kinase

ILK Integrin-linked kinase

IP3 Inositol-1,4,5-triphosphat

IQGAP-1 IQ motif containing GTPase activating protein 1
JNK c-Jun kinase

MEK mitogen-activated protein kinase kinase 1
MKK4 Mitogen-activated protein kinase kinase 4
NF-kB Nuclear factor kB

PAK1 p21-activated kinase 1
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PDK1 3-Phosphoinositide-dependent protein kinase-1

PI3K phosphoinositide-3-kinase, regulatory subunit 1
(p85 alpha)

PIP2 Phosphatidylinositol-4,5-bisphosphat
PIP3 Phosphatidylinositol (3,4,5) trisphosphate

PIPKIy661 type I phosphatidylinositol phosphate kinase
isoform-y661

PKCalpha protein kinase C alpha

PLCy1 phospholipase C gamma 1

PTEN Phosphatase and tensin homolog

RACI ras-related C3 botulinum toxin substrate

Rafl v-raf-1 murine leukemia viral oncogene homolog 1
RasGAP Ras GTPase activating protein

Shcl SHC (Src homology 2 domain containing) trans-
forming protein 1

SHP2 SH2 containing protein tyrosine phosphatase 2
SOS1 son of sevenless homolog 1
STAT3 signal transducer and activator of transcription 3
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