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Abstract
Background: Several approaches, including metabolic control analysis (MCA), flux balance
analysis (FBA), correlation metric construction (CMC), and biochemical circuit theory (BCT), have
been developed for the quantitative analysis of complex biochemical networks. Here, we present
a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS) biochemical
reaction networks that unites these disparate approaches in a common mathematical framework
and thermodynamic basis.

Results: In this theory a number of relationships between key matrices are introduced: the matrix
A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed
as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and
chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical
potentials can be written in terms of RTBS and STBS respectively where matrix B is the inverse
of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central
role in CMC.

Conclusion: One key finding that emerges from this analysis is that the well-known summation
theorems in MCA take different forms depending on whether metabolic steady-state is maintained
by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a
biochemical pathway, they are the steps with smallest biochemical conductances and largest flux
control-coefficients. We hypothesize that biochemical networks for cellular signaling have a
different strategy for minimizing energy waste and being efficient than do biochemical networks for
biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems
analysis (BSA).

Background
Developing methodologies for quantitative analysis, both
experimental and mathematical, of complex biochemical
networks has become one of the central themes of post-
genomic biochemistry and mathematical biology. Several

disparate approaches, including metabolic control analy-
sis (MCA) [1,2], flux balance analysis (FBA) [3,4], and cor-
relation metric construction (CMC) [5,6], share many
commonalities. The objective of this work is to provide a
unifying mathematical framework and a thermodynamic
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basis for these approaches. The thermodynamic basis is
the nonequilibrium steady-state (NESS) theory [7,8] orig-
inally developed to describe macromolecular, free-energy
transduction [9-13], and the mathematical methods are
based on linear analysis near a NESS.

The physical concept of a NESS (also known simply as a
steady-state in the MCA community) applies to that of a
driven system, such as a living organism, with a constant
flow of matter (transforming nutrients to waste) through
the system and a corresponding dissipation of free energy
[9]. Even though a NESS looks remarkably similar to a
thermodynamic equilibrium, in that chemical concentra-
tions reach stationary values, the concentrations are main-
tained constant in a NESS by balancing influxes and
effuxes, rather than by balancing the forward and back-
ward fluxes of each elementary reaction as in thermody-
namic equilibrium. To an observer concerned only with
the chemical concentrations, a NESS would seem to be a
true equilibrium; but, in fact, it represents a pseudo-equi-
librium, where the work done to drive the system appears
as heat, and deserves further consideration [9].

We distinguish between two types of linear analysis: (i)
linear stability analysis [14], and (ii) control analysis (or
sensitivity analysis) that addresses how the steady-state
shifts in response to certain perturbations to the system.
These perturbations may be deterministic–leading to
MCA–or stochastic–leading to CMC. As expected, the
matrix A obtained in linear stability analysis, the flux con-
trol-coefficient matrix C in MCA, the stoichiometric
matrix S of FBA, and the correlation matrix R from CMC
are intimately related. We develop the relationships in the
context of complex biochemical networks and their NESS
thermodynamics. We show that all the key matrices in
MCA and CMC can be computed if one knows the fluxes,
chemical potential differences, and the stoichiometric
matrix.

The theoretical concept of a NESS provides valuable math-
ematical and thermodynamic properties. Although many
of the approaches mentioned above have provided a
mathematical treatment of NESS, many have never explic-
itly taken the related thermodynamics into account. The
key insight is to consider concentrations as measures of
potentials, providing a relationship between potential dif-
ferences (voltages), fluxes (currents), and resistances. It
becomes immediately clear that the resistances are related
to reaction effectors, such as the expression levels of
enzymes, that affect both the forward and backward fluxes
of a given reaction, but do not change the chemical poten-
tial difference. It is this thermodynamic perspective of a
NESS that can be used to develop a comprehensive theory
that unites these approaches.

In the context of the newly developed biochemical circuit
theory (BCT) [15,16], the flux J of each metabolic reaction
in a NESS metabolic network is decomposed into J = φ+ -
φ- and the chemical potential difference of the reaction in
the NESS is Δμ = kBT ln(φ-/φ+), where kB is Boltzmann's
constant and T is absolute temperature. Therefore, know-
ing the chemical potential difference and the flux of a
reaction gives

Furthermore, if the standard-state free energy of reaction

Δμo is known from equilibrium thermodynamics, then

 determines the ratio of the metabolites'
concentrations, products to reactants, in NESS.

In many theoretical approaches, metabolic networks and
signaling pathways are often separated into disparate
mechanisms with only peripheral interactions. This is far
from reality, however, as these mechanisms are intimately
intertwined and often indistinguishable. For example, in
whole-body metabolism, glucose and fatty acids serve as
the fuel for cellular metabolism, but also as signals for
insulin secretion in pancreatic β-cells and ketogenesis in
hepatocytes, where cellular organelles, such as mitochon-
dria, play a key role in the handshake between metabo-
lism and signaling. Ultimately, our goal is to understand
how these cellular systems behave in response to stress
and disease [17]. It is in applying the unified mathemati-
cal framework that includes the thermodynamic perspec-
tive to these processes that we believe the most significant
contributions will be made.

In application, the concepts presented here allows one
who has the stoichiometric matrix, S, and measures the
correlation matrix, R, to obtain the control coefficients,
and vice versa (Table 1). Furthermore, by incorporating
the thermodynamic aspect, one is able to take full advan-
tage of the thermodynamic properties, such as standard
free energies of formation, which are typically more com-
plete, more consistent, and more well analyzed than the
kinetic information [17]. This is advantageous in a field
where the availability of kinetic parameters is a limiting
factor. However, available data remains incomplete, and
missing thermodynamic and kinetic data must continu-
ally be obtained [17].

Basic kinetic equations for biochemical networks

Let us consider a network of M biochemical reactions
involving N biochemical species Xi (i = 1, 2, ..., N). The jth

biochemical reaction (j = 1, 2, ..., M) is characterized by a

f m f
m

m+ −=
−

=
−

J

e kBT
Je kBT

e kBT1 1Δ

Δ

Δ/

/

/
.and (1)

e
o

Bk T( ) /Δ Δm m−
Page 2 of 11
(page number not for citation purposes)



BMC Systems Biology 2008, 2:44 http://www.biomedcentral.com/1752-0509/2/44
set of stoichiometric coefficients  and 

such that

Some of the integer ν's and κ's can be zero. The N × M

matrix S = κ - ν is known as the stoichiometric matrix. Eq.
(2) assumes that the forward and backward reaction

kinetics are characterized by the constants  and . In

cases where the kinetic scheme involves intermediate
steps (e.g., enzyme binding), each of the intermediate
steps can be incorporated as reactions in the form of Eq.
(2), requiring additional kinetic parameters, and the stoi-
chiometric matrix can be constructed to include elemen-
tary reactions representing actual interaction events. Segel
[18], for example, details how the Michaelis-Menten
mechanism is expressed in terms of Eq. (2).

For the reaction system (2), kinetic equations of the time-
dependent concentration changes for each biochemical
species can be written according to the law of mass action
as [19,20]

where we use x to denote the concentration of respective

X , and  (i = 1, 2, ..., N) are external injection fluxes to

species i (also known as boundary fluxes). We use the con-
vention that subscripts index species and superscripts
index reactions. To further simplify the notation, we intro-

duce forward and backward fluxes [20]:

Then Eq. (3) becomes dx/dt = SJ + Je, in which x and Je are
N-dimensional column vectors, and J is an M-dimen-
sional column vector.

In a closed reaction system, Je = 0. In this case, it can be
shown that thermodynamic equilibrium is the only posi-

tive stationary solution to Eq. (3): the internal fluxes J = φ+

- φ- = 0 for each and every reaction. For a closed biochem-

ical reaction system, since all the fluxes are necessarily
zero in its unique equilibrium (for each given set of
parameters; unique in the dynamic sense), all the control
coefficients are necessarily zero. Therefore, in a NESS, at

least one injection flux and one effux are nonzero (  ≠

0), or certain concentrations xi are held at constant levels.

The former case is referred to as "external flux injection,"
while the latter is referred to as "external concentration
clamping." A distinction between these two "forcing"
mechanisms greatly clarifies many controversial issues
concerning NESS.

Steady-state concentrations
In the equilibrium state of a closed reaction system, φ+ = φ-
and the ratio of chemical concentrations is independent
of the amount of material and the initial condition:

giving rise to the concept of chemical equilibrium con-
stants. Such a system of biochemical reactions is non-dis-
sipative and is associated with a number of conserved
quantities. An essential mathematical characteristic of the
closed system is that its equilibrium point is degenerate
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Table 1: Summary and comparison table listing the relationship between the elasticity and control coefficient matrices and the 
stoichiometric (S) and correlation (R) matrices, where A = SRT and B = A-1

Symbol Coefficient Relationship

ε local elasticity (dg J)-1 RT

ε steady-state elasticity (dg J)-1 RTB (dg B)-1

concentration control -BS (dg J)

C flux control I - (dg J)-1 RTBS (dg J)
εΔμ biochemical potential local elasticity kBT (dg Δμ)-1 ST

εΔμ biochemical potential steady-state elasticity kBT (dg Δ μ)-1 STB (dg B)-1

CΔμ biochemical potential control -kBT (dg Δμ)-1 STBS (dg J)

Ĉ
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(neutrally stable on a certain manifold), i.e., there is no
unique stationary solution for different initial conditions.

For an open system that approaches a NESS, the stationary

solution is not usually degenerate. If we assume { } is

an asymptotically stable NESS, small differences in the
initial condition should lead to the same NESS. We use the
notations  to denote the set of concentrations of inter-

nal species and  to denote the concentrations of exter-
nal species which are clamped or independently varied.

In the linear regime near the NESS [17],

in which δxj = xj -  and

A = {Aij} is called the linear stability matrix. We introduce

the N × M matrix R = , such that A =

SRT. We also denote A-1 = B.

If the nonlinear dynamics scheme of Eq. (3) conserves cer-
tain quantities, such as total element, motif, or enzyme
concentrations, S does not have full rank and A is singular
[17,19,20]. In such cases, it is possible to transform A into
a nonsingular matrix by replacing its linearly dependent
rows with vectors in its left null space (see Ref. 18 of [20]).
By doing so, one removes the redundancies from the orig-
inal dynamics scheme. A more detailed mathematical
analysis will be published elsewhere. Both here and
below, A is understood to be the transformed nonsingular
matrix.

Results and Discussion
Metabolic control analysis
Eq. (3) is a general scheme for biochemical reaction net-
works. For metabolic reactions involving enzymes, the
enzyme and the enzyme-substrate complexes are treated
as additional "species." In this section, however, we study
MCA, and assume that every reaction involves an enzyme
which is not explicitly expressed as a species. Rather, we
assume enzyme activity is absorbed into the rate constants
for the forward and backward reactions. This is clearly not
an accurate approximation for many enzymatic reaction
mechanisms. Nevertheless, it provides a first-order
approximation for treating a metabolic network. More

complex rate laws for enzymatic reactions have been dis-
cussed for biochemical systems analysis [21,22].

MCA focuses on how the NESS { } shifts in response to

a perturbation to the amount of enzyme for a reaction or

a perturbation to its substrate (∈ ) concentration. With-
out losing generality, we assume these perturbations are
made to the enzyme for the Mth reaction or the Nth (exter-
nal) species.

Elasticity coefficients

First, we consider the case where the concentration of

external species N is changed: . Before

reaching a new NESS, the local response is only in the flux
of the reactions involving XN. The immediate, local

change is characterized by

which is called the scaled, local elasticity-coefficient [1].
These coefficients are elements of the scaled, local, elastic-
ity-coefficient matrix, ε = (dg J)-1 RT. Here, we use the same
notation used by Heinrich and Schuster [23], where (dg v)
denotes the diagonal matrix containing the components
of the vector v along its diagonal. The unscaled, local, elas-
ticity-coefficient matrix is given by ε' = (dg J) ε (dg x)-1 =
RT (dg x)-1. The prime symbol is used to distinguish
unscaled coefficients from scaled coefficients, both here
and in what is to follow.

The coefficient ε should be set apart from the coefficient ε,
which characterizes the steady-state response [24]. When
a new NESS is established, the concentrations {xi} (i = 1,
2, ..., N - 1) satisfy

Solving Eq. (6), we have 

where BiN is the Nth column vector of the matrix A-1. The

new NESS established near { } is { }, and the

new fluxes, Jm + δJm, are given by
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Hence, the scaled, steady-state elasticity-coefficient is [17]

which may also be known as a response coefficient
[23,25]. These coefficients are elements of the scaled,
steady-state, elasticity-coefficient matrix, ε = (dg J)-1 RTB
(dg B)-1. Here, (dg B) denotes the diagonal matrix con-
taining only the diagonal components of the matrix B
along its diagonal. The unscaled, steady-state, elasticity-
coefficient matrix is given by ε' = (dg J) ε (dg x)-1 = RTB (dg
B)-1 (dg x)-1.

As we shall show, some connectivity theorems for the two
quantities ε and ε are different. In principle, the ε can be
experimentally measured as a system response, but
obtaining ε can be more difficult since it is a transient
response that must be measured individually.

Control coefficients

Next, we consider the case where the enzyme for the Mth

reaction EM is changed: EM → EM + δEM. Since we have

assumed that the rate constants for reaction M, , are

linearly proportional to the concentration of the enzyme
catalyzing reaction M, EM, we have

When EM → EM + δEM, the new NESS satisfies [17]

Solving for δxj/  (j = 1, 2, ..., N), we have

From Eq. (10), we get the scaled, concentration control-
coefficient [26],

which is an element of the scaled, concentration, control-

coefficient matrix given by  = -BS(dg J). The unscaled,

concentration, control-coefficient matrix is  = (dg x) 
(dg J)-1 = -(dg x)BS.

Combining Eqs. (7) and (10), we get the scaled, flux con-
trol-coefficient [1],

where δmM is the Kronecker delta function. These coeffi-
cients are elements of the scaled, flux, control-coefficient
matrix given by C = I - (dg J)-1 RTBS (dg J). The unscaled,
flux, control-coefficient matrix is C' = (dg J) C (dg J)-1 = I
- RTBS.

Summation and connectivity theorems

Among ε, ε, C, and , we have the following relation-
ships. First, note the relationships

between the scaled coefficients, and similarly,

between the unscaled coefficients.

d df df n f k f d

n f k f

J
x

x

B

m m m m m m m
N

m m m m

= − = − ∗

= −

+ − + −
=

+ −

∑( )

( )

� �
�

� �

�

�

�

1

NN xN
BNNxN

N
d

∗
=

∑ ,
� 1

(7)

e d
d

n f k f

f f
N
m xN

Jm
Jm

xN

m m m m B NN

m m BN
� � � ��

∗ ⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= + − −=∑

+ − −

( )

( )
1

NN
,

(8)

k M
±

EM

k M
k M

EM
EM

k M
k M

EM
+

+⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
−

−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=d

d

d

d
1.

A
x j

x j

EM

EMij

j

N

i
M

i
M M Md

n k f f d
∗ = − −

=
+ −∑

1

( )( ) . (9)

x j
∗

d
n k f f dx j

x j
B

EM

EMji

j

N

i
M

i
M M M

∗ = = − −
=

+ −∑
1

( )( ) .

(10)

ˆ ( )( ),C j
M EM

x j

x j

EM
B ji

j

N

i
M

i
M M M� ∗

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = − = − −

=
+ −∑d

d
k n f f

1

(11)

Ĉ
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Second, from Eqs. (13)–(16), it is straightforward to show
that if there is no injection flux, i.e., in NESS SJ = -Je = 0,
we have

C1M × 1 = 1M × 1, (18)

where 1i × j and 0i × j denote the i × j matrices of ones and

zeros, respectively. Eqs. (17) and (18) are known as the
summation theorems for the scaled control-coefficients.
For the unscaled control-coefficients, we have the general-

ized summation theorems, C'K = K and ,

where K is the M × (M - N) loop (or nullspace) matrix, i.e.,
its columns form a basis of the nullspace of S so that SK =
0N × (M - N) [15,16].

Euler's theorem on homogeneous functions can be used
to understand the significance of the injection fluxes
[17,26]. If there are no injection fluxes and a NESS is sus-
tained by clamped concentrations, the steady-state fluxes
are homogeneous functions of the enzyme concentrations
with order 1. That is to say that, assuming every reaction
in the system is catalyzed by an enzyme, if every enzyme
concentration is simultaneously doubled, the flux in each
reaction doubles. This leads to the summation theorem
for the flux control-coefficients. On the other hand, if
there are no clamped concentrations and a NESS is sus-
tained by injection fluxes, the steady-state fluxes are
homogeneous functions of enzyme concentrations with
order 0. A similar argument exists for steady-state concen-
trations as a function of enzyme concentrations, leading
to the summation theorem for the concentration control-
coefficients.

Third, BSRT = I ⇒ (RTBS)(RTB) = RTB, which yields the
connectivity theorems for the scaled coefficients:

Cε = 0M × N, Cε = 0M × N, (20)

and the generalized connectivity theorems for the
unscaled coefficients [23]:

C'ε' = 0M × N, C'ε' = 0M × N. (22)

Finally, by combining the generalized summation and
connectivity theorems, we get

which is the central equation in MCA [23]. The matrix (K
ε') has been proved to be invertible [23,27]. Therefore, if
the local elasticity-coefficients are known, the control-
coefficients can be calculated.

Using the steady-state elasticity-coefficients, we have

The matrix (K ε') is also invertible (see Methods). There-
fore, if the steady-state elasticity-coefficients are known,
the control-coefficients can be calculated. This is an
important result because ε can be experimentally meas-
ured as a system response, but obtaining ε can be more
difficult since it is a transient response and must be meas-
ured individually.

Biochemical potential and its control analysis
The most notable difference between BCT and other theo-
ries of biochemical networks is its sound thermodynamics
basis [15,16]. BCT articulates the fluxes J and chemical
potential differences Δμ as two, complementary, key char-
acteristics of a reaction in a NESS. Kirchhoff's flux and
potential laws are manifestations of the fundamental laws
of physical chemistry, namely conservation of mass and
conservation of energy [15,16].

Both J and Δμ can be written in terms of the forward and
backward fluxes φ+ and φ- as given in Eq. (1), and vice
versa. In general, the flux J and the chemical potential dif-
ference Δμ are nonlinearly related [28]:

In the linear regime with small flux and chemical poten-
tial difference, J and Δμ are linearly related with the bio-
chemical conductance being φ+/kBT (= φ-/kBT) [11,16]. In
the nonlinear regime, if a perturbation on a reaction is
from its upstream, we can assume the φ- is relatively
unperturbed. Then we have δJ/δΔμ = -φ+/kBT. Similarly, if
the reaction is perturbed from its downstream, then δJ/
δΔμ = -φ-/kBT.

Combining BCT and MCA, we can define the scaled, local
elasticity-coefficients for chemical potentials [25]
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as elements of the matrix εΔμ = kBT (dg Δμ)-1 ST, the scaled,
steady-state elasticity-coefficients for chemical potentials

as elements of the matrix εΔμ = kBT (dg Δμ)-1 STB (dg B)-1,
and the scaled, potential control-coefficients [25]

as elements of the matrix CΔμ = -kBT (dg Δμ)-1 STBS (dg J),
where reaction potentials and substrate concentrations in
the reference state are used for normalization. The corre-
sponding unscaled coefficients are given in matrix form as

(εΔμ)' = (dg Δμ) εΔμ (dg x)-1 = kBTST (dg x)-1,

(εΔμ)' = (dg Δμ) εΔμ (dg x)-1 = kBTSTB (dg B)-1 (dg x)-1,

(CΔμ)' = (dg Δμ) CΔμ (dg J)-1 = -kBTSTBS.

Note the appearance of the matrices ST, STB, and STBS in
the local and steady-state elasticity-coefficients and the
control-coefficient for the potentials, as compared to the
matricies RT, RTB, and RTBS in the coefficients for the
fluxes. Furthermore, note the relationships

Eqs. (19) and (29) in combination yield the summation
[25] and connectivity theorems for the scaled coefficients,
under consideration of the steady-state condition,

CΔμ1M × 1 = 0M × 1, (31)

CΔμε = -εΔμ, CΔμε = -εΔμ. (32)

Eq. (31) can also be derived using the homogeneous func-
tion theory (discussed above with flux and concentration
control-coefficients). For the unscaled coefficients, we get
the generalized summation and connectivity theorems by
combining Eqs. (21) and (30) so that

(CΔμ)' K = 0M × (M - N), (33)

(CΔμ)' ε' = -(εΔμ)', (CΔμ)' ε' = -(εΔμ)'. (34)

Eq. (33) is a manifestation of Kirchhoff's loop law
[15,16].

By combining the generalized summation and connectiv-
ity theorems, we get

The matrix (K ε') has been proved to be invertible [23,27].
Therefore, if the local elasticity-coefficients are known, the
control-coefficients can be calculated. Using the steady-
state elasticity-coefficients, we have

The matrix (K ε') has an inverse (see Methods). Therefore,
if the steady-state elasticity-coefficients are known, the
control-coefficients can be calculated.

Correlation metric construction

Correlation metric construction (CMC) focuses on how

the NESS { } fluctuates in response to a random sto-

chastic perturbation to the concentration level of an exter-

nal species xN ∈ . We assume the perturbation is small.

Hence, the linear analysis is appropriate.

If the random perturbation has a sufficiently long correla-
tion time compared to the relaxations of all the reactions
in the system, then we are dealing with a shift in the NESS
where, according to Eq. (6),

From the time series of {δxi} with an uncorrelated pertur-
bation on δxN, we have
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for i, j = 1, 2, ..., N.

CMC extracts information from reaction systems by using
perturbations with insufficiently long correlation times.
δxN is a Markov process characterized by

where kd controls the relaxation time of the perturbation,
a is its random amplitude with Gaussian distribution, and
ξ(t) is a uncorrelated noise. δxN in Eq. (38) is called an
Ornstein-Uhlenbeck (OU) process with auto-covariance
function

With this type of random perturbation, the temporal cor-
relations between the concentration fluctuations give
information on the connectivity of a network following
the kinetic equation (4)

for i = 1, 2, ...,(N - 1). More precisely (A. Arkin, personal
communication), instead of Eq. (40) CMC follows an
autoregressive (AR) process, the discrete version of an OU
process, with discrete time T, 2T, ...,

in which . The discrete AR and con-

tinuous OU models give essentially the same result.

Let's rewrite the A matrix into a (N - 1) × (N - 1) matrix

. Then the station-

ary solution to Eqs. (38) and (40) is

which leads to

Two limits of Eq. (42) are particularly interesting. If the

correlation time of g(τ) in Eq. (39) is Ŭ all the relaxation

times of , then we have Eq. (37). On the other hand, if
the correlation time for the random perturbation is << all

the relaxation times of , we have

The matrix  is the fundamental solution to the

linear kinetic equation (4). Rij(t) is the response curve, as

a function of t, for the ith species to an impulse of the jth
species at time 0. The relation between the correlation
matrix and the fundamental solution is expected for a lin-
ear system. For directly connected species i and j, the

, whereas if i and j are not directly connected,

. Analytic solutions for completely linear sys-

tems have been derived and analyzed [29].

Conclusion
Rate limiting step: largest flux control-coefficient and 
smallest biochemical conductance
Both flux control-coefficients and biochemical conduct-
ances can be used as indicators for rate-limiting steps in a
biochemical network [30]. Traditionally the rate-limiting
step is understood in terms of the highest "activation bar-
rier" in the pathway. Here we use a simple example to
demonstrate that these concepts are intimately related.
Mathematically, the highest activation barrier is also
related to the mean first-passage time in stochastic
dynamics [31,32].

Let's consider the linear pathway

under NESS with clamped concentrations x0 and xn for X0
and Xn, respectively. Analogous to a continuous energy
landscape, we have the discrete energy function
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for j = 1, 2,..., n. If there is a rate-limiting step, say for
example that reaction j is nearly irreversible, then Ej is
maximal and that is where the highest energy barrier is
located. We now show that it is also where the largest flux
control-coefficient and the smallest conductance are.

The NESS flux of reaction system (44) can be solved for
analytically to yield [31,32]

Therefore, the flux control-coefficient is

which reaches its maximum at maximal Ej. The biochem-
ical conductance, on the other hand, is

which is at its minimum when  (or ) reaches its min-

imum. For small flux,  (and ) reaches its minimum

also at maximal Ej where concentration x is the lowest.

Note that with J given, the smallest conductance also cor-
responds to the largest |Δμ|. In general, the rate-limiting
step is not necessarily where the k's are smallest. The most
efficient situation for reaction system (44) is when all the
conductances are equal. This result is analogous to the
constant torque principle suggested for molecular motors
[12,13,33].

Flux-controlled and concentration-controlled biochemical 
networks
The analysis provided in the present paper poses the fol-
lowing biological question. When is a NESS of a biochem-
ical network controlled by a constant flux injection and
when is it controlled by a clamped concentration (chemi-
cal potential)? Clearly in real biological systems, the
appropriate answer is a combination of both. Just as a real
battery, having both finite internal resistance and con-
ductance, in an electrical circuit is a combination of con-

stant-current (zero internal conductance) and constant-
voltage (zero internal resistance) ideal batteries, so too
would a real biological system be a combination of con-
stant flux injections and clamped concentrations [17].
Nevertheless, a brief discussion on this topic provides
insights into the control of biochemical networks.

First, let's see what are the respective consequences of
these two different types of "forcing" to a biochemical sys-
tem. For a constant flux injection J to a simple unimolecu-
lar reaction in a NESS, we have the heat dissipation rate
(hdr)

This indicates that for the same injection flux J a reaction
with larger φ- (i.e., conductance) dissipates a smaller
amount of heat. For a constant clamped chemical poten-
tial Δμ, we have

We note that hdr increases with φ- for the constant poten-
tial difference (concentration clamping) case. These
results are analogous to an electric circuit in which the
heat dissipation equals I2R and U2/R, respectively.

This observation leads us to the following hypothesis. In
a biochemical network for biosynthesis, the fluxes are
essential for supply and demand. Hence, such networks
will in general have large conductances in order to mini-
mize the energy waste and be efficient. On the other hand,
in a biochemical network for cellular signaling, the con-
centrations are the essential signal. Thus, in this case the
conductances are generally small in order to minimize the
energy waste.

Relation to the biochemical systems analysis
MCA shares an intimate relationship with the biochemi-
cal systems analysis (BSA) originally proposed by M.A.
Savageau [21]. A critique of BSA can be found in [34]. BSA
assumes that each metabolic reaction is catalyzed by an
enzyme with rapid pseudo-steady-state enzyme-substrate
complexes. This assumption leads to an explicit mathe-
matical expression for the flux J in the enzymatic reaction
as a rational function of the concentration of a substrate x
[18], such that

where K ≤ L due to substrate saturation or effector inhibi-
tion. The coefficients ai, bi, α0, and β0 contain the concen-
trations of all the other substrates. BSA provides insight to
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the properties of ai and bj. The network of metabolic reac-
tions is then modeled [22] by a system of enzymatic reac-
tions with a rate law given in the form of (49).

In terms of Eq. (49) the local elasticity-coefficient for the
flux J can be written as

which also has the standard form of a Pade approxima-
tion [35]. Furthermore, BSA proposed [22] to approxi-
mate (49) by a power-law expression

which is essentially the integral form of the definition of
local elasticity-coefficients.

In contrast, MCA assumes no specific rate laws for an
enzymatic reaction except that the rate is linearly propor-
tional to the enzyme concentration. This assumption is
certainly valid for most biochemical reactions except
when a substrate concentration is significantly less than
that of an enzyme.

Methods
Solving the central, control-analysis equations
To demonstrate that the matrix, (K ε'), that appears in the
central, control-analysis equations, i.e., Eqs. (24) and
(36), is invertible, we note that since we are dealing with
systems without conserved quantities, rank(S) = N. Fur-
thermore, we note that the matrix KTK is invertible
because K contains linearly independent columns, and
because all columns of K are in the right nullspace of S,
the matrix

is also invertible [23]. Therefore, we have
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