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Abstract
Background: To elucidate the interaction of dynamics among modules that constitute biological
systems, comprehensive datasets obtained from "omics" technologies have been used. In recent
plant metabolomics approaches, the reconstruction of metabolic correlation networks has been
attempted using statistical techniques. However, the results were unsatisfactory and effective data-
mining techniques that apply appropriate comprehensive datasets are needed.

Results: Using capillary electrophoresis mass spectrometry (CE-MS) and capillary electrophoresis
diode-array detection (CE-DAD), we analyzed the dynamic changes in the level of 56 basic
metabolites in plant foliage (Oryza sativa L. ssp. japonica) at hourly intervals over a 24-hr period.
Unsupervised clustering of comprehensive metabolic profiles using Kohonen's self-organizing map
(SOM) allowed classification of the biochemical pathways activated by the light and dark cycle. The
carbon and nitrogen (C/N) metabolism in both periods was also visualized as a phenotypic linkage
map that connects network modules on the basis of traditional metabolic pathways rather than
pairwise correlations among metabolites. The regulatory networks of C/N assimilation/
dissimilation at each time point were consistent with previous works on plant metabolism. In
response to environmental stress, glutathione and spermidine fluctuated synchronously with their
regulatory targets. Adenine nucleosides and nicotinamide coenzymes were regulated by
phosphorylation and dephosphorylation. We also demonstrated that SOM analysis was applicable
to the estimation of unidentifiable metabolites in metabolome analysis. Hierarchical clustering of a
correlation coefficient matrix could help identify the bottleneck enzymes that regulate metabolic
networks.

Conclusion: Our results showed that our SOM analysis with appropriate metabolic time-courses
effectively revealed the synchronous dynamics among metabolic modules and elucidated the
underlying biochemical functions. The application of discrimination of unidentified metabolites and
the identification of bottleneck enzymatic steps even to non-targeted comprehensive analysis
promise to facilitate an understanding of large-scale interactions among components in biological
systems.
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Background
In the post-genome era, comprehensive data from
"omics" technologies (genomics, transcriptomics, pro-
teomics, and metabolomics) have been extensively ana-
lyzed to elucidate the underlying biochemical networks
that elaborately regulate cellular mechanisms. Recent con-
tributions from metabolomics are particularly notewor-
thy; they offer insights into metabolism that complement
information obtained from proteomics and transcriptom-
ics [1]. Correlation analysis of metabolic profiles has been
used effectively to distinguish silent phenotypes or genetic
alterations that are not noticeable superficially [2-4]. The
systematic integration of metabolomic-, proteomic-, and
transcriptomic profiles facilitates the unbiased, informa-
tion-based reconstruction of underlying biochemical net-
works [5,6]. Kohonen's self-organizing map (SOM)
analysis [7] was also an effective method to classify and
monitor metabolic alteration patterns with time-series
profiles [8,9].

However, with the current technology, unbiased recon-
struction from comprehensive and high-throughput data
is challenging; statistical tools are immature and inherent
measurement errors and biological noise continue to
present problems [10]. Moreover, two issues are relevant
to the exploitation of metabolomics data. First, it is crucial
to interpret metabolic profiles by focusing on a specific
rhythm in an appropriate time range and interval, since
plants have adapted their metabolism to different envi-
ronmental fluctuations such as the slow and steady diur-
nal rhythm, whereas metabolic levels change
dynamically. Second, currently available metabolomics
data are insufficient for the detection of new metabolic
networks. Even if non-target profiling were able to quan-
tify thousands of metabolites, at present there is no
method for estimating their reliability. As statistical infer-
ence requires large amounts of data measured under sim-
ilar conditions in transcriptomics [11], the verification of
network dynamics for known pathways must precede
attempts to identify unknown network structures. It
appears that each metabolic profile is measured under
method-specific, presumably biased conditions.

Time-resolved target analysis is an effective way to observe
biochemical dynamics. We systematically measured the
level of 56 basic metabolites in rice leaves (Oryza sativa L.
ssp. japonica) at hourly intervals over a 24-hr period. Our
target and experimental conditions were strategically
determined: 1) we focused on primary metabolic path-
ways consisting of carbon fixation/respiration- and nitro-
gen assimilation/dissimilation pathways, and
comprehensively quantified related metabolites, 2) the
photocycle was the sole environmental factor, and 3)
measurements were made at 1-hr intervals to allow the
observation of dynamic profiles.

High-throughput analysis was conducted with the capil-
lary electrophoresis – mass spectrometry (CE-MS) tech-
nology we developed earlier [12-14], and has been
applied to metabolic profiling in Bacillus subtilis extracts
[15] and monitoring of genetic and environmental pertur-
bations in Escherichia coli cells [16]. Each employed CE-
MS method was able to detect charged low molecular
metabolites in less than 30 min without requiring deriva-
tization. Combined with diode array detection (CE-
DAD), our technology is also applicable to quantifying
small sugar compounds. We previously developed a sam-
ple preparation protocol that could extract metabolites
with possibly minimal metabolic turnover [17]. By using
the CE-MS and CE-DAD, we also succeeded in analyzing
over eighty major metabolites (sugars, organic acids,
amino acids, and nucleotides) in rice foliage. The current
work is our first systematic time-course measurements of
rice foliage throughout a day.

We applied four information-based methods to analyze
the diurnal fluctuation of metabolites: 1) metabolic path-
ways were classified with SOM to monitor the metabolic
dynamics in each time-step, 2) a phenotypic linkage map
was constructed from the classified pathways by Sam-
mon's 2D-network layout [18], 3) unidentified metabo-
lites were predicted based on SOM analysis and chemical
structures, and 4) rate-limiting enzymes were identified
by hierarchical clustering on a correlation matrix. Here we
show that combining metabolome analysis and informa-
tion-based methods is an effective way to elucidate phe-
notypical metabolic network structures and underlying
biological functions under diurnal rhythm fluctuations.

Results
Time-course data acquisition
We extracted target metabolites existing in the primary
metabolism such as the glycolytic pathway, the reductive-
and oxidative pentose phosphate pathway, and the pho-
torespiratory pathway, the tricarboxylic acid (TCA) cycle,
and the amino acid biosynthetic pathway. Figure 1
presents the practical rice biochemical network that was
constructed with our target metabolites based on anno-
tated protein data from the KEGG pathway database [19],
Swiss-Prot database [20], or Rice Annotation Project Data
Base [21]. It shows the names of target metabolites and
the EC number of enzymatic reactions; black dots are
non-target metabolites. Although NH3 (also R-NH2) and
CO2 were non-target compounds, they are shown in green
to demonstrate in and out of carbon and nitrogen.

We selected eight enzymatic proteins that have not been
annotated at this stage to determine whether they func-
tion in the rice plant. These enzymes and the judgment
criteria are shown in Table 1. On the map, their EC num-
bers and lines are presented in gray.
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Metabolic network of oryza sativa L. ssp. JaponicaFigure 1
Metabolic network of oryza sativa L. ssp. Japonica. Target metabolites and practical enzymatic reactions are shown. The 
number next to the line is the EC number. Colors indicate the ratio of metabolic levels in light and dark periods. Unidentified 
metabolites are gray and gray lines and EC numbers identify non-annotated enzymatic proteins. The red- and yellow shade 
show the glycolytic pathway and the TCA cycle respectively.
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Sedoheptulose 1,7-bisphosphate (S17P) in the pentose
phosphate pathway was not identified because the stand-
ard reagent was unavailable. Xylulose 5-phosphate (X5P)
is a stereoisomer of Ribulose 5-phosphate (Ru5P) and
their peak overlap in CE-MS analysis makes the identifica-
tion even more difficult. Glyceraldehyde 3-phosphate
(G3P) and oxaloacetate (OAA) were not accurately deter-
mined too, because they were readily reacted or decom-
posed.

The seventy selected target metabolites were classified into
four groups according to their chemical structure-based
physiochemical characteristics (Table 2). Group A con-
tained amino acids and amines, group B organic acids and
sugar phosphates, group C nucleotides and coenzymes,
and group D sugars. Groups A, B, and C, consisting of
ionic substances, were analyzed with three CE-MS meth-
ods for cationic, anionic, and nucleotide metabolites;
analysis of group D was with a CE-DAD method. For CE
separation, we used conventional sample preparation
with simple and universal procedures without any deriva-
tization process. As common preparation procedures were
applicable under the four analytical conditions, we were
able to determine simultaneously a wide variety of chem-
ical compounds.

Plant seedlings were grown under a 13-hr light – 11-hr
dark photocycle for 20 to 21 days. The level of the 56
metabolites was successfully quantified at hourly intervals
over the course of 24 hr. We could identify the peak and
determine the peak area for S7P but could not quantify its
level, since the reagent was not available at the time of our
CE-MS measurement; we later qualitatively identified its
peak with the migration time ratio (MT/MTIS) of S7P to
PIPES (internal standard). The other 13 metabolites were
under the detection limit (signal-to-noise ratio (S/N) < 3);
their names were colored gray in Figure 1.

In the course of 24 hr, the metabolites exhibited various
fluctuations (Figure 2). Ru15P, the precursor of carbon
fixation, manifested a variation synchronous with the
photoperiod; its intracellular concentration increased
under illumination and decreased in darkness. Several
metabolites exhibited similar light-dependent variations
in the reductive pentose phosphate pathway (3PG, R5P,
and Ru5P), the glycolytic pathway (3PG, 2PG, PEP, Pyr),
the TCA cycle (2OG, Suc, and Mal), and in sugars (Scr and
Glc). Citrate, on the other hand, manifested opposite fluc-
tuation changes. In the amino acid biosynthesis pathway,
major amino acids (Ala, Asn, Gln, Glu, Gly, and Ser) accu-
mulated during the light period. Minor amino acids that

Table 1: Selected non-annotated proteins expected to function in rice plant

EC Number Enzyme name Criterion for judgement Ref.

1.1.1.29 hydroxypyruvate reductase; glycerate 
dehydrogenase

Enzymatic reduction of hydroxypyruvic acid to D-glyceric acid in 
higher plants, i.e. the leaves of pea, beet, tomato, radish, spinach, 
parsley, lettuce, corn, kohlrabi, and carrot.

[22]

AK069655; Similar to 2-hydroxyacid dehydrogenase RAP-DB*1

1.2.1.13 glyceraldehyde-3-phosphate 
dehydrogenase

AK071685; Similar to GADPH (383AA) (Fragment). AK67755; 
Similar to Glyceraldehyde-3-phosphate dehydrogenase (EC 
1.2.1.13) (Fragment).

RAP-DB

1.3.1.78 arogenate dehydrogenase; prehenate 
dehydrogenase

TyrAAT1(AF434681) and TyrAAT2(AF434682) in Arabidopsis 
thaliana catalyze the oxidative decarboxylation of arogenate into 
Tyr in the presence of NADP. TyrAAT also exhibits prephenate 
dehydrogenase activity.

[23]

Q5Z9H5_ORYSJ; Q5Z9H3_ORYSJ; Q5Z6Y1_ORYSJ, Putative 
arogenate dehydrogenase isoform 2

Swiss-Prot/TrEMBL*2

1.5.1.12 delta-1-pyrroline-5-carboxylate 
dehydrogenase

AK121765; Similar to delta-1-pyrroline-5-carbozylate 
dehydrogenase

RAP-DB

2.7.1.31 D-glycerate 3-kinase GLYK family protein was purified and sequenced from Arabidopsis 
thaliana, identified as putative kinase-annotated single-copy gene 
At1g8038. This article suggests that an Olyza sativa PRK/UK-like 
protein, BAD73764, Os01g48990 is grouped with the GLYK kinase 
family.

[24]

3.1.3.24 sucrose-phosphatase AK063330, AK071525, AK064563; Similar to sucrose-phosphatase RAP-DB
4.2.3.4 3-dehydroquinate synthase Pentafunctional aroma enzyme in Saccharomyces cervisiae includes 

EC 4.2.3.4, EC 4.2.1.10, EC 2.5.1.19, EC 1.1.1.25, and EC 2.7.1.71.
[25]

AK071977; Similar to 3-dehydroquinate synthase-like protein (EC 
4.2.3.4). Four other proteins were annotated.

RAP-DB

5.3.1.24 phosphoribosyl-anthranilate isomerase J075072K08; Similar to phosphoribosylanthranilate isomerase RAP-DB

*1: Rice Annotation Project Data Base [21]
*2: UniProt Knowledge base: Swiss-Plot and TrEMBL [20]
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are synthesized from specific organic acids through sev-
eral reaction steps (His, Ile, Leu, Lys, Phe, Trp and Val)
accumulated during the dark period.

Table 3 shows the status of adenine nucleosides and nico-
tinamide coenzymes in the light and dark periods.
Whereas the ratios of ADP, NADP, and NADH were
almost equal in the light and dark periods, the ratios of
AMP and NADPH were higher and those of ATP and NAD
were lower in the light period (see Discussion).

Self-organizing map and phenotypic linkage of metabolic 
modules
To visualize the functioning networks throughout a 24-hr
period, we classified the metabolites according to similar-
ities in their time-dependent behavior by using Kohonen's
self-organizing map (SOM) and Sammon's 2D-network
layout (Sammon map). The time-dependent levels of each
metabolite were represented as a 24-dimensional vector.
On the SOM, the 57 metabolites were classified into a 24
× 24 lattice on the basis of vector similarity. The map was
roughly divided into two major groups (see the dark gray

line in Figure 3A). Metabolites with high levels in the light
period are in the left area; those with high levels in the
dark period are on the right in the map. On the SOM, each
group was further classified and assigned to subgroups
consisting of nitrogen- and carbon-assimilating com-
pounds. Certain amino acids were arranged near their pre-
cursor organic acids, e.g., Glu/2OG. Gly, Ser, and Ala were
grouped with synthetic pathway intermediates such as Pyr
and Gce. The degree of similarity among metabolites was
quantitatively visualized on the Sammon map; it shows
approximate distances between metabolites on the SOM
according to the Euclidean distance of the input vectors
(Figure 3B). When we merged neighboring metabolites
on the Sammon map we obtained 12 subsets of metabo-
lites. Each subset is composed of metabolites that exhibit
synchronous, time-dependent fluctuations, a "metabolic
module". Metabolites in the same module were often
neighbors in a traditional metabolic pathway network.
Products that accumulated during the light period were
arranged in subsets M1 – M8. They included the module
for the reductive pentose phosphate pathway (M3), the
photorespiratory pathway (M2), the latter half of the gly-

Table 2: The 70 target metabolites subjected to analysis of time-resolved dynamics and their abbreviation used in this article

Group A (CE-MS No.1) Group B (CE-MS No.2) Group C (CE-MS No.3)

Amino acids Organic acids Nucleotides
Ala Alanine cisAco cis-Aconitate AMP AMP
β Ala β-Alanine Cit Citrate ADP ADP
GABA γ-Aminobutyrate isoCit iso-Citrate ATP ATP
Ant Anthranilate DHAP Dihydroxyacetonephosphate GDP GDP
Arg Arginine Fum Fumarate GTP GTP
Asn Asparagine Gce Glycerate Coenzymes
Asp Aspartate Gco Glycolate NAD NAD
Ctr Citrulline Gox Glyoxylate NADH NADH
Cys Cysteine Lac Lactate NADP NADP
Glu Glutamate Mal Malate NADPH NADPH
Gln Glutamine 2OG 2-Oxoglutarate CoA CoA
Glt Glutathione red. PEP Phosphoenolpyruvate AcCoA Acetyl-CoA
Gly Glycine 6PG 6-Phosphogluconate SucCoA Succinyl-CoA
His Histidine 2PG 2-Phosphoglycerate
Hse Homoserine 3PG 3-Phosphoglycerate
Leu Leucine Pyr Pyruvate Group D (CE-DAD)

Ile iso-Leucine Suc Succinate Sugars
Lys Lysine Sugar Phosphate Frc Fructose
Orn Ornithine E4P Erythrose 4-phosphate Glu Glucose
Phe Phenylalanine F16P Fructose 1,6-bisphosphate Suc Sucrose
Pro Proline F6P Fructose 6-phosphate
Ser Serine G1P Glucose 1-phosphate
Thr Threonine G6P Glucose 6-phosphate
Trp Tryptophan R5P Ribose 5-phosphate
Tyr Tyrosine Ru15P Ribulose 1,5-bisphosphate
Val Valine Ru5P Ribulose 5-phosphate
Amines S7P Sedoheptulose 7-ohosphate
14BA 1,4-Butanediamine
Spe Spermidine
Tyra Tyramine
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colytic pathway (M4), the latter half of the TCA cycle
(M5), sugars (M7), and major amino acids (M1). Also
included in this group were NADPH and NADH (M6),
glutathione and spermidine (M8). Subsets M9 – M12
included the first half of the glycolytic pathway (M9), the
first half of the TCA cycle (M10), and minor amino acids
(M11); also included were the nucleoside tri- and diphos-
phates (M12). Thus, our SOM analysis correctly reflected

the phenotypic metabolic variations that indicate func-
tioning biochemical pathways, and therefore represents a
phenotypic linkage map (PLM).

The advantages of this analysis became even more appar-
ent upon time-resolved analysis of metabolite levels (Fig-
ure 3C), which allowed visualization of the dynamic
activity of these metabolic modules (see Discussion).

Discussion
Estimation of unidentified metabolites with SOM analysis
Although S17P could not be directly identified, we
hypothesized that its peak could be identified in CE-MS
data by combining SOM analysis with knowledge of the
chemical structure. We identified a candidate peak among
several peaks on selected ion electropherograms using a
simple estimation method. As electrophoretic mobility is
proportional to the ionic charge of the solute and
inversely proportional to the size of the ionic molecule
related to the hydrated ionic radius of a spherical mole-

Metabolic time-courses in rice foliage at the third-leaf stageFigure 2
Metabolic time-courses in rice foliage at the third-leaf stage. Plantlets were grown under a 13-hr light – 11-hr dark 
photocycle. We applied 3 CE-MS methods and a CE-DAD method to analyze 69 major metabolites. Dynamic changes in the 
metabolite levels were assessed at hourly intervals over a 24 h period. Averages of 2 samples (± SEM) are shown. The top bar 
(shown in only Ala) indicates light and dark conditions.

Table 3: Status of adenine nucleosides and nicotinamide 
coenzymes in the light and dark period

ATP
AdN*1

ADP
AdN

AMP
AdN

NAD
NiC*2

NADH
NiC

NADP
NiC

NADPH
NiC

Light*3 0.21 0.40 0.40 0.36 0.10 0.09 0.44
Dark*4 0.45 0.43 0.11 0.55 0.09 0.05 0.31

*1 AdN = ATP + ADP + AMP
*2 NiC = NAD + NADH + NADP + NADPH
*3 The average of all data throughout the light period
*4 The average of all data throughout the dark period
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Self-organizing map (SOM) AnalysisFigure 3
Self-organizing map (SOM) Analysis. A. U-matrix. Measured metabolites (n = 56) were arranged in a 20 × 20 lattice on 
the basis of diurnal change similarities. Light- and dark shading indicate high and low similarity, respectively. B. Phenotypic link-
age map (PLM). The linkage among metabolites based on dynamic similarity is expressed as the distance on the quadratic plane. 
The metabolites were assigned to 14 metabolic modules that fluctuated synchronously; most contained traditional metabolic 
pathway networks or similar compounds. M1, major amino acid; M2, related to photorespiratory pathway intermediates; M3, 
pentose phosphate pathway; M4, latter half of the glycolytic pathway; M5, latter half of the TCA cycle; M6, environmental 
stress response; M7, sugars; M8, NADH and NADPH; M9, first half of the glycolytic pathway; M10; first half of the TCA cycle; 
M11, minor amino acids; M12, nucleoside tri- and diphosphates. C. Time-resolved layout. The relative levels of metabolites are 
shown for every time point from the start of the light period to the end of the dark period. Light and dark shading indicate high 
and low levels.
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cule [26], we used the cubic root of the molecular weight
as a substitute parameter for the radius. Indeed, the cubic
root of molecular weights of 3 metabolites of similar
chemical structure, Ru5P, F6P and S7P, were linearly cor-
related with migration time ratios (r > 0.999), when PIPES
was used as an internal standard (Table 4).

The estimate for S17P was performed using linear approx-
imation with Ru15P and F16P. The estimated migration
time ratio (MT/MTIS) of S17P was 0.941 (Table 4). Several
peaks were observed at a mass-to-charge ratio (m/z) of
369. A peak of MT/MTIS = 0.909 (m/z = 369) was identi-
fied within ± 5.0% of the predicted values.

Next, the absence of other metabolites with similar chem-
ical structures was verified with the KEGG ligand database
[27]. Note that except for S17P, metabolites were cyclic or
non-anionic compounds.

Finally, we obtained the normalized time-course of the
putative S17P by calculating the ratio of the peak area of
putative S17P to PIPES. Integration of these data into the
SOM analysis showed that this putative S17P marker was
near metabolites in the reductive pentose phosphate path-
way (Figure 3A) or the metabolic module M3 in PLM.

Unfortunately, the above result includes some specula-
tion; most peaks of putative S17P were below the detec-
tion limits (S/N < 3) and the peak was not detected in the
dark period. In the SOM analysis, the peak area of such
undetected metabolite was calculated as zero. Neverthe-
less, the proposed estimation method seems to be effec-
tive in identifying unknown metabolites.

Detection of metabolic bottlenecks by pair-wise 
correlation analysis
In previous studies, Peason's correlation coefficients of
metabolite pairs (pair-wise correlation) were applied to
construct a metabolic correlation network [5,10,28]. A
correlation coefficient is an index of co-linearity between
two variables. If two metabolites, A and B, are always
equilibrated, i.e., [A]/[B] = Keq (constant), then their rela-
tionship is linear and shows a high correlation. Although
real metabolic pathways are dynamic and constantly reg-

ulated by their influx and/or efflux, the pathway compo-
nents that are blocked by rate-limiting enzymes should
exhibit approximate linearity. For example, 3PG, 2PG,
and PEP in the glycolytic pathway are positioned between
two rate-limiting enzymes, phosphoglycerate kinase (EC
2.7.2.3) and pyruvate kinase (PK; EC 2.7.1.40), both of
which are regulated by the ATP/ADP ratio (Figure 1). The
correlation coefficients among these three metabolites
throughout a 24-hr period were over 0.90, whereas the
correlation coefficient between PEP and Pyr, limited by
PK, was under 0.50. Thus, pair-wise correlation analysis is
effective for the identification of metabolic modules that
are regulated by rate-limiting enzymes.

We used a hierarchical clustering algorithm, Ward's
method [29], to classify metabolites in the glycolytic path-
way (Figure 1) on the basis of their correlation matrix that
was computed using all data throughout the 24-hr period.
Indeed, a dendrogram identified the steps regulated by the
ATP/ADP ratio (Figure 4A). On the other hand, it did not
identify phosphofructokinase I (PFK-1; EC 2.7.1.11) as a
rate-limiting enzyme. Although it is regulated by the ATP/
ADP ratio in animal cells, another enzyme, pyrophos-
phate fructose 6-phosphate 1-phosphotransferase (EC
2.7.1.90), seems to be active in plant cells and may be
independent of the ATP/ADP ratio [30].

The same cluster analysis was also applied to the TCA
cycle intermediates (Figure 1), and the dendrogram
revealed the rate-limiting enzymes in the cycle again (Fig-
ure 4B): citrate synthase (CS; EC 2.3.3.1), and NADP-
dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42).
This suggests that the classification of metabolites along
enzymatic steps can help to reveal bottleneck enzymes.

Time-resolved carbon/nitrogen metabolomics
Inspection of the time-course of metabolic modules
allowed us to better understand the carbon and nitrogen
(C/N) assimilation/dissimilation process and their under-
lying function during a 24-hr period (Figure 3C).

In the first half of the light period, some accumulation
emerged for carbon-fixed products: Pyr, 2OG, and pho-
torespiratory pathway intermediates (metabolic module

Table 4: Estimated migration-time of unidentifiable metabolites based on the molecular weight of similar metabolites

Compound Formula M.W. M.W.1/3 MT/MTIS

Ru5P CH2(OH)CO [CH(OH)]2CH2OPO3H2 230.0192 6.127 1.029
F6P CH2(OH)CO [CH(OH)]3CH2OPO3H2 260.0298 6.383 1.080
S7P CH2(OH)CO [CH(OH)]4CH2OPO3H2 290.0403 6.619 1.125

Ru15P CH2(OPO3H2)CO [CH(OH)]2CH2OPO3H2 309.9854 6.768 0.847
F16P CH2(OPO3H2)CO [CH(OH)]3CH2OPO3H2 339.9960 6.980 0.895
S17P CH2(OPO3H2)CO [CH(OH)]4CH2OPO3H2 370.0065 7.179 0.941*

*Estimated value. MT/MTIS was calculated by linear approximation
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M2). This coincides with carbon fixation by activation of
several light-dependent enzymes including rubisco (EC
4.1.1.39) at the start of light exposure [31], as shown by
the accumulation of Ru15P, Gce and triose derivatives at
the beginning of the light period (light 1 – 3 hr). The slow
accumulation was partly attributable to the very slow met-
abolic turnover of rubisco [32]. Likewise, major amino
acids and amines including Glu and Gln, the source com-
pounds of nitrogen assimilation as amino-group accep-
tor/donor [33,34], also accumulated in the first half of the
light period (M1). This coincides with the diurnal meta-
bolic dynamics and the activities of key enzymes in
tobacco plant [35]. For example, NR activity is known to
remarkably increase immediately after the start of light
exposure and decrease at midday.

On the other hand, the glycolytic pathway and the reduc-
tive pentose phosphate pathway intermediates reached
their highest levels (M3, M4) at midday, and sugars
peaked at the end of the light period (M7).

We can hypothesize that carbon fixed in the first half of
the light period moves down the glycolytic pathway and
the TCA cycle, and amino acid biosynthesis progresses
using generated Glu, Pyr, and 2OG. In the latter half of the
light period, the flow of fixed carbon leads to the accumu-
lation of the intermediates in the pentose phosphate path-

way and to sucrose synthesis by inhibiting the production
of ammonia, Pyr, and 2OG.

From the end of the light period through the first half of
the dark period, we noted an increase in sugar phosphates
from the first half of the glycolytic pathway (metabolic
module M9). Around midnight, the accumulation of a
few organic acids in the first half of the TCA cycle (meta-
bolic module M10) was observed, suggesting the activa-
tion of the TCA cycle.

In the latter half of the dark period, the level of minor
amino acids was increased (metabolic module M11),
although they are synthesized from diverse biochemical
pathways. The good correlation among these minor
amino acids, also reported in potato and wheat [36], is
attributable to the fact that the ratio between Gln and
2OG regulate minor amino acids in bacteria and fungi
through the reaction Glu + 2-oxo acid ↔ amino acid +
2OG [37]. Under our experimental conditions, the Glu/
2OG ratio was much higher in the dark- than in the light
period (22.9 vs. 7.2) and the amino group can easily
transferred to 2-oxo acids to produce amino acids.

Adenine nucleoside and nicotinamide coenzyme status
ATP and ADP were placed in the dark-activated group in
PLM (metabolic module M12); they were accumulated at
the end of the dark period, and decreased by illumination
(Figure 3C). On the other hand, AMP was placed in the
light-activated group peaking at midday. The reason for
fluctuations of adenylate is unknown. Previous observa-
tions also do not coincide in the adenylate levels during
the light- and dark period. In sugar beet leaves, all ade-
nylate levels increased in the light period [38]. In spinach
leaves and wheat leaf protoplast, ATP increased but ADP
and AMP decreased under light [39,40]. In Crassulacean-
acid metabolism (CAM) species, on the contrary, ATP
decreased but ADP and AMP increased [41]. Such differ-
ences may result from different dynamics in cytosol, chlo-
roplasts, and mitochondria [40].

We extrapolate that the lower ATP ratio during the light
period was caused by an excess demand of ATP by intra-
and extra cellular processes for carbon fixation and nitro-
gen assimilation against ATP supply from photosynthesis.
In theory, the amount of ATP consumption in the reduc-
tive pentose phosphate pathway and the photorespiratory
pathway is more than ATP production in the photophos-
phorylation [42]. Beside this, nitrogen assimilation proc-
ess, intracellular transport of the assimilation products,
and sucrose synthesis and its translocation are also
accompanied by ATP. Therefore the dark respiration
makes a considerable contribution to produce ATP even
in the light. However, granted that ATP supply is insuffi-
cient in the light, high metabolic turnover of adenylate

Hierarchical cluster analysisFigure 4
Hierarchical cluster analysis. A. Cluster analysis (Ward's 
method [26]) was applied to the correlation matrix com-
posed of metabolic intermediates in the glycolytic pathway. 
The generated dendrogram was clustered into regulatory 
units by the ATP/ADP ratio; hexokinase (EC 2.7.1.1), phos-
phoglycerate kinase (EC 2.7.2.3), and pyruvate kinase (EC 
2.7.1.40). B. As well as in the TCA cycle, the dendrogram 
was divided into two major groups at the rate-limiting steps; 
citrate synthase (CS; EC 2.3.3.1), and NADP-dependent isoc-
itrate dehydrogenase (ICDH; EC 1.1.1.42).
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kinase (EC 2.7.4.3) would immediately work to repro-
duce ATP from ADP that leads to increase of AMP. Further
investigation is necessary to clarify the adenylate dynam-
ics among cell compartments.

In our analysis, NADPH and NADH behaved similarly
(metabolic module M6), whereas NADP and NAD did
not. As NADPH and NADH were respectively generated
by their unique reaction of reducing NADP and NAD,
dependence on the intracellular oxidation-reduction state
shifted the formation of oxidation and reduction. In PLM,
however, NADP was placed in the light-activated- and
NAD in the dark-activated group. This suggests that highly
concentrated NAD in the dark is converted to NADPH via
NADP in the light period. It was reported that the
NADPH/NAD ratio is the inverse of the ATP/ADP ratio in
guard cell protoplast, which indicates that ATP phosphor-
ylates NAD in the light period by NAD kinase (EC
2.7.1.23) and the generated NADP is reduced to NADPH
in the course of photosynthesis [43].

The ratios of NADH to NAD and NADPH to NADP were
0.16–0.29 and 6.2–6.6. The observed difference in the
tendency of oxidized- or reduced form indicates their dif-
ferent cellular roles. NADH is used for oxidative phospho-
rylation, and a low NADH/NAD ratio constrains this
process. On the other hand, NADPH is used for the reduc-
tive biosynthesis of metabolites, and the high ratio of
NADPH/NADP favors the reduction of metabolites.

Environmental stress response
It is remarkable that Glt (GSH; gamma-glutamylcysteinyl
glycine) and Spe exhibited similar fluctuation patterns
(metabolic module M8). Both peaked at the end of the
light period and again just after midnight, suggesting the
existence of common regulatory factors. GSH plays a cen-
tral role in the antioxidant defense by eliminating harmful
peroxide during photosynthesis and oxidative phosphor-
ylation [44]. Polyamines, including spermidine, are also
effective antioxidants under various environmental stress
conditions [45]. During photosynthesis, GSH is converted
to oxidized dithiol (GSSH) to eliminate oxidative stress,
and upon the reduction of NADPH, GSSH can be con-
verted back to GSH by glutathione reductase (GR; EC
1.8.1.7, annotated in rice plant). Our finding that NADPH
reached its highest level at a few hours before the end of
the light period is consistent with the above observation
(Figure 3C), although the connection remains specula-
tive. The relative contribution of NADPH and NADH to
the generation of GSH and spermidine requires further
investigation.

Conclusion
We intended to analyze the rice plant metabolism and to
reconstruct its phenotypic networks in an effort to explain

underlying biological functions. Our CE-MS technology
provided a comprehensive high-throughput system with
easy sample preparation and facilitated the generation of
high-resolution metabolic time-courses. Data mining
with statistical techniques and SOM analysis revealed syn-
chronous dynamics in metabolic modules downstream of
C and N assimilation and dissimilation processes and
stress responses. Our system was able to discriminate uni-
dentified metabolites and identify bottleneck enzymatic
steps. In a comprehensive approach such heuristics
become increasingly important because with current tech-
nology, the determination of all network components is
virtually impossible. For a more precise investigation of
biochemical networks, expansion of target metabolites
and determination of metabolite levels in each cellular
compartment may be suggested. There are technical hur-
dles, however, in separating organelles without disturbing
a wide range of metabolites inside them. Without much
technical advancement, therefore, it seems difficult to
repeat our time-course measurement for any single cellu-
lar compartment although there are reports for such a
challenge [46]. Finally, for the analysis part, it is necessary
to couple biological information with computer simula-
tions based on large-scale time-resolved measurements of
metabolites, proteins, and mRNAs.

Methods
Plant materials
Young seedlings of rice plants, Oryza sativa L. ssp. japonica
Haenuki, at the third-leaf stage were cultured as follows.
Rice seeds were germinated on filter paper soaked with
Milli-Q water and kept at 30°C in a dark room for 2 days.
After germination, the plantlets were placed on rock fiber
(35 × 35 × 40 mm; Nittobo, Tokyo, Japan), and grown in
a growth chamber (FLI-301N, Tokyo Rika Kikai, Tokyo,
Japan) for 18 days. The temperature and light conditions
were 25°C and 365 μE·m-2s-1 for 9 hr (light), 20°C and 0
μE·m-2s-1 for 11 hr (dark), and 150 μE·m-2s-1 for 2 hr
between light and dark. The plants were watered with Kas-
ugai water culture solution (18.9 mg/L (NH4)2SO4, 10.1
mg/L Na2HPO4·12H2O, 4.7 mg/L KCl, 0.79 mg/L CaCl2,
3.0 mg/L MgCl2, 0.17 mg/L·FeCl3·6H2O, and HCl to
adjust the pH to 5.0 – 5.5) [47].

Reagents
Piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES) was
purchased from Dojindo (Kumamoto, Japan), methio-
nine sulphone from Avocado Research (Heysham, Lanca-
shire, UK). All other reagents were obtained from
conventional commercial sources. Individual stock solu-
tions, at a concentration of 10 or 100 mM, were prepared
in Milli-Q water, 0.1 N HCl, or 0.1 N NaOH. The working
standard mixture was prepared by diluting these stock
solutions with Milli-Q water just before injection. All
chemicals used were of analytical or reagent grade. Water
Page 10 of 13
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was purified with a Milli-Q purification system (Milli-
pore, Bedford, MA, USA).

Sample preparation
Leaves were harvested (fresh weight approximately 100
mg (6 seedlings)) and frozen in liquid nitrogen to stop
enzymatic activity. They were mashed in a Multi-Beads
Shocker (Yasuikikai, Osaka, Japan) at 2000 rpm for 10 sec
and 0.5 mL of ice-cooled methanol, including 400 μM
PIPES and methionine sulphone as an internal standard,
was added to dissolve phospholipid membranes and inac-
tive enzymes. Then 0.5 mL ice-cold Milli-Q water was
added and the sample was ultrafiltered through a 5-kDa
cut-off filter at 9058 g for 10 min to remove proteins,
phospholipids, chlorophyll, and other high-molecular-
weight impurities. The filtrate was analyzed by CE-MS and
CE-DAD methods. To obtain sufficient sensitivity for the
analysis of nucleotides, coenzymes, and sugars, the filtrate
was concentrated 5-fold by lyophilization [17].

Instruments
All CE-MS experiments were performed by Agilent CE cap-
illary electrophoresis. We used a 1100 series MSD mass
spectrometer, a 1100 series isocratic HPLC pump, a
G1603A CE-MS adapter kit, and a G1607A CE-ESI-MS
sprayer kit (Agilent Technologies). CE-DAD experiments
were performed by Agilent CE capillary electrophoresis
with a built-in diode-array detector. G2201AA Agilent
ChemStation software for CE was used for system control,
data acquisition and analysis, and MSD data evaluation.

Analytical conditions
The compounds were analyzed in four groups using three
CE-MS methods and one CE-DAD method.

a) Cationic metabolites (amino acids and amines) were
analyzed with a fused-silica capillary (50 μm i.d. × 100 cm
total length), with 1 M formic acid as the electrolyte. The
sample was injected at an injection pressure of 5.0 kPa for
3 sec (approximately 3 nL). The applied voltage was set at
30 kV. The capillary temperature was set to 20°C, and the
sample tray was cooled to below 5°C. The sheath liquid
(5 mM ammonium acetate in 50% [v/v] methanol-water)
was delivered at 10 μL/min. ESI-MS was conducted in pos-
itive ion mode; the capillary voltage was set at 4000 V. A
flow rate of heated dry nitrogen gas (heater temperature
300°C) was maintained at 10 L/min [12].

b) Anionic metabolites (organic acids and sugar phos-
phates) were analyzed with a cationic polymer-coated
SMILE(+) capillary (Nakalai Tesque, Kyoto, Japan). The
electrolyte for CE separation was a 50 mM ammonium
acetate solution (pH 8.5). The sample was injected at an
injection pressure of 5.0 kPa for 30 sec (approximately 30
nL). The applied voltage was set at -30 kV, and the capil-

lary temperature was set to 30°C. ESI-MS was conducted
in negative ion mode; the capillary voltage was set at 3500
V. Other conditions were as in the cationic metabolite
analysis [13].

c) Nucleotides and coenzymes were analyzed with an
uncharged polymer-coated gas chromatograph capillary,
polydimethylsiloxane (DB-1) (Agilent Technologies). The
electrolyte for CE separation was 50 mM ammonium ace-
tate solution (pH 7.5). The applied voltage was set at -30
kV and a pressure of 5.0 kPa was added to the inlet capil-
lary during the run. Other conditions were as in the anion
analysis [14].

d) Sugars were analyzed with a fused-silica capillary (50
μm i.d. × 112.5 cm total length, 104 cm effective length).
Basic anion buffer for CE (Agilent Technologies) was the
electrolyte. The sample was injected at a pressure of 5.0
kPa for 10 sec (approximately 10 nL). The applied voltage
was set at -25 kV; the capillary temperature, regulated with
a thermostat, was 25°C. Sugars were detected by indirect
UV detection using a diode-array detector. The signal
wavelength was set at 350 nm with a reference at 230 nm
[48].

Self-organizing map (SOM) analysis
A free software package, SOM -PAK [49], was used to com-
pute both the SOM and the Sammon map. Before SOM
analysis, the observed time-course data for 58 metabolites
(including an estimate of S17P) were smoothed by aver-
aging the adjacent data points using a sliding window of
width 3, to reduce high-frequency noise presumably orig-
inating from individual differences in plant seedlings,
rapid oscillations in metabolism, or measurement errors.
The missing data points were extrapolated by linear
approximation between prior and subsequent data values.
Among the 57 metabolites evaluated at 26 time points,
only 30 data points could be extrapolated due to the
detection limit or contamination of other unidentifiable
peaks. The SOM is a map from the input n-dimensional
data space (input layer) to a two-dimensional array of
nodes (output layer). The vectors in the output layer are
the parametric reference vector mi, which has n elements.
An input data vector, x, is compared with mi, and the best-
match vector, which is the smallest Euclidean distance |x -
mi|, is mapped onto this location. During learning, nodes
that are topographically close in the array up to a certain
distance activate each other to learn from the same input
vector, and the reference vectors are corrected so that they
become close to the input vector. Thus,

mi(t + 1) = mi(t) + hci(t) [x(t) - mi(t)],

where t is an integer, the discrete-time coordinate, and
hci(t) is the neighborhood kernel, a function defined over
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the lattice points. The neighborhood size, Nc, around
node c is a function of time, and hci is defined as

where α(t) is a monotonic decreasing function of time (0
<α(t) < 1) called the "learning rate". The learning rate
function was defined as

α(t) = α(0)(1.0 - t/T),

where α(0) is the initial learning rate and T the running
length (number of steps) in training. In this study, 58 met-
abolic time-courses were formatted and classified in a 24
× 24 hexagonal lattice. The applied SOM parameters were:
initial radius of the training area = 12, initial learning rate
= 0.025, running length = 65 000.

Metabolic pair-wise correlation
Significance levels for Pearson correlation coefficient r
were computed depending on the number of metabolite
pairs n found throughout the light and dark period,
respectively, by calculating t-scores given by t = r (n - 2)0.5/
(1 - r)0.5. The critical t-score was set to correspond to the
commonly used p-value of 0.05 in two-sided tests.

Hierarchical clustering
Among several algorithms for clustering analysis, we
chose Ward's method [29] in JMP software (ver. 6.0.0; SAS
Institute Inc. Cary, NC). Starting from trivial clusters each
containing one object only, Ward's method iteratively
merges two clusters that will result in the smallest increase
in the sum of the square of their differences (i.e., vari-
ance). At each step, all possible mergers of two clusters are
tried and their variance is computed. The difference
between clusters is calculated by the equation:
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