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Abstract

Background: DNA microarrays and other genomics-inspired technologies provide large datasets
that often include hidden patterns of correlation between genes reflecting the complex processes
that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression
data has been to extract biologically meaningful inferences regarding these processes — often
represented as networks — in an environment where the datasets are often imperfect and biological
noise can obscure the actual signal. Although many techniques have been developed in an attempt
to address these issues, to date their ability to extract meaningful and predictive network
relationships has been limited. Here we describe a method that draws on prior information about
gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach
consists of using preliminary networks derived from the literature and/or protein-protein
interaction data as seeds for a Bayesian network analysis of microarray results.

Results: Through a bootstrap analysis of gene expression data derived from a number of leukemia
studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence
gene-gene interactions which can then be validated by comparison to other sources of pathway
data.

Conclusion: The use of network seeds greatly improves the ability of Bayesian Network analysis
to learn gene interaction networks from gene expression data. We demonstrate that the use of
seeds derived from the biomedical literature or high-throughput protein-protein interaction data,
or the combination, provides improvement over a standard Bayesian Network analysis, allowing
networks involving dynamic processes to be deduced from the static snapshots of biological
systems that represent the most common source of microarray data. Software implementing these
methods has been included in the widely used TM4 microarray analysis package.

Background such genome-wide profiles should allow the identifica-
DNA microarrays and other genome-inspired, high-  tion of networks and pathways, deducing such interac-
throughput technologies allow us to capture information  tions for even a small number of genes remains a
regarding gene expression across the entire collection of = daunting task. Although several gene network modeling
genes in an organism. While it has long been argued that  techniques have been applied to microarray data, includ-

Page 1 of 13

(page number not for citation purposes)


http://www.biomedcentral.com/1752-0509/2/57
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18601736
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Systems Biology 2008, 2:57

ing weight matrices [1], Boolean networks [2], and differ-
ential equations [3], Bayesian Networks (BNs), BN
seemed to show the greatest promise in the analysis of
expression data as they provided the ability to learn net-
work structures and develop predictive models of system
response [4].

In the BN formalism, a network of interacting genes is rep-
resented as a graph in which the genes are "nodes" and
interactions between genes are "edges"; the terms network
and graph are often used interchangeably and in a BN
framework, the edges are directed. As an example, con-
sider a simple graph in which a node, Genel, is the only
parent of a second node, Gene2 (Figure 1). Associated
with the edge between them is a conditional probability
table that provides estimates of the likelihood of the state
of Gene2 given the state of Genel. For instance, the prob-
ability of Gene2 being over-expressed given that Genel is
over-expressed is 0.7, which may be interpreted as imply-
ing Genel activates Gene2. Placing this into a formal con-
text, a Bayesian Network is defined to be a pair (G, 6)
where G is a directed acyclic graph (DAG) whose vertices
are random variables X;,...,X,, and @is the conditional dis-
tribution for each variable given its parents P(X; |Par-
ents(X;)). Bayesian networks only allow dependencies
between a node and its parents and conditional inde-
pendence statements encoded by the network structure

Gene1 Gene2=1]|Gene1
-1 0.1
0 0.2
1 0.7

Figure |

A Bayesian network example where each random
variable corresponds to a gene that can take one of
three states corresponding to its transcriptional
response: -1 for under-expressed, 0 for unchanged,
and +1 for over-expressed. The table represents a subset
of the complete set of conditional probabilities for Gene2,
here indicating the likelihood that Gene2 is up-regulated
given the transcriptional state of Genel.
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define the conditional probability distributions; in the
case of genes, the factors that influence its expression.

BNs were first applied to gene expression studies in the
analysis of the yeast cell cycle [4], a dataset that consisted
of expression data collected over a carefully planned time-
course [5]. Friedman and colleagues were able to deduce
a predictive model of the cell cycle machinery in yeast
from this data, a result that generated a great deal of excite-
ment within the research community. However, applica-
tion of BN analysis to more "realistic" datasets (i.e. tumor
vs. normal, treated vs. control) failed to provide similarly
useful insight and as such is rarely applied in analysis of
expression profiling data.

Application of Bayesian Network analysis in genomics is
challenging for a number of reasons. The first problem is
that learning BNs is computationally expensive as, ideally,
one must assess all potential network topologies corre-
sponding to all possible sets of directed acyclic graphs
linking the genes. This results in a combinatorial explo-
sion of the number of possible structures and parameters;
formally this has been shown to be an NP-Complete
problem [6]. As an alternative, general purpose heuristic
search algorithms, such as greedy hill climbing, can be
used to explore the "state space” of the problem (here, the
relative expression state for each gene in each sample) in
an attempt to optimize some scoring function. The prob-
lem with these approaches is that they often find local
maxima and do not converge to the globally optimal solu-
tion. This accounts, in most instances, for the failure of BN
analysis to find "realistic" networks in datasets that lacked
the richness of the cell cycle time course.

A potential solution to the limitations of the type of gen-
eral-purpose search algorithms was proposed by Wolpert
and Macready, who noted that the use of domain-specific
knowledge can provide a useful bias that can lead to near-
optimal solutions in exploring the state space of a partic-
ular problem [7]. In the context of BN analysis of micro-
array data, a useful bias can be introduced through the use
of preliminary network topologies as soft constraints to
seed the search for a network graph [8-10], an approach
that has been applied in a variety of related problems [11-
15]. Although a network seed biases the search for the best
topology, it does not limit it so that new potential interac-
tions between genes can be identified.

A number of possibilities exist to provide prior seeds for
the network topologies, including pathway/interaction
databases, networks deduced from the published biomed-
ical literature indexed in PubMed, and those constructed
from high-throughput interaction screens such as the pro-
tein-protein interaction (PPI) described by Rual and col-
leagues [16]. As our goal, in part, is to discover new
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interactions, we chose to concentrate on prior networks
deduced from the literature and PPI data which often
include potential interactions not yet annotated in
curated pathway databases. As such, this approach has
potential to discover new interactions by combining
diverse sources of data and information.

A second challenge in the application of methods such as
BN analysis to microarrays is the typical design of genom-
ics studies. As noted previously, most microarray studies
do not involve uniform temporal sampling of the state of
a system where inferred relationships in the gene expres-
sion state space of genes can more easily be detected.
Rather, typical studies involve static comparisons of dif-
ferent phenotypic or treatment groups where relation-
ships between gene states can be much more subtle.
Further, and possibly more importantly, the large number
of genes assayed on a single array and the relatively small
number of samples profiled generally provide too few
measurements to constrain potential models, and arrive at
an optimal solution. To address this, we implement
model averaging through bootstrapping which allows us
to compute confidence estimates for network features in
the models we derive.

Ultimately, the question we must resolve is whether appli-
cation of BN analysis to gene expression data can reveal
useful networks that can lead to testable hypotheses about
the state and response of the systems under study. In par-
ticular, our goal in this manuscript is to assess the use of
prior network structures as seeds for a search of the gene
expression state space. To do this, we present an analysis
of two leukemia datasets [17-19]. As described below, we
find that by combining microarray data with prior net-
work structures deduced from the literature, PPI, or a com-
bination of these, we can better recover known pathways
and relationships between genes than when analyzing
microarray data without a network seed. To estimate the
robustness of our approach, we compare the learned net-
works to known networks from the KEGG database [20]
and show that networks constructed with high confidence
edges have a very small false-positive rate, but at the
expense of missing true edges. This suggests that even
when applied to imperfect data, our approach provides a
conservative way of recovering pathways and of identify-
ing potential new interactions that can be further evalu-
ated in the laboratory.

Results

Our analytical pipeline closely follows that outlined by
Friedman and colleagues [4], with important modifica-
tions. One starts with normalized DNA microarray data
from an appropriate study and identifies a set of candidate
genes that will be further analyzed. For example, one
might use a variety of statistical methods to identify genes
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correlating with the various phenotypic states under study
or select a set of genes representing a particular pathway or
process thought relevant to the system being analyzed.
The expression data for these genes are then discretized
using a multinomial model [4] and assigned to three
mutually exclusive and exhaustive bins (under-expressed,
unchanged, and over-expressed) by equal-width binning.
This discretized data then provides the "raw material" that
is subsequently used to learn a Bayesian Network. Our
modifications of the Friedman et al. approach involve the
introduction of a prior network seed to initiate the learn-
ing stage and the use of bootstrapping to estimate confi-
dence in the equivalence classes of final networks. As a
means of comparing a BN analysis both with and without
network seeds, we compared the resulting networks to
"known" pathways and evaluated our ability to reproduce
documented interactions between genes.

Deducing prior network structure from the published
literature

The published biomedical literature represents nearly the
entirety of our existing knowledge of biological entities
and the relationships between them. There are a variety of
methods that can be used to infer relationships between
genes based on published results. For the purpose of the
analysis presented here, we chose a simple but effective
way of inferring potential functional associations between
genes, the co-occurrences method described by Jensen
and colleagues [21]. Quite simply, if two and only two
genes are described in a single article indexed in PubMed
[22], then one assumes an interaction; weights are
assigned to interactions based on the relative number of
articles mentioning those genes together. Formally, we
create a graph in which nodes representing genes are con-
nected by an edge. For two genes, A and B, we assign a co-
occurrence edge weight, which counts the number of
times an "interaction" appears in the literature relative to
the total number of manuscripts surveyed, as prior proba-
bilities:

w(A,B)

max w(e)
eekb

p(A,B) =

where w(A, B) and w(e) denote the weight of edge (A, B)
and the weight of edge e respectively in the set of edges E.

The choice of limiting edge assignments to genes appear-
ing pair-wise in articles indexed in PubMed was based on
an analysis of the network properties that can be deduced
from the literature. Specifically, limiting networks to
papers containing two and only two genes results in net-
work topologies exhibiting a scale-free behavior. In con-
trast, increasing the threshold beyond two genes
introduced deviations from scale-free behavior, leading to
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networks that have properties of a complete graph (results
not shown). Further, setting some threshold is necessary
to remove publications including whole-genome studies
that mention thousands of genes and consequently pro-
duce networks where each node is connected to every
other node. The choice of two, while conservative, allows
for a prior network with the highest possible confidence
without resorting to more ambitious text-mining
approaches.

Deducing prior network structure from high-throughput
screens

There are many sources of network priors other than the
literature, including the growing collection of interactome
data available from high-throughput yeast two hybrid
protein-protein interaction (PPI) screens such as that
recently released by Rual and colleagues [16]. While these
datasets are still sparse — current interactome datasets are
thought to represent only about 1% of the human interac-
tome (2754 edges from approximately 64 million protein
pairs) - they represent an unbiased screen for interactions
and have identified many not catalogued in the published
literature. Since we were interested in exploring the useful-
ness of PPI-based networks as priors, we chose to compen-
sate for their relative sparseness by using the "significant
gene" set derived from our initial microarray analysis as a
starting point to search the PPI data and allowed the ini-
tial networks to expand through protein interactions at a
distance at most k = 3 interactions away using Floyd's all-
pairs shortest paths algorithm [23]. For PPI networks, we
use a uniform distribution for the prior probabilities for
all edges.

Setting an initial directionality for network edges

As a BN is a directed acyclic graph (DAG), the initial net-
work used to seed the search must have directions
assigned to each edge. To address this for the undirected
literature and PPI networks, we developed an approach
based on a modified depth-first search (DFS) algorithm to
traverse the graph and make assignments. Simply, one
starts at some randomly selected node and explores the
graph as far as possible along each branch before back-
tracking, assigning directions as the graph is traversed.
Because DFS is commonly used for cycle detection [23],
we modified the standard algorithm to keep edges in the
depth-first tree but direct back edges in increasing order of
visiting timestamp to ensure the resulting graph is a DAG
(the modified DFS, along with an alternate approach, is
described in detail in Supplement S1; see Additional File
1). While all of the resulting edges may not be directed
appropriately, this is not a problem as the BN search con-
siders not only additions and deletions of edges but also
edge reversals and therefore provides a means of correct-
ing an error made at this stage. As this method cannot esti-
mate the conditional probabilities on the edges, we
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assume a flat distribution such that all interactions are,
initially, equally likely.

Bootstrapping

As noted previously, overfitting is a potential problem in
BN analysis, particularly given the small number of sam-
ples profiled in a typical microarray experiment. To com-
pensate for this, we perform model averaging through
non-parametric bootstrapping (resampling with replace-
ment) to estimate the confidence in various network fea-
tures learned [24]. As this requires comparison of the
DAGs derived from each bootstrap iteration, one must
consider the equivalence class of DAGs. An equivalence
class is a partition of a set into subsets that are equivalent
under some operation, such as the partition of the integers
into evens and odds under the modulo-two operation.
Here we encode the independencies within the DAGs and
use these as way of partitioning the entire collection into
subsets in which each member is equivalent. As described
in greater detail in the Supplement S2 (see Additional File
1), we transform the DAG from each bootstrap iteration
into a complete partially directed acyclic graph (CPDAG)
which is a representative of an equivalence class of DAGs
through the DAG-to-CPDAG algorithm described by
Chickering [25]. For each CPDAG, we check whether the
features of interest [directed edge, undirected edge, order
relation (one variable is the ancestor of the other varia-
ble), and Markov relation (if two variables are connected
either way or if they are both parents of another variable)]
are found. By counting how often a particular feature
occurs relative to the total number of iterations, we can
estimate the overall bootstrap confidence and conse-
quently select features that are strongly supported by the
data.

In the work presented here, we perform 100 bootstrap
operations for each of four cases: gene expression data
alone (with no priors), or using priors derived from the
literature, from PPI data, or from a combination of the
two. For each iteration, we use the open-source WEKA
package [26,27] with a greedy hill climbing algorithm to
optimize the BDe score [28], a Bayesian metric that uses
an explicit prior over networks and is proportional to the
posterior probability of the network given the data; as a
default, we set the maximum number of parents for each
node equal to three. In this framework, both the network
topology and the conditional probabilities associated
with each edge are learned from the data, but starting
from our initial seed network.

To evaluate the performance of this approach, we investi-
gate a number of features that can be learned from the
data and estimate the confidence, as noted, based on the
frequency with which it occurs. We use this to address
three questions: Can we recover known gene interactions?
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Are the confidence estimates different in prior (combined
literature and microarray data) versus no prior (micro-
array data alone)? Is the performance better when using
prior rather than the no prior approach?

Finally, it should be noted that there are a number of alter-
native scoring metrics and search algorithms. The choice
here in part reflects the initial presentation by Friedman
[4] but also represents the defaults defined by WEKA. We
investigated a number of alternatives and each produced
a result consistent with that described below; an overall
improvement in the resulting networks when using an ini-
tial seed network structure.

BN analysis of gene expression in Leukemia I: an example
As a first test of seeded BN approach, we analyzed a well-
known example of a typical microarray expression study,
the 1999, Golub et al. comparison of Acute Lymphoblastic
Leukemia (ALL) with that in Acute Myeloid Leukemia
(AML) patients (38 samples, 27 ALL and 11 AML) that
used the Affymetrix Hu6800 GeneChip™ (containing
7129 gene-specific probe sets representing approximately
6817 genes) to identify signatures that could differentiate
these disease subtypes [17]. As is the case in most analyses
of this sort, we first performed a statistical filtering to
reduce the complexity of the data. Here we simply used a
between-subjects t-test with a standard Bonferroni correc-
tion to identify the 40 genes most significant for distin-
guishing the ALL and AML samples. As noted previously,
we expanded the seed networks to take better advantage of
the limited PPI data by including those genes a distance of
three or fewer from the initial set (based on the PPI data).
This PPI-extended dataset consisted of 63 genes and
served as the starting point for analysis (See Supplement
S3; see Additional File 1); the resulting literature plus PPI
"seed" network, included 44 gene nodes connected by 48
edges and 19 singleton (unconnected) genes.

Using the approach described above, we ran 100 boot-
strap iterations and collected features with bootstrap con-
fidence greater that 0.7 (occurring in more than 70% of
iterations); the resulting networks were visualized using
Cytoscape [29,30]. Figure 2A shows the results of a BN
analysis for the 63 starting genes without the use of a seed
prior, while Figure 2B shows the resulting network when
a prior seed based on both the literature and PPI data is
used. What is surprising is that when using both the liter-
ature and PPI as priors, genes involved in cell cycle are
found at the core of the network whereas genes involved
in regulation of transcription and ubiquitination, which is
known to be involved in protein degradation, are on the
periphery. Furthermore, most of these gene interactions
are directly or indirectly involved in Rb/E2F pathway
[31,32], which is reflected in observed cell cycle differ-
ences between ALL and AML [33].

http://www.biomedcentral.com/1752-0509/2/57

It is also instructive to examine quantitative measures
such as the BDe score to evaluate BN performance. Table
1 shows the BDe scores for the networks derived from
microarray data alone as well as when using prior network
seeds derived from the literature, PPI data, and a combi-
nation of the two. While, in general, higher scoring net-
works are more likely given the data, the relatively small
difference in scores makes it difficult to use this as an
objective performance metric. Indeed, the greedy hill
climbing approach is known to have potential to overfit
the data, particularly given limited data, and such non-
specialized optimization approaches are known to often
provide non-useful networks [34].

When using the priors however, we believe that network
confidence is a better measure of overall performance.
Tables 2 and 3 show the average confidence for the
directed edge and Markov relation features, respectively,
for the seven gene pairs with the highest confidence.
Clearly the use of prior network seeds greatly increases our
ability to recover known interactions. This is further illus-
trated below.

BN analysis of gene expression in Leukemia Il: pathway
reconstruction and validation

Although the analysis of the Golub et al. data provides
some level of confidence that we can faithfully recover
pair-wise interactions between genes using a seeded BN
approach, we developed this approach in hopes of deduc-
ing the structure of biological networks from gene expres-
sion data. The Hu6800 GeneChip™ used in the Golub et
al. study surveys only a limited subset of the genes within
the genome and has significant gaps in nearly every path-
way relevant to understanding the cellular mechanisms
that distinguish ALL from AML.

Consequently, we turned our attention to the analysis of
two more extensive Leukemia datasets from Ross and col-
leagues [18,19], who collected expression profiles on the
Affymetrix U133A GeneChip™, which contains probes for
more than 22,000 transcripts representing nearly the
entirety of the protein-coding genes encoded within the
human genome. The raw CEL files were normalized and
the resulting dataset was filtered to eliminate adult low
quality samples (details in Supplement S4; see Additional
File 1); this left 120 pediatric ALL and 120 pediatric AML
samples. To evaluate network reconstruction, we limited
our analysis to genes mapping to the KEGG cell cycle
pathway. For these genes, we performed a BN analysis
using no prior information as well as seeds derived from
the literature, PPI data, and the combination; in each case,
100 bootstrap iterations were performed using hill climb-
ing and the BDe score. Networks were constructed using
gene pairs with bootstrap confidence greater than a
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Figure 2

Networks arising from a Bayesian Network analysis of gene expression data of Golub et al. [|7] and rendered in
Cytoscape [29] using (A) no prior information and (B) prior network seeds deduced from a combination of the
literature and the protein-protein interaction data of Rual et al. [16]. In both cases, the BNs were learned using a
greedy hill climbing algorithm to optimize the BDe score. Shown here are edges representing the Markov relation between
genes with confidence scores of at least 0.70 after 100 bootstrap iterations. In (A), genes highlighted in blue are involved in reg-
ulation of transcription; no other clear functional class is represented. This network is comprised of 24 nodes, 4| edges; rela-
tive to the network one could postulate based on the literature and PPl data it is missing 42 edges and contains 41 "extra"
edges. For (B), genes highlighted in blue are involved in regulation of transcription, those in green are involved in cell cycle, and
genes in red are involved in ubiquitination. Compared with the literature and PPl network used as a prior, this network, con-
taining 41 nodes and 68 edges, has 0 missing edges, and 25 extra edges.
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Table I: Scores for learned networks using top 40 genes and those at distance at most 3 from them in PPl using the leukemia dataset
from Golub et al. [17] using microarray data only or priors from combinations of the literature and PPl data.

Prior Seed Source None Literature prior

PPI prior Literature and PPI prior

Score -29.1340899 -29.82373161

-29.90025881 -30.99743368

threshold value in the directed edge, Markov relation, and
order relation features.

Given a set of genes and a predicted network describing
their associations, the optimal method for validating the
network would be to experimentally test each interaction
that comprise the associated graph. As this is often
impractical, as an alternative, we will rely the KEGG path-
way database [20] as a source of "verified" interactions
and network topologies that can be used to assess the
fidelity of our predicted networks. For the analysis pre-
sented here, we assume that interactions represented in
KEGG are true and that those not in KEGG are false. While
the former is probably a good assumption, the latter is
likely not; there may be as yet undiscovered interactions
and, indeed, the goal of a BN analysis is to discover these.
A second potential limitation of using KEGG pathways is
that they are typically represented as undirected graphs
while the results of a BN analysis are directed acyclic
graphs. Consequently, we cannot assess the directionality
of predicted edges, only their presence or absence. Fur-
ther, KEGG represents physical interactions between pro-
teins, not the RNA transcripts which are assayed in
microarray studies. The seeded BN approach that we
describe here models interactions between gene expres-
sion states and these may not be identical to the interac-
tion states of the corresponding proteins. Despite these
limitations, we chose to compare our results to known
pathways annotated in KEGG because it is a conservative
way to evaluate the performance of our approach as it
does not rely on the validation of potentially novel inter-
actions learned from the data.

Consider an ideal graph G; (an undirected graph from
KEGG) and a learned graph G, (a DAG learned using the
seeded BN approach). As graphs are comprised of nodes
and edges, one can compare G,and G; by comparing their
sets of edges (E; and E,, respectively) and calculate true
positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) using a contingency table such as
that shown in Table 4 and described in more detail in Sup-
plement S5; see Additional File 1). If we define sensitivity
as the probability of recovering a true edge and specificity
as the probability of suppressing a false edge, then we
observe a trade-off between sensitivity and specificity as a
function of confidence threshold in networks constructed
using microarray data only or microarray data and litera-
ture (Figure 3A). As the confidence threshold increases,
sensitivity decreases and specificity increases. The positive
predictive value (PPV) is the proportion of true positives
among all positives (PPV = TP/[TP+FP]). In other words,
PPV is the probability that in case an edge is recovered in
the BN, it is really a true edge as it is in KEGG. It can be
seen that PPV increases with confidence threshold (Figure
3B).

A Receiver-Operator Characteristic (ROC) curve, which
compares sensitivity and specificity directly (TP rate vs. FP
rate [35]), suggests that the identification of Markov rela-
tions using Bayesian networks is conservative as they are
found with strong evidence only at low true positive rates.
Figure 4 shows ROC curves for Markov relation detection
using either microarray data alone (blue) or with seeds
derived from combined literature and PPI priors (red); for
both, bootstrap confidence decreases as sensitivity

Table 2: Average confidence values for directed edge features for the 7 highest-confidence gene pairs derived from the Golub et al.
data [17] in a BN analysis using no prior seeds or priors derived from the literature. The t-test p-value measures the likelihood that

prior and no-prior results are equivalent.

Gene pairs Average no prior Average prior t-test p-value
SMARCA4 SMARCA4_2 0.4075 0.959583 0.001059
CBXI SRP9 0.155833 0.944583 1.18 x 10-¢
TMPO GTF2E2 0.017083 0.934583 6.54 x [0-10
SMARCA4_2 RBBP4 0.005833 0.894583 7.67 x 108
CD79A DHPS 0.011667 0.894167 1.32 x 107
FAH MCM3 0.02375 0.877083 5.90 x 107
FAH PSMA6 0.02875 0.790833 5.80 x 10
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Table 3: Average confidence values for Markov relations features for the 7 highest-confidence gene pairs derived from the Golub et al.
data [17] in a BN analysis using no prior seeds or priors derived from the literature.

Gene pairs Average no prior Average prior t-test p-value
SMARCA4_2 SMARCA4 0.4575 0.965 0.001473
SRP9 CBXI 0.476667 0.96 0.001508
GTF2E2 TMPO 0.148333 0.938333 2.54 x 106
RBBP4 SMARCA4_2 0.15375 0.912083 1.43 x 105
CD79%9A DHPS 0.135417 0.895833 1.35 x 105
FAH MCM3 0.187917 0.881667 4.93 x 105
FAH PSMA6 0.283333 0.79625 0.001547

The t-test p-value measures the likelihood that prior and no-prior results are equivalent.

increases. As can be clearly seen, the use of prior network
seeds greatly improves our ability to detect known interac-
tions, particularly when considering those with strong
bootstrap support.

Finally, we attempted to make an estimate of our confi-
dence in new interactions that we learn using prior net-
work seeds. To do this, we used the Ross data [18,19] and
again compared Bayesian Networks learned from the data
with and without literature network priors. However, for
each gene in the literature network, we systematically
deleted the corresponding node, one by one, from the
seed network. With this modified seed network, we per-
formed 100 bootstrap iterations to determine how often
we re-learned true directed edges (as defined by the corre-
sponding KEGG pathway) associated with that gene rela-
tive to how often we learned the same true edges when
using no prior. Figure 5 shows the average positive predic-
tive value as a function of bootstrap confidence for edges
associated with the gene deleted from the literature net-
work, averaged over all genes. As can be seen, the use of a
prior network that approximates the real network allows
us to more accurately learn true interactions than is possi-
ble when not using prior information. Furthermore, BNs
obtained by removing each node in the seed network
yield PPVs that are very close to the PPV obtained by using
the original seed network. This suggests that even when
missing some information, a seed network can introduce

a useful bias in the search space explored and lead to iden-
tification of high-confidence interactions.

Taken together, the evidence here, based on a number of
measures, suggests that use of prior network seeds, com-
pared to the analysis of gene expression alone, improves
our ability to learn interactions known to occur between
gene products and consequently to reconstruct networks
in a BN framework. In addition, our analysis suggests that,
ultimately, the network model that one chooses to use
requires a balance between re-learning known edges and
discovering new potential interactions; the choice of
which to emphasize depends of the goal of the analysis.
Regardless of the choice, the value of a Bayesian Network
framework is that it not only provides a network graph,
but conditional probabilities on the edges that result in
predictive models that can be used in a variety of applica-
tions.

Discussion

Much of the excitement generated by microarrays and
other high-throughput technologies was based on the
expectation that they would lead us to uncover the path-
ways and networks that provide the link between geno-
type and phenotype. Application of Bayesian Network
analysis, although computationally expensive, repre-
sented one possible way to discover these important links
in expression data, but failed to provide much insight

Table 4: Contingency table for comparing learned networks to KEGG pathways.

Learned Network

Ideal (KEGG pathway) Edge in network No
Yes =|E| N |E] FN = |E| - TP
No =|E]|-TP TN = [([V|[[V,- 1])/2] - FN

Here E, and E, represent the edges in the learned and ideal graphs, respectively, where the ideal graphs are those derived from the KEGG pathways;

V,is the set of nodes (vertices) in the ideal graph.
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Sensitivity, specificity tradeoff (A) and PPV (B) vs. confidence threshold when using microarray data alone or
seeds derived from literature. The Bayesian networks were learned from 100 bootstrap iterations using the hill climbing
algorithm and BDe score using the leukemia datasets ofRoss et al. [18,19]. The learned networks were compared to corre-
sponding subgraphs of KEGG cell cycle pathway (KEGG ID: hsa04110).
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ROC curve for Markov relations for networks
deduced from the Ross et al.[18,19]data either with or
without network seeds (literature plus PPI), based on
100 bootstrap iterations. The learned networks were
compared to corresponding subgraphs of KEGG cell cycle
pathway (KEGG ID: hsa04110) and indicate much better
overall performance for networks derived using network
seeds.

when applied to the vast majority of expression datasets.
Here we present a way to recover at least some of that lost
promise.

In an analysis of two gene expression datasets, both repre-
senting the types of class-comparisons that are typical in
microarray studies, we established that the use of domain-
specific knowledge in the form of prior network seeds can
improve the ability of Bayesian Network analyses to learn
known interactions between genes. We demonstrated this
by showing improvements in recovery of known pairwise
interactions between gene products as defined by path-
ways in the KEGG database. Through the use of bootstrap-
ping, we are able to assign confidence values to the
individual interactions. Finally, these interactions, repre-
sented by an edge between two gene nodes, can be used to
reconstruct predictive networks at any confidence level.

Generally, one would hope to use such an analysis to dis-
cover new potential interactions and to build testable
models that can be validated. Not surprisingly, we find a
tradeoff between sensitivity and specificity in detecting
interactions when varying the bootstrap confidence
threshold. Networks constructed with high confidence
edges give high specificity but miss many interactions,
resulting in lower sensitivity and fewer potentially novel
interactions. Setting the confidence threshold too low, on

http://www.biomedcentral.com/1752-0509/2/57

the other hand, may lead to the identification of many
spurious edges and limit the ultimate utility of any net-
work model. Managing this tradeoff must, therefore, be
done in the context of the experimental problem being
investigated and one's ability to validate the results.

There are a number of potential limitations to what we
present here. First, in the analysis of the Ross data, we
chose to focus on genes within the cell cycle regulatory
pathway rather than looking at the entire collection of
genes in the array. However, even with this focused collec-
tion of genes, we were able to validate our hypothesis, that
prior network seeds derived from the literature and PPI
data improve our ability to detect known interactions rel-
ative to a standard, unseeded BN analysis. What is most
exciting about the work we present here is that we were
able to learn the structure of a dynamic process, the cell
cycle, from a dataset consisting of static snapshots of two
phenotypic states. This suggests that directed experiments
where a particular network or pathway is perturbed and
followed over time may further improve the overall per-
formance of a BN approach. Using such an approach in an
iterative manner, in which a network is first learned, then
perturbed and the resulting data used to refine the pre-
dicted network structure, may allow us to discover novel
players in many known networks and to learn previously
unknown networks from DNA microarray expression pro-
files.

Second, it should be noted that the networks we learn
from BN analysis do not represent physical networks but
instead capture subtle relationships between the states of
various genes and their ability to influence the states of
others. Nevertheless, in our evaluation of BN perform-
ance, we compared our results to physical interaction net-
works between proteins represented in the KEGG
database. We believe this is justified as the hypothesis
underlying our work is that the physical relationship cap-
tured in gene-product interactions is reflected in transcrip-
tional response and the results we present, showing good
correlation between the physical and BN networks pro-
vide some validation for this hypothesis.

Finally, one may consider whether the use of seeds biases
us toward simply re-learning known networks docu-
mented in the literature. While we believe the evidence
presented in this manuscript suggests otherwise, even if it
were the case, our approach represents an automated way
of extracting network graphs from a gene list, refining the
graph through the use of expression data, and learning
conditional probabilities that can be used to make predic-
tions as to how the system may respond to perturbations.
The implications of this for a wide range of problems
ranging from mechanistic studies to drug target prioritiza-
tion remain to be explored.
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Figure 5

For the Ross et al.[18,19]data, we began with our original literature network seed and systematically deleted
each individual gene, learning Bayesian networks through 100 bootstrap iterations both with and without
these altered literature priors. Shown here is the positive predictive value (PPV) for identifying directed edges as a func-

tion of bootstrap confidence.

Conclusion

Ultimately, the value of what we present here will be
judged based on its utility. The goal of most systems biol-
ogy research is the development of predictive, testable
models that can be used to infer the properties of biolog-
ical systems. The seeded BN approach we describe here
yields such models and the data we present indicates that
the networks we learn do, indeed, reflect the properties of
biological systems. While we await further validation of
the approach, we believe that seeded Bayesian Networks
will be an important new approach for the analysis of
genome-scale expression data.
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