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Abstract
The detection and analysis of steady-state gene expression has become routine. Time-series
microarrays are of growing interest to systems biologists for deciphering the dynamic nature and
complex regulation of biosystems. Most temporal microarray data only contain a limited number
of time points, giving rise to short-time-series data, which imposes challenges for traditional
methods of extracting meaningful information. To obtain useful information from the wealth of
short-time series data requires addressing the problems that arise due to limited sampling. Current
efforts have shown promise in improving the analysis of short time-series microarray data, although
challenges remain. This commentary addresses recent advances in methods for short-time series
analysis including simplification-based approaches and the integration of multi-source information.
Nevertheless, further studies and development of computational methods are needed to provide
practical solutions to fully exploit the potential of this data.

Background
Microarray technology has enabled the interrogation of
gene expression data in a global and parallel fashion, and
has become the most popular platform in the era of sys-
tems biology [1]. A majority of the microarray analysis
thus far has focused on elucidating disease mechanisms
[2]. More recently, with the rapid growth in research and
development of biofuels [3], a new challenge of manipu-
lating plant cell-wall biosynthesis has led to further appli-
cations of microarrays [3]. The detection and analysis of
steady-state mRNA expression have become routine [4-7],
with applications in many areas of biology (i.e., plants,
yeast, insects, and mammals). Increasing efforts are
focused on deciphering the multidimensional dynamic
behaviours of complex biological systems, including com-
plex regulation schemes, such as the crosstalk between
multiple pathways [3,8,9], and interactions among more

than 1000 genes in plant cell wall biogenesis, develop-
mental biology, and human diseases [10-14]. Thus, time-
series microarray data, and its analysis, are of growing
interest to several research communities [15].

Time-series microarrays capture multiple expression pro-
files at discrete time points (i.e., minutes, hours, or days)
of a continuous cellular process. These data can character-
ize the complex dynamics and regulation in the form of
differential gene-expressions as a function of time.
Numerous time-series microarray experiments have been
performed to study such biological processes as the bio-
logical rhythms or circadian clock of Arabidopsis, flowering
time, abiotic stress, disease progression, and drug
responses [2,16-20]. Many of the methods of analyzing
time-series data originated from various disciplines, such
as signal processing, dynamic system theory, machine
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learning and information theory, and have been applied
to detect differentially expressed genes, identify expres-
sion patterns, and construct gene networks [15,21-23],
nevertheless challenges remain.

A significant challenge in dealing with time-series data
comes from the limited sampling or number of time
points taken, giving rise to short time-series data. In the
growing pool of temporal microarray datasets, a typical
time-series record has fewer than ten time-points [24].
The most common type of temporal data available is short
time-series data, which arises from the difficulty in obtain-
ing samples for many time points, often times due to the
high costs of the arrays or limited biological samples,
especially in animal or clinical studies [25,26]. "Short"
time-series could signify the time-scale or the number of
discrete time-points. Typically, it refers to the latter, which
more appropriately should be sparse time-series data.

Limited sampling accentuates the difficulties associated
with static or standard time-series analyses. First, the prob-
lems arising due to high dimensionality accompanied by
a small sample size, such as matrix singularity and model
over-fitting [27], in analyzing static or long time-series
microarray data, become more pronounced in the case of
short time-series data. Second, the unavoidable noise has
more influence on the analysis of short time-series than
on long time-series data, enhancing the difficulty in dis-
tinguishing real from random patterns and increasing the
potential of misleading analyses [28].

Improving short time-series analysis requires addressing
the problems that arise due to limited sampling. Recent
efforts by investigators to overcome the difficulties associ-
ated with limited sampling include decreasing the com-
plexity of continuous time-series data based on
simplification strategies [29,30] or enriching the informa-
tion content of the data by incorporating multi-source
information [31,32], see Figure 1 for a summary of possi-
ble options.

Simplification strategies
Simplification strategies reduce time-series data from con-
tinuous to discrete representations prior to analysis. These
strategies usually transform the raw temporal profiles into
a set of symbols [29,30,33] or nominal values [31,34] that
are used to categorize qualitatively the gene expression
data into different states or trends, that is, in terms of
phases (early or late), magnitudes (high or low), or direc-
tions (up- or down-regulation). Based on this concept, a
"quantization" method introduced by Di Camillo et
al[35], whereby the expression of a gene at a particular
time-point is quantized (discretized) into three patterns
of "states", representing under-expressed, not differen-
tially expressed or over-expressed with respect to a base-

line pre-defined by a hypothetical distribution. After such
discretization, the Dynamic Bayesian Network algorithm
performed better in terms of precision and recall in recon-
structing the regulatory network from synthetic expres-
sion data generated from differential equations based on
a series of defined rules of regulation. Similarly, Kim [33]
developed a difference-based clustering algorithm (DIB-
C) in which the profile of short time-series data was dis-
cretized to symbolic patterns, but according to the differ-
ences between adjacent time-points. These patterns or
"trend" simplified the profile of a gene from numerical
values to direction of change, that is, "I (Increase), D
(Decrease) or N (No change)", and rate of change, that is,
"V (conVex), A (concAve) or N (No change)". Inevitably
information is lost through this simplification. Even so,
such conceptual discretization helped achieve more inter-
pretable and biologically meaningful clusters [33].

Simplifications methods have a side benefit in reducing
the noise in the original data to some degree when
decreasing the dimension of the time-series data, thus
making the subsequent analysis more robust to noise.
This was demonstrated by Sacchi et al. [30] with their
adaptation of the Temporal Abstractions (TA)-clustering
method from the field of artificial intelligence to gene
expression analysis. Here, the temporal expression pro-
files were described in terms of trends of "Increasing",
"Decreasing", or "Steady". A reduced rate of misclassifica-
tion in computational experiments was observed for sim-
ulated data using TA-clustering with pre-defined patterns
and noise than with the clustering approach without such
simplification strategies, particularly when the noise level
was high [30].

A key challenge with simplification strategies is how to
pre-define these a priori representative temporal trends or
patterns of gene expression in the discretization step.
Defining these patterns have largely depended on the
expertise of the researchers, for example, Gerber et al
defined six temporal expressions trends in terms of phase
(early, middle and late) and direction (increase and
decrease) [31], similarly, Wu et al. proposed 27 possible
temporal patterns to group gene expression data for CD8
T cell differentiation [34]. However, this may introduce
bias in the patterns that are pre-defined and, in turn, the
analysis and results obtained. Data-driven approaches
could extract potentially novel gene expression patterns in
an objective and reasonably unbiased fashion [36]. Thus,
developing methods to automatically define temporal
trends could alleviate this limitation or bias. Ernst et al.
proposed a procedure to generate potential trends which
describe the directions and magnitudes of the expression
changes with respect to time [24,28]. Attempts at auto-
matic abstraction of temporal features have met with
some success in providing easily interpretable clusters,
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examples include the temporal abstraction-based method
that defines trends (i.e., Increasing, Decreasing and Steady)
over subintervals [30], and the difference-based method
that uses the first and second order differences in expres-
sion values to detect the direction and rate of change of
the temporal expression [33]. Although simplification
strategies make the raw expression profiles coarse-grained,
which could somewhat ameliorate the noise in the data,
inevitably the simplification leads to loss of information,
which may exacerbate the situation of limited sampling.

In particular, some important patterns may be lost when
the raw expression profiles are oversimplified, for exam-
ple, simplifications that consider only monotonously
expressing genes [31] may not capture some of the com-
plex temporal patterns, such as oscillatory gene expression
profiles [37].

Incorporating multi-source information
Incorporating multi-source information, including prior
knowledge (i.e., pathway information) [38,39], multi-

The general process of time-series expression analysis starts with data collection from microarray experimentsFigure 1
The general process of time-series expression analysis starts with data collection from microarray experiments. 
The data then undergoes pre-processing procedures, such as normalization and quality evaluation. Next data mining techniques 
are used to discover patterns or characteristics, identify related pathways or reconstruct systems network for biological processes 
from short-time series data. To address the limited sampling in short-time series data, two strategies are introduced in the 
general process of microarray analysis. Simplification strategies reduce the data to discrete representations based on trends or 
states with respect to time to achieve more interpretable and biologically meaningful clusters. Such conceptual discretization is 
part of the pre-processing step, prior to data mining. Incorporating multi-source information takes a different strategy. In this strat-
egy multi-source data, including various omics databases and prior biological information, are collected and integrated to obtain a 
comprehensive dataset and enhance the information content. To minimize the heterogeneity of omics data from different 
experiments, standardization can and have been imposed on omics databases. Current standards for high-through-put database 
include MIAME, MIAPE, MSI, MIMIx. MIAME has been implemented with GEO and ArrayExpress microarray databases. The inte-
gration of various omics databases or prior biological information can enhance the effectiveness and efficiency of mining and inter-
pretation of short-time series data to achieve biological discoveries. For example, multi-source prior biological information, i.e., 
prior noise-distribution has been proposed to enhance the performance of the data mining and network inference [43,44]. In 
addition, pathway and functional knowledge and metabolic data from different databases have also enhanced the clustering results 
and pathway identification [39-42]. These studies are discussed and referenced in the text.
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scale or different levels of information [40-42], or addi-
tional time-series datasets from other sources [31,32], is
another approach to address the limited sampling and to
improve the computational analysis and interpretation of
short time-series microarray data.

Different types of prior knowledge have been used to
improve the computational analysis of short time-series
data. They include applying a prior noise distribution to
the expression data [43]. For example, by incorporating a
prior noise-distribution to improve the parameter estima-
tion in the commonly used CAGED model (Cluster Anal-
ysis of Gene Expression Dynamic), Wang et al. achieved
more functional and meaningful clusters, as validated by
Gene Ontology [43]. This approach was advanced further
by Wang et al. [44] to a stochastic dynamic model where
the gene expression profile is modelled with the addition
of noisy "measurements". The authors try to explicitly sep-
arate the real pattern of expression from the Gaussian
noise imposed onto the expression data. Based on such a
model, they applied Expectation Maximization (EM)
algorithm to estimate both the parameters for the noise
model and the actual values of the expression levels, and
efficiently reconstructed the gene regulatory network.
Thus defining a prior noise-distribution in analyzing time
series microarrays is both biologically relevant and com-
putationally efficacious especially when the time series is
too short to satisfy the requirements of traditional multi-
variate methods for parameter estimation [44].

In addition, pre-defined gene sets involving specific path-
ways or functional categories have focused on pattern
changes of sets of genes rather than individual genes and
helped to enhance our understanding of cellular processes
[38,39]. Similarly, incorporating multi-level biological
information, such as metabolic data or prior knowledge
about the genes and pathways, has improved interpreta-
tion of the data. For example, metabolic data [40,41] and
pathway information [40,42] have been integrated with
short time-series gene expression data to identify liver tox-
icity pathways in HepG2 cells. Likewise, protein-DNA
interaction data and promoter motif information have
been integrated with short time series data to reconstruct
the dynamic gene regulatory network of Saccharomyces cer-
evisiae response to stress [45], and to identify targets of
known transcription factors in cold acclimation of Arabi-
dopsis thaliana [46], respectively. Furthermore, metabolic
profiles have been integrated with short time-series gene
expression data to characterize the dynamics of metabolic
changes during oxidative stress [47], the effect of elevated
CO2 on the physiology of A. thaliana [48], and to recon-
struct the temporal sequence of events during bud devel-
opment [49]. Similarly, integrating multiple time-series
datasets has become increasingly popular with the grow-
ing pool of publicly available datasets [50]. Combining

multiple time-series datasets has been shown to improve
the confidence of the gene regulatory relationships that
are inferred [51], as well as identify regulatory relation-
ships [32] and functional gene clusters [31] under differ-
ent treatment conditions.

A key challenge with integrating different datasets is the
heterogeneity of the data, that is, each set may have a
unique set of sampling rates, time-scales, cell types, and
sample populations, as well as varying measurement
noise levels, etc. The heterogeneity across the datasets
increases the difficulty in extracting meaningful results. To
maximize the usefulness and minimize the heterogeneity
of the publicly available data, stricter standardization
methods should be defined and imposed on procedures
such as data collection and pre-processing. Indeed, stand-
ards such as MIAME (Minimum information about a
microarray experiment), MIAPE (Minimum information
about a preoteomics experiment), MSI (Metabolomics
standards initiative), MIMIx (Minimum information
required for reporting a molecular interaction experi-
ment) have been proposed and implemented for present-
ing and exchanging gene expression [52], proteomics
[53], metabolomics [54] and interaction data [55], respec-
tively. Thus far, standardizing gene expression data is the
most mature and hence, most successful compared to the
standardization of the other data types. Therefore, inte-
grating gene expression data from various sources is now
readily achievable with public databases, such as GEO
[56] and ArrayExpress [57], where the quality of the data
is controlled with the MIAME score.

Conclusion
In summary, analysis of short time-series microarrays is
still at an early stage. Most studies using short time-series
data have applied methods that had been developed for
static or long time-series microarray data, and which tend
to perform poorly with limited temporal sampling. Cur-
rent efforts, including simplification approaches and the
integration of multi-source information, have shed prom-
ising light on improving the analysis of short time-series
microarray data.

Future studies could combine both of these strategies to
simultaneously decrease the complexity of continuous
time-series representations, yet minimize the information
loss with the simplification-based approaches by increas-
ing the information content of the data. Gene-module-
level analysis could be a potential solution, in which the
concept of modularity not only plays a central role in
incorporating multi-source biological information, but
also reflect a simplification strategy focusing on groups of
genes rather than individual ones. Gene-module-level
analysis could efficiently combine both strategies.
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A recent study by Hirose et al [58] used a statistical infer-
ence method to reconstruct a module-level gene network
based on time-series data, rather than networks of individ-
ual genes. They concentrated on groups of genes and the
correlations between them, thus the transcription mod-
ules extracted could be building blocks of the regulatory
networks. Such module-based network construction over-
comes, in part, the problem of limited sampling. The
modules in the study are calculated by a vector regressive
approach based on the state space model, which essen-
tially simplifies the data by including only the significant
temporal relationships between the modules. Unfortu-
nately, their modules are defined based on statistical crite-
ria and thus are limited in their biological significance.
The integration of multi-source biological information to
identify modules from short-time series microarray data
should enhance understanding and interpretation of bio-
logical systems and disease processes.

Thus far, the predominant focus has still been on lower
levels of analyses, such as detecting differently expressed
genes or clustering genes with similar temporal profiles,
whereas few higher levels of analysis, i.e. network con-
struction, have been reported. With the rapid growth in
availability of short time-series data, more theoretical and
technical studies are urgently needed to provide practical
solutions to exploit fully the potential of this wealth of
data.

Acknowledgements
We thank Professor Neil T. Wright for providing critical comments on the 
content, and the editors for their valuable comments and suggestions in 
improving the paper. C.C is supported in part by the National Institute of 
Health (1R01GM079688-01), National Science Foundation (BES 0425821), 
and the MSU Foundation on the Center for Systems Biology.

References
1. Panda S, Sato TK, Hampton GM, Hogenesch JB: An array of

insights: application of DNA chip technology in the study of
cell biology.  Trends in cell biology 2003, 13(3):151-156.

2. Cobb JP, Mindrinos MN, Miller-Graziano C, Calvano SE, Baker HV,
Xiao W, Laudanski K, Brownstein BH, Elson CM, Hayden DL, Hern-
don DN, Lowry SF, Maier RV, Schoenfeld DA, Moldawer LL, Davis
RW, Tompkins RG, Baker HV, Bankey P, Billiar T, Brownstein BH,
Calvano SE, Camp D, Chaudry I, Cobb JP, Davis RW, Elson CM, Free-
man B, Gamelli R, Gibran N, Harbrecht B, Hayden DL, Heagy W,
Heimbach D, Herndon DN, Horton J, Hunt J, Laudanski K, Lederer J,
Lowry SF, Maier RV, Mannick J, McKinley B, Miller-Graziano C, Min-
drinos MN, Minei J, Moldawer LL, Moore E, Moore F, Munford R,
Nathens A, O'Keefe G, Purdue G, Rahme L, Remick D, Sailors M, Sch-
oenfeld DA, Shapiro M, Silver G, Smith R, Stephanopoulos G, Stormo
G, Tompkins RG, Toner M, Warren S, West M, Wolfe S, Xiao W,
Young V: Application of genome-wide expression analysis to
human health and disease.  Proceedings of the National Academy of
Sciences of the United States of America 2005, 102(13):4801-4806.

3. US Department of Energy, Office of Sciences: Breaking the Biolog-
ical Barriers to Cellulosic Ethanol: A Joint Research Agenda.
2006.

4. Salunkhe P, Topfer T, Buer J, Tummler B: Genome-wide transcrip-
tional profiling of the steady-state response of Pseudomonas
aeruginosa to hydrogen peroxide.  Journal of bacteriology 2005,
187(8):2565-2572.

5. Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler M,
Stewart G, Krol M, Hurry V, Rodermel SR, Maxwell DP, Huner NP:
IMMUTANS does not act as a stress-induced safety valve in
the protection of the photosynthetic apparatus of Arabidop-
sis during steady-state photosynthesis.  Plant physiology 2006,
142(2):574-585.

6. Rawool SB, Venkatesh KV: Steady state approach to model
gene regulatory networks--simulation of microarray experi-
ments.  Bio Systems 2007, 90(3):636-655.

7. Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, Tam WL,
Rosa GJ, Halgren RG, Lim B, Fernandez E, Cibelli JB: The transcrip-
tome of human oocytes.  Proc Natl Acad Sci U S A 2006,
103(38):14027-14032.

8. Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem
W, Lange M: Crosstalk between cytosolic and plastidial path-
ways of isoprenoid biosynthesis in Arabidopsis thaliana.  Proc
Natl Acad Sci U S A 2003, 100(11):6866-6871.

9. Setlur SR, Royce TE, Sboner A, Mosquera JM, Demichelis F, Hofer
MD, Mertz KD, Gerstein M, Rubin MA: Integrative Microarray
analysis of pathways dysregulated in metastatic prostate
cancer.  Cancer Res 2007, 67(21):10296-10303.

10. Yong WD, Link B, O'Malley R, Tewari J, Hunter CT, Lu CA, Li XM,
Bleecker AB, Koch KE, McCann MC, McCarty DR, Patterson SE,
Reiter WD, Staiger C, Thomas SR, Vermerris W, Carpita NC:
Genomics of plant cell wall biogenesis.  Planta 2005,
221(6):747-751.

11. Carpita N, Tierney M, Campbell M: Molecular biology of the plant
cell wall: searching for the genes that define structure, archi-
tecture and dynamics.  Plant Mol Biol 2001, 47(1-2):1-5.

12. Dozmorov MG, Kyker KD, Saban R, Shankar N, Baghdayan AS, Cen-
tola MB, Hurst RE: Systems biology approach for mapping the
response of human urothelial cells to infection by Enterococ-
cus faecalis.  BMC bioinformatics 2007, 8 Suppl 7:S2.

13. Hooper SD, Boue S, Krause R, Jensen LJ, Mason CE, Ghanim M,
White KP, Furlong EE, Bork P: Identification of tightly regulated
groups of genes during Drosophila melanogaster embryogen-
esis.  Mol Syst Biol 2007, 3:72.

14. Baugh LR, Hill AA, Slonim DK, Brown EL, Hunter CP: Composition
and dynamics of the Caenorhabditis elegans early embryonic
transcriptome.  Development (Cambridge, England) 2003,
130(5):889-900.

15. Androulakis IP, Yang E, Almon RR: Analysis of time-series gene
expression data: Methods, challenges, and opportunities.
Annual Review of Biomedical Engineering 2007, 9:205-228.

16. Hsu KL, Pilobello KT, Mahal LK: Analyzing the dynamic bacterial
glycome with a lectin microarray approach.  Nature chemical
biology 2006, 2(3):153-157.

17. McAdams HH, Shapiro L: A bacterial cell-cycle regulatory net-
work operating in time and space.  Science 2003,
301(5641):1874-1877.

18. Lan H, Carson R, Provart NJ, Bonner AJ: Combining classifiers to
predict gene function in Arabidopsis thaliana using large-scale
gene expression measurements.  BMC bioinformatics 2007, 8:358.

19. Welch SM, Roe JL, Dong ZS: A genetic neural network model of
flowering time control in Arabidopsis thaliana.  Agron J 2003,
95(1):71-81.

20. Locke JC, Millar AJ, Turner MS: Modelling genetic networks with
noisy and varied experimental data: the circadian clock in
Arabidopsis thaliana.  Journal of theoretical biology 2005,
234(3):383-393.

21. Bar-Joseph Z: Analyzing time series gene expression data.  Bio-
informatics (Oxford, England) 2004, 20(16):2493-2503.

22. Opgen-Rhein R, Strimmer K: Learning causal networks from sys-
tems biology time course data: an effective model selection
procedure for the vector autoregressive process.  BMC bioin-
formatics 2007, 8 Suppl 2:S3.

23. Opgen-Rhein R, Strimmer K: From correlation to causation net-
works: a simple approximate learning algorithm and its
application to high-dimensional plant gene expression data.
Bmc Syst Biol 2007, 1:37.

24. Ernst J, Bar-Joseph Z: STEM: a tool for the analysis of short time
series gene expression data.  BMC bioinformatics 2006, 7:191.

25. Ding M, Cui SY, Li CJ, Jothy S, Haase V, Steer BM, Marsden PA, Pippin
J, Shankland S, Rastaldi MP, Cohen CD, Kretzler M, Quaggin SE: Loss
of the tumor suppressor Vhlh leads to upregulation of Cxcr4
Page 5 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12628348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12628348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12628348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15805502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16891546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16891546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16891546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17382459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17382459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17382459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16968779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16968779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12748386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17974971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17974971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17974971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15981004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15981004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11554466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11554466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11554466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18047719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17224916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17224916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16462751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16462751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17888165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17888165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17493252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17493252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17493252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16597342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16597342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16906157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16906157


BMC Systems Biology 2008, 2:58 http://www.biomedcentral.com/1752-0509/2/58
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

and rapidly progressive glomerulonephritis in mice.  Nat Med
2006, 12(9):1081-1087.

26. Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R,
Mitchell D, Steinman L: Prolonged survival and decreased
abnormal movements in transgenic model of Huntington
disease, with administration of the transglutaminase inhibi-
tor cystamine.  Nat Med 2002, 8(2):143-149.

27. Braga-Neto U: Fads and fallacies in the name of small-sample
microarray classification.  Ieee Signal Proc Mag 2007, 24(1):91-99.

28. Ernst J, Nau GJ, Bar-Joseph Z: Clustering short time series gene
expression data.  Bioinformatics (Oxford, England) 2005,
21:I159-I168.

29. Yang E, Maguire T, Yarmush ML, Berthiaume F, Androulakis IP: Bio-
informatics analysis of the early inflammatory response in a
rat thermal injury model.  BMC bioinformatics 2007, 8:10.

30. Sacchi L, Bellazzi R, Larizza C, Magni P, Curk T, Petrovic U, Zupan B:
TA-clustering: Cluster analysis of gene expression profiles
through Temporal Abstractions.  Int J Med Inform 2005, 74(7-
8):505-517.

31. Gerber GK, Dowell RD, Jaakkola TS, Gifford DK: Automated dis-
covery of functional generality of human gene expression
programs.  PLoS Comput Biol 2007, 3(8):e148.

32. Redestig H, Weicht D, Selbig J, Hannah MA: Transcription factor
target prediction using multiple short expression time series
from Arabidopsis thaliana.  BMC bioinformatics 2007, 8(1):454.

33. Kim J, Kim JH: Difference-based clustering of short time-
course microarray data with replicates.  BMC bioinformatics
2007, 8:253.

34. Wu H, Yuan M, Kaech S, Halloran M: A Statistical Analysis of
Memory CD8 T Cell Differentiation: An Application of a
Hierarchical State Space Model to a Short Time Course
Microarray Experiment.  Annals of Applied Statistics 2007,
1(2):442-458.

35. Di Camillo B, Sanchez-Cabo F, Toffolo G, Nair SK, Trajanoski Z,
Cobelli C: A quantization method based on threshold optimi-
zation for microarray short time series.  Bmc Bioinformatics
2005, 6:.

36. Breitling R: Biological microarray interpretation: the rules of
engagement.  Biochimica et biophysica acta 2006, 1759(7):319-327.

37. Dequeant ML, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A,
Pourquie O: A complex oscillating network of signaling genes
underlies the mouse segmentation clock.  Science 2006,
314(5805):1595-1598.

38. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gil-
lette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP:
Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles.  Proc Natl
Acad Sci U S A 2005, 102(43):15545-15550.

39. Segal E, Friedman N, Koller D, Regev A: A module map showing
conditional activity of expression modules in cancer.  Nat
Genet 2004, 36(10):1090-1098.

40. Li Z, Srivastava S, Yang X, Mittal S, Norton P, Resau J, Haab B, Chan
C: A hierarchical approach employing metabolic and gene
expression profiles to identify the pathways that confer cyto-
toxicity in HepG2 cells.  Bmc Syst Biol 2007, 1:21.

41. Srivastava S, Li Z, Yang X, Yedwabnick M, Shaw S, Chan C: Identifi-
cation of genes that regulate multiple cellular processes/
responses in the context of lipotoxicity to hepatoma cells.
Bmc Genomics 2007, 8:364.

42. Li Z, Srivastava S, Findlan R, Chan C: Using Dynamic Gene Mod-
ule Map Analysis To Identify Targets That Modulate Free
Fatty Acid Induced Cytotoxicity.  Biotechnology Progress 2008,
24(1):29-37.

43. Wang L, Ramoni M, Sebastiani P: Clustering short gene expres-
sion profiles.  Lect Notes Comput Sc 2006, 3909:60-68.

44. Wang Z, Yang F, Ho DW, Swift S, Tucker A, Liu X: Stochastic
dynamic modeling of short gene expression time-series data.
IEEE transactions on nanobioscience 2008, 7(1):44-55.

45. Ernst J, Vainas O, Harbison CT, Simon I, Bar-Joseph Z: Reconstruct-
ing dynamic regulatory maps.  Mol Syst Biol 2007, 3:74.

46. Chawade A, Brautigam M, Lindlof A, Olsson O, Olsson B: Putative
cold acclimation pathways in Arabidopsis thaliana identified
by a combined analysis of mRNA co-expression patterns,
promoter motifs and transcription factors.  Bmc Genomics
2007, 8:304.

47. Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J,
Selbig J, Liu J, Fernie AR, Sweetlove LJ: The metabolic response of
heterotrophic Arabidopsis cells to oxidative stress.  Plant phys-
iology 2007, 143(1):312-325.

48. H. Kanani, B. Dutta, J. Quackenbush, Klapa MI: Time-Series Inte-
grated Metabolomic and Transcriptional Profiling Analyses .
In Concepts in Plant Metabolomics Edited by: Basil J. Nikolau, Wurtele
ES.  Springer Netherlands; 2007:93-110. 

49. Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J,
Bhalerao RP, Boerjan W, Rohde A: A molecular timetable for
apical bud formation and dormancy induction in poplar.  The
Plant cell 2007, 19(8):2370-2390.

50. Ng A, Bursteinas B, Gao QO, Mollison E, Zvelebil M: Resources for
integrative systems biology: from data through databases to
networks and dynamic system models.  Brief Bioinform 2006,
7(4):318-330.

51. Shi Y, Mitchell T, Bar-Joseph Z: Inferring pairwise regulatory
relationships from multiple time series datasets.  Bioinformatics
(Oxford, England) 2007, 23(6):755-763.

52. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P,
Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland
T, Glenisson P, Holstege FCP, Kim IF, Markowitz V, Matese JC, Par-
kinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor
R, Vilo J, Vingron M: Minimum information about a microarray
experiment (MIAME) - toward standards for microarray
data.  Nat Genet 2001, 29(4):365-371.

53. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK, Jones AR, Zhu
WM, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR,
Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD,
Ping PP, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Von-
driska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR, Hermja-
kob H: The minimum information about a proteomics
experiment (MIAPE).  Nat Biotechnol 2007, 25(8):887-893.

54. Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison
N, Sumner LW, Goodacre R, Hardy NW, Taylor C, Fostel J, Kristal
B, Kaddurah-Daouk R, Mendes P, van Ommen B, Lindon JC, Sansone
SA: The metabolomics standards initiative (MSI).  Metabo-
lomics 2007, 3(3):175-178.

55. Orchard S, Salwinski L, Kerrien S, Montecchi-Palazzi L, Oesterheld M,
Stumpflen V, Ceol A, Chatr-Aryamontri A, Armstrong J, Woollard P,
Salama JJ, Moore S, Wojcik J, Bader GD, Vidal M, Cusick ME, Gerstein
M, Gavin AC, Superti-Furga G, Greenblatt J, Bader J, Uetz P, Tyers M,
Legrain P, Fields S, Mulder N, Gilson M, Niepmann M, Burgoon L, De
Las Rivas J, Prieto C, Perreau VM, Hogue C, Mewes HW, Apweiler R,
Xenarios I, Eisenberg D, Cesareni G, Hermjakob H: The minimum
information required for reporting a molecular interaction
experiment (MIMIx).  Nat Biotechnol 2007, 25(8):894-898.

56. Gene Expression Omnibus   [http://www.ncbi.nlm.nih.gov/geo/]
57. ArrayExpress   [http://www.ebi.ac.uk/microarray-as/ae/]
58. Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-

Jones DS, Print C, Miyano S: Statistical inference of transcrip-
tional module-based gene networks from time course gene
expression profiles by using state space models.  Bioinformatics
2008, 24(7):932-942.
Page 6 of 6
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16906157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11821898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11821898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11821898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17214898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17214898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17214898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15941669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17696603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17696603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17696603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18021423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17629922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17629922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16351737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16351737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16904203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16904203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17095659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17095659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17498300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17498300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17498300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18052188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18052188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18052188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18334455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18334455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17224918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17224918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17764576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17764576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17764576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17122072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17122072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17693531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17693531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17040977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17040977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17040977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17687369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17687369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17687370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17687370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17687370
http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/microarray-as/ae/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18292116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18292116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18292116
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Simplification strategies
	Incorporating multi-source information
	Conclusion
	Acknowledgements
	References

