
BioMed CentralBMC Systems Biology

ss
Open AcceResearch article
Regulatory network reconstruction using an integral additive model 
with flexible kernel functions
Eugene Novikov* and Emmanuel Barillot

Address: Service Bioinformatique, Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France

Email: Eugene Novikov* - Eugene.Novikov@curie.fr; Emmanuel Barillot - Emmanuel.Barillot@curie.fr

* Corresponding author    

Abstract
Background: Reconstruction of regulatory networks is one of the most challenging tasks of
systems biology. A limited amount of experimental data and little prior knowledge make the
problem difficult to solve. Although models that are currently used for inferring regulatory
networks are sometimes able to make useful predictions about the structures and mechanisms of
molecular interactions, there is still a strong demand to develop increasingly universal and accurate
approaches for network reconstruction.

Results: The additive regulation model is represented by a set of differential equations and is
frequently used for network inference from time series data. Here we generalize this model by
converting differential equations into integral equations with adjustable kernel functions. These
kernel functions can be selected based on prior knowledge or defined through iterative
improvement in data analysis. This makes the integral model very flexible and thus capable of
covering a broad range of biological systems more adequately and specifically than previous models.

Conclusion: We reconstructed network structures from artificial and real experimental data
using differential and integral inference models. The artificial data were simulated using
mathematical models implemented in JDesigner. The real data were publicly available yeast cell
cycle microarray time series. The integral model outperformed the differential one for all cases. In
the integral model, we tested the zero-degree polynomial and single exponential kernels. Further
improvements could be expected if the kernel were selected more specifically depending on the
system.

Background
One of the most challenging tasks of systems biology is to
reconstruct structures and mechanisms of interaction
between components of cellular systems from available
experimental data. In view of recent technological devel-
opments for large-scale measurements of DNA expression
levels, this problem can often be formulated more specif-
ically as a problem of gene network inference from micro-
array gene expression data. In particular, microarray time-

series represent an important source of information about
cellular dynamics. Various approaches have been pro-
posed to reconstruct network structures from microarray
time series. These approaches include additive regulation
models [1,2], dynamic Bayesian networks (DBN) [3-5], S-
system models [6,7] and Boolean networks [8,9]. Each of
these concepts allows for several modifications, which
multiplies the number of possible models for data analy-
sis. The problem is not trivial as little is known about
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molecular interactions in experimentally observed sys-
tems. The mismatch between the real mechanisms used
for data generation and the models used for network
inference may lead to arbitrary network structures. There-
fore it is difficult to expect that any one of the proposed
formalizations can ensure acceptable performance for any
biological system. Nevertheless further attempts to
develop models that provide greater accuracy and flexibil-
ity with respect to the system under investigation would
be appreciated.

The additive regulation model is a widely used approach
for network inference from time series data [1]. It is repre-
sented by a set of ordinary differential equations:

where yi(t) is the intensity level of node i at time t; n is the
number of measured nodes; bi is the constant output
observed in the absence of regularity inputs and wij is the
coefficient representing the influence of node j on the reg-
ulation of node i. As experimentally obtained time series
are available in a finite number of discrete time points N,
the continuous differential representation (1) should be
converted into the discrete-time form:

where k = 1, ...,N-1 and Δtk is the time interval between the
measurements at times tk and tk+1.

Network inference fits developed models to experimental
data. Fitting adjusts the unknown model parameters so
that an optimal value for a fitness criterion is ensured. For
the inference model(2), this criterion can be defined as

where (tk) are the measured time series, ψ ik are the sta-

tistical weights and P is the number of estimated parame-

ters. With the proper weights ψ ik, a χ2 criterion value close

to 1 indicates an acceptable fit. The estimated parameters
encode information about the structure of the network.

In this paper we generalize the additive regulation model
by converting differential equations into integral equa-
tions with adjustable kernel functions. These kernel func-
tions can be selected based on prior knowledge or defined
through iterative improvement in data analysis. This
makes the integral model very flexible and thus capable of
covering a broad range of biological systems more ade-
quately and specifically than previous models. As the
number of the unknown parameters for even medium-
sized networks may exceed the number of experimentally
measured points, fitting algorithms for underdetermined
problems have to be applied. Among different fitting
strategies [10] the forward selection fitting algorithm has
shown reasonable performance, in particular for sparse
networks, and, therefore, it has been adopted in this
paper.

We tested the proposed generalization for the additive
regulation model with simulated and experimental data.
Mathematical models have been developed for real bio-
logical systems including the glycolysis pathway in yeast
[11] and the mitogen-activated protein kinase (MAPK)
cascade [12]. These models are available as SBML mod-
ules [13,14] that can be imported in JDesigner [15] to sim-
ulate time series. These time series are then sampled at
random time intervals and statistical noise is added to
mimic experimentally observed distortions. We also used
the public yeast cell cycle microarray time series datasets
measured by Spellman et al. [16] to demonstrate practical
applicability of the developed approach.

Results
Mathematical Framework
The additive regulation model (1) can be easily used to
derive first approximations for network structures. How-
ever, if the first-order ordinary differential equations (1)
are not appropriate for a particular system or experimental
dataset, the inference approach based on Eq. (1) provides
little possibility for easy adjustments. Therefore we are
looking for generalizations of the basic additive regula-
tion model (1) that would allow us to systematically
approximate broader range of dynamic behaviors. With
this aim we integrate the ordinary differential equation
(1) yielding:

where t0 is the initial time point. The coefficient wij can be
moved under the integral and converted into the function
wij(t, x):
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where bi(t, t0) is a function generalizing the second term in
the right-hand part of Eq. (4). The fitness criterion for the
integral model can be defined similar to Eq.(3):

Now the inference model is completely defined by the
kernel functions wij(t, x) and by the background functions
bi(t, t0). This model, besides higher flexibility, allows for a
straightforward interpretation in terms of control theory
[17]. The integral equation (5) can be considered as the
reaction of a system (gene i, in our case) on the n external
inputs, represented by yi(t), with wij(t, x) being system
impulse response functions.

We propose the integral model (5) as a generic environ-
ment for devising more specific models. Instead of chang-
ing the form of the differential equation (which may lead
to reprogramming of the inference algorithm), the inte-
gral model (5) allows for continuous change of the various
parameters of the kernel or background functions. The
parameters that are known from prior knowledge can be
fixed in analysis, whereas the others can be made free and
estimated from experimental data. Certain parameters can
also be used to identify the shape of the kernel or back-
ground functions. Some examples of the generic represen-
tations for the kernel functions are given in the Methods
section.

Higher model flexibility is accompanied by larger uncer-
tainty about the derived structures, as different models or
sets of model parameters can be in accordance with exper-
imental data. Typical solutions for underdetermined
problems are to collect more experimental data or to use
more prior knowledge from the other sources of informa-
tion. The advantage of the integral inference model is that
(i) once we have more experimental data, we can leave
more parameters free in fitting, and (ii) once we have
more prior knowledge, we can smoothly integrate it in the
inference model. In contrast, the differential model (2)
needs to be redefined and reprogrammed in both cases.

The kernel or background functions can be rather com-
plex for adequate description of the molecular/genetic
interactions. As little has been formalized in this field so
far, we have to use approximations. We are looking for
such representations for wij(t, x) and bi(t, t0) that result in

the inference models linear with respect to the unknown
parameters. These models can be represented as linear
regression models allowing us to directly compute the
best-fit parameters from the data. It is also straightforward
to apply non-linear models, but these models lead to non-
linear regression, requiring computationally intensive,
iterative approaches. Therefore we generally prefer to use
linear models unless we have strong evidence or prior
knowledge that a model should be non-linear. Three lin-
ear models – polynomial, exponential and delta-function
– for wij(t, x) and bi(t, t0) are presented in the Methods sec-
tion.

Fitting Algorithm
The network reconstruction using the differential additive
model (2) has been described in the Background section.
The same approach can be applied for the developed inte-
gral model (5): this model is fit to experimental data and
the unknown parameters are estimated by minimizing the
χ2 fitness criterion (6). Links created from the estimated
parameters, if the corresponding parameters are signifi-
cantly different from zero, form the network structure. In
[10], different strategies to search for optimal network
structures have been reviewed and compared. The search-
ing strategies are model independent and therefore can be
applied to both models, (2) and (5), without modifica-
tion. Here we apply the forward selection algorithm [10]
as a good compromise between prediction accuracy and
speed of processing. The algorithm we use is essentially
equivalent to the "Forw-reest-K" algorithm from [10]; we
have just diversified a set of stopping criteria. The imple-
mented algorithm is outlined as follows:

1. We begin without links for the network. A default
model defined by Eq. (2) with all wij = 0 or by Eq. (5) with
all wij(t, x) ≡ 0 is assigned to each non-interacting node.

2. The default model is fit to the data and the χ2 fitness cri-
terion is calculated for each node.

3. The node showing the largest χ2 value is probably regu-
lated by one of the other nodes. A link between the node
of interest and each of the other nodes that are not yet
identified as regulators for the node of interest is created.

4. The resulting sub-network is fit to the experimental
data. The link that ensures the best quality of fit is con-
served in the system.

5. The procedure generates links until the stopping crite-
rion is fulfilled. We have implemented the following stop-
criteria:

• We stop the procedure if the node with the lowest qual-
ity of fit is already linked to all the other nodes of the net-
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work. Thus, there are no more free nodes that can improve
the fit for the node of interest (i.e. the node is saturated).
This indicates that either the algorithm has achieved the
local minimum or the inference model is not correct. In
any case we still can continue to increase the overall qual-
ity of fit by more precise fitting for some of the other
nodes. However, this may lead to over-fitting for these
nodes and therefore is undesirable.

• The procedure can be stopped if the overall χ2 quality
criterion has reached a certain limit, or when the overall
number of links (or the maximum number of links for
one node) surpasses a user-defined value.

• Finally, the user can decide when to stop iterations
based on visual inspection of the residuals – the differ-
ences between the experimental and the reconstructed
time series. However, this may be problematic for large
networks.

We use the χ2 criterion as an indicator of correspondence
between the inference model and experimental data
because the inference model is expected to reproduce
experimental data. However, if the statistical weights ψ ik
in Eqs. (3) and (6) are not correct, the absolute value of
the χ2 criterion is meaningless. Using the experimental
errors as ψ ik can lead to overestimation of χ2, because
experimental data are presented in both the left- and the
right-hand parts of the fitting models (2) or(5). Integra-
tion averages experimental errors in the right-hand part of
Eq.(5). Thus, its contribution can be ignored in the overall
statistical error, and ψ ik is equal to the experimental error.
The sum in the right-hand part of Eq. (2) can also be con-
sidered as a smoothing operation. However, the error
from the experimental point yi(tk-1) in the first term of the
right-hand part of Eq. (2) is comparable to yi(tk) in the
left-hand part of Eq. (2) and must be taken into account.
In this case we define ψ ik as a product of experimental
error and √2. Then values for χ2 close to 1 indicate appro-
priate fit for both models.

If we assume that any link between any pair of nodes is
possible, then the number of the unknown parameters
can exceed the size of experimental datasets that are typi-
cally available. This leads to underdetermined systems
and requires additional conditions to regularize the solu-
tion. In this respect the forward selection proceeds in a
"natural", although not optimal, way: a new link is added
only when it is necessary to increase the quality of fit.

The main problem of the algorithm is that it can easily be
trapped in the local minima. If a wrong node is selected at
an early iteration because it gives the best quality of fit for
the selected node, the decision cannot be reconsidered at
later iterations taking into account additional links cre-

ated after that wrong decision. Nevertheless, we found
that this algorithm performs reasonably well in many
cases, particularly for relatively sparse networks.

Testing
We compared performances of the differential and inte-
gral inference models using various artificial systems pro-
ducing simulated data and three experimental datasets
from [16].

As available experimental datasets are typically limited in
size, we explored models where the number of free (fit)
parameters was small. Thus we tested two kernels for the
integral model: the zero-degree polynomial (Lw = 0 in Eq.
(8) and Lb = 0 in Eq.(9)) and the single exponential (Lw =
1 in Eq. (13) and Lb = 0 in Eq.(14)). In each case we had
one free parameter per link. This also equalizes the
degrees of freedom in the compared differential and inte-
gral inference models. The delta-function model
described in the Methods section was not applied because
all tested systems demonstrate behavior continuous in
time.

To appreciate how our predictions are far from random,
we also applied the integral model with the zero-degree
polynomial kernel to infer network structures from the
permuted data, i.e. when node labels are randomly
assigned to generated time series.

Arbitrary Networks
In the first set of experiments the model used for network
inference was that used for data generation.

Simulation
Artificial regulatory networks were generated with ran-
dom and scale-free topologies. For random topology, any
two nodes are connected with the probability p independ-
ent from the other connections. For scale-free topology
[18], the number of links at each node is approximated by
a power-law distribution p(k) ~ kγ . We used the growing
network with redirection algorithm [19] to generate net-
works with scale-free topology. The number of nodes in
the generated networks was 20; the probability p for the
random networks was equal to 0.05; and the parameter γ
for the scale-free networks was set to 2.5 for all cases. We
demonstrate examples of networks undergoing random
topology (Fig. 1a) and scale-free topology (Fig. 1b). A set
of first-order ordinary differential equations (1) was used
to simulate time series. The parameters wij were randomly
generated from the uniform distribution in the interval [-
1;1]. The background levels bi were set to zero and the ini-
tial states yi(t0) were set to 1 for all nodes.

We used the fourth-order Runge-Kutta formula [20] to
numerically solve differential equations(1). The solution
Page 4 of 14
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was built on 1000 time points uniformly spaced over the
interval [0;10]. The resulting time series were sampled to
produce 20 time points to approach the quality of experi-
mental data. We split the original 1000-point time series
into 20 intervals of 50 points. At each interval the output
time point was randomly selected. This led to a time series
with non-homogeneous (random) time intervals between
subsequent measurements. Each of 20 intensity values
was statistically distorted. The distorted value was gener-
ated as a Gaussian random variable with the mean equal
to the true value and standard deviation proportional to
the true value. The coefficient of proportionality – noise-
to-signal level – was set to 0.05.

Inference
As time series were simulated using a set of first-order
ordinary differential equations, the corresponding infer-
ence model is either the differential model (Eq. (2)) or the
integral model (Eq.(5)) with the zero-degree polynomial
kernel (Lw = 0 in Eq. (8) and Lb = 0 in Eq.(9)). Although
the single exponential kernel may also be used in this
case, it is clearly non-adequate and therefore it was not
tested.

We reconstructed the networks from the generated time
series using the forward selection procedure. Each time
the fitting procedure added a new link, we updated the
number of links for True Positives (TP), False Positives
(FP) and False Negatives (FN). Then TP, FP and FN values
were combined to estimate Positive Predictive Value
(PPV) and Sensitivity value (Se) defined as in [21]:

Other possible performance measures, such as negative
predictive value or specificity, are not relevant for sparse
networks when the forward selection procedure is used for
reconstruction. During first iterations of the fitting proce-
dure the number of TN largely exceeds the number of TP
leveling the difference between reconstruction models.

We stopped the forward selection procedure if the χ2 fit-
ting criterion became smaller than 0.5 or if a particular
node became saturated. Adequate fit should give χ2 values
close to 1, as experimental errors – and thus statistical
weights ψ ik – in the χ2 criteria for Eqs. (3) or (6) are
directly accessible in simulations. Limiting the value of
the χ2 criterion to 0.5 leads to substantial over-fitting.
However, as we recorded the history of generated links
(PPV, Se and χ2 value after each added link), this allowed
us to explore a broader range of model fitness values.

We averaged the dependence of PPV and Se on the total
number of links over 100 runs of the simulation proce-
dure. A different network structure, different link parame-
ters, different time sampling and different noise
realizations were generated at each run.

Artificial Biological Systems
We used two mathematical models for real biological sys-
tems (yeast glycolysis [11] and the MAPK cascade [12]) to
test the performance of the developed inference models
for more realistic systems. These models can be imported
in JDesigner [15] as SBML modules [13,14] and used to
simulate time series. The network structures and SBML
files used for simulations are also available from our web
page [22]. We stress that we used these modules as they
were originally developed, i.e. without any modificationsPPV

TP
TP FP

Se
TP

TP FN
=

+
=

+
; (7)

Examples of 20-node artificial networksFigure 1
Examples of 20-node artificial networks. Network topology: (a) random with p = 0.05 and (b) scale free with γ = 2.5.

a) b) 
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in the structure or in the kinetic parameters of the models.
Mathematical representations and kinetic parameters of
the models can be viewed in JDesigner. We used JDesigner
to integrate the models on 100 time points spaced uni-
formly over the interval [0;1] for yeast glycolysis and
[0;100] for the MAPK cascade.

Two data distorting steps were performed as before: we
left 20 time points at random time intervals, and added
Gaussian noise with noise-to-signal level equal to 0.05.
Examples of time series used for the inference are availa-
ble on our web page [22].

Besides comparing the differential and integral inference
models, we also tested here two kernels for the integral
model: the zero-degree polynomial (Lw = 0 in Eq. (8) and
Lb = 0 in Eq.(9)) and single exponential (Lw = 1 in Eq. (13)
and Lb = 0 in Eq.(14)).

The forward selection fitting procedure generated the
dependence of the PPV, Se (Eq.(7)) and χ2 criteria (Eqs.
(3) and(6)) on the total number of generated links. The
resulting curves were averaged over 100 runs of the simu-
lation procedure. The simulation procedure generated dif-
ferent time sampling and different realizations of noise at
each run, whereas the network structure, kinetic laws and
kinetic parameters remained the same.

Real Data
To demonstrate applicability of the developed approach
to real experimental data, we used the yeast (Saccharomy-
ces cerevisiae) cell cycle microarray time series dataset [16].
This dataset consists of three sub-sets measured using dif-
ferent cells synchronization methods [16]: α factor-based
(alpha, 18 time points), size-based (elu, 14 time points)
and cdc15-based (cdc15, 24 time points).

As others did [23-25], we selected a part of the yeast cell
cycle pathway available from KEGG [26] (Fig. 2). Assum-
ing that this pathway reflects biological reality, we can
count the number of TP, FP and FN and calculate PPV and
Se as it is done for artificial systems.

As experimental errors and therefore the statistical weights
ψ ik in Eqs. (3) or (6) were not available, the absolute
value of the χ2 fitting criterion could not be used as a stop-
ping condition for the forward selection procedure. How-
ever, as it will be shown for artificial systems (see the
Discussion section), numerous FP links are required to
yield the χ2 criterion close to 1. Taking into account that
fitting models are very approximate, it may not be always
reasonable to require perfect fitting quality. Therefore we
investigated the performance (PPV and Se) of the infer-
ence models as a function of the number of generated
links.

As for the artificial systems, we compared here perform-
ances of the differential and integral inference models. In
the integral model we used the same two kernels: the zero-
degree polynomial (Lw = 0 in Eq. (8) and Lb = 0 in Eq.(9))
and single exponential (Lw = 1 in Eq. (13) and Lb = 0 in
Eq.(14)).

We also applied DBN approach to infer network struc-
tures from the experimental datasets. We used the Banjo
software [27] to perform Bayesian inference. For analysis,
we selected the alpha and elu datasets as only these two
datasets were measured at equidistant time points. The
latter is prerequisite for Banjo. To run Banjo we used the
same input settings as given in [21]. We calculated PPV
and Se for the inferred networks that had the highest score
in the Banjo output.

Independent artificial data
Finally, we performed an additional comparison of the
differential and integral inference models based on an
independent set of artificial data described in [21]. Briefly,
20 random 10-gene networks with an average in-degree
per gene of 2 were generated. For each network, time-
series data (1000 time points) were simulated using linear
ordinary differential equations. Each data point was statis-
tically distorted with noise-to-signal ratio equal to 0.1. In
our analysis we first sampled the 1000-point time series to
produce 20-point time series, which were then used for
network reconstruction. As the network structures are
known, we built the dependencies of PPV and Se on the
number of generated links for each network. The obtained
dependencies were further averaged over 20 networks.

A part of the yeast cell cycle pathway available from KEGG [26]Figure 2
A part of the yeast cell cycle pathway available from KEGG 
[26].
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Software
The developed algorithms for the network inference were
implemented in the software package NETI, freely availa-
ble from our web page [22].

Discussion
Arbitrary Networks
We present the resulting PPV and Se curves for random
topologies (Fig. 3a) and scale-free topologies (Fig. 3b).
We also show the dependence of the averaged overall fit-
ness (χ2) on the number of links. The χ2 criteria were cal-
culated from Eq. (3) for the differential inference model
and from Eq. (6) for the integral inference model. We
found that the integral model was superior to the differen-
tial model for both scale-free and random topologies,
demonstrating higher predictive power and sensitivity.
The networks with scale-free topology were reconstructed
with greater accuracy (i.e. with smaller number of FP and
FN) than those with random topology. Moreover, ade-
quate fit (χ2 is close to 1) corresponded to the best recon-
struction (the highest PPV) only for the scale-free
networks. For random topology the best reconstruction
was achieved at a χ2 value somewhat greater than 1. In this
case, the inference procedure needed more links to repro-
duce the simulated time series. Many of those links were
false positives, decreasing the PPV values. The better per-
formance for the scale-free networks can be due to the fact
that they had fewer nodes that simultaneously regulated
another node. Therefore, the fitting procedure has fewer
chances to incorrectly select a node as a regulator. Despite
the correspondence between data producing models and
network inference models, reconstruction was not perfect.
There are various reasons for that.

Although the underlying mathematical models were
equivalent, the numerical implementations were differ-
ent. We used an algorithm based on the fourth-order
Runge-Kutta formula for data generation. This was more
accurate than the algorithms that we used for reconstruc-
tion: simple Euler formula [20] in the differential model
or trapezoidal rule (Eqs. (12) or(16)) in the integral
approach. As the Euler formula is less numerically accu-
rate than the trapezoidal rule, the differential model may
generate more false positives.

Randomized time sampling and statistical distortions fur-
ther reduced the accuracy of reconstruction. However, we
expect that the integral model should be more resistant to
noise, as each data point is approximated by an integral
(Eq.(5)), smoothing noise contribution from all previous
data points. In the differential model, the only one, previ-
ous, time point is used to fit the current one, and therefore
the recovered values are subject to higher variation.

Model identifiability is another problem: even if we could
collect an infinite amount of experimental data and
implement an "ideal" fitting procedure [28], the model
might not be identifiable for certain network configura-
tions. A model might become non-identifiable if, for
example, two nodes demonstrate (by chance) similar
behavior, and are indistinguishable under realistic noise-
to-signal levels and/or with numerical errors.

Finally, we note that non-perfect performance of the fit-
ting procedure can lead to local minima solutions.

Artificial Biological Systems
Our results demonstrate the advantage of the integral
inference model for both artificial biological systems: the
yeast glycolysis pathway (Fig. 4a) and the MAPK cascade
(Fig. 4b). However, this approach did not perform as well
as in the case when a set of linear differential equations
was used to generate data. This is due to inadequacy of the
model used for the network inference to that used for data
generation. This model inadequacy is also the reason why
the inference model needs so many links to reproduce the
simulated time series reasonably well (χ2≅ 1). Good
approximation corresponds to very modest PPV, whereas
the highest PPV was achieved at a much larger χ2 value
with fewer links. Our findings indicate that the links gen-
erated during early stages of network reconstruction are
more accurate than those generated later. Links generated
later may be needed only to improve approximation.

Comparing the zero-degree polynomial and single expo-
nential kernels, neither showed clear advantage. Moreo-
ver, their performance differed depending on the number
of generated links. For the region with the highest PPV (<
10 links), the polynomial kernel seemed to be more pow-
erful for the MAPK cascade (Fig. 4b), whereas the expo-
nential kernel gave better results for the yeast glycolysis
pathway (Fig. 4a). This poses an important problem of
adequate selection of the kernel function. Different ways,
ranging from formalizing prior knowledge to more elabo-
rated algorithms of model fitting, can be envisaged. This,
however, remains a subject of future work.

Real Data
From the resulting PPV and Se curves presented in Fig. 5
we conclude that the integral model with either polyno-
mial or exponential kernels outperforms the differential
model for all three experimental sub-sets. The reconstruc-
tion models showed similar performance for the alpha
and elu experimental datasets, whereas for the cdc15 set,
PPV and Se values were somewhat lower. This suggests
that a different, more adequate, model should be found in
that case.
Page 7 of 14
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The average dependencies of PPV, Se and χ2 criterion on the total number of links for arbitrary networksFigure 3
The average dependencies of PPV, Se and χ2 criterion on the total number of links for arbitrary networks. Net-
work topology: (a) random and (b) scale free. Inference models: differential (blue) and integral with the zero-degree polynomial 
kernel (red). The black lines indicate the inference by the integral model with the zero-degree polynomial kernel from per-
muted data. Confidence intervals for the obtained PPV, Se and χ2 estimates are shown as dashed lines.
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The average dependencies of PPV, Se and χ2 criterion on the total number of links for two artificial biological systemsFigure 4
The average dependencies of PPV, Se and χ2 criterion on the total number of links for two artificial biological 
systems. System: (a) yeast glycolysis and (b) MAPK. Inference models: differential (blue), integral with the zero-degree polyno-
mial kernel (red) and integral with the single-exponential kernel (green). The black lines indicate the inference by the integral 
model with the zero-degree polynomial kernel from permuted data. Confidence intervals for the obtained estimates are too 
narrow to be recognizable in the graphs and therefore not shown.
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As for the artificial systems, there was no systematic
advantage of one integral kernel versus another one. The
polynomial kernel generally produced higher PPV and Se
values for the alpha and elu experimental datasets (Fig 5a,
b), and the exponential kernel was more performing for
the cdc15 (Fig. 5c). These observations confirm a conclu-
sion that adequate kernel selection may lead to substan-
tial improvements in the reconstruction.

In the Banjo output, the highest score networks had 37
links for the alpha dataset and 41 links for the elu dataset.
We compared the DBN performance with performances
shown by the differential and integral (with polynomial
and exponential kernels) additive models. As the forward
selection algorithm built dependencies of PPV and Se on
the number of generated links, we selected PPV and Se at

the same number of links as generated by Banjo (37 for
the alpha dataset and 41 for the elu dataset). The results are
collected in Table 1. We can conclude that the DBN per-

Table 1: PPV and Se of the network reconstruction using the 
DBN approach, differential (A) and integral (with the polynomial 
(B) and exponential (C) kernels) inference models. The number 
of generated links was 37 for the alpha dataset and 41 for the elu 
dataset.

DBN A B C B*

alpha PPV 0.128 0.135 0.243 0.162 0.097 ± 0.008
Se 0.169 0.192 0.346 0.231 0.138 ± 0.011

elu PPV 0.098 0.098 0.220 0.220 0.108 ± 0.008
Se 0.174 0.154 0.346 0.346 0.170 ± 0.012

*) reconstruction from 100 random permutations.

The dependencies of PPV and Se on the total number of links for the three yeast cell cycle microarray time series datasetsFigure 5
The dependencies of PPV and Se on the total number of links for the three yeast cell cycle microarray time 
series datasets. Synchronization method: (a) alpha, (b) elu and (c) cdc15. Inference models: differential (blue), integral with 
the zero-degree polynomial kernel (red) and integral with the single-exponential kernel (green). The black lines indicate the 
average over 100 random permutations dependencies of PPV and Se for the integral model with the zero-degree polynomial 
kernel. Confidence intervals for the permuted PPV and Se are shown as dashed lines.
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formance is comparable to the performance of the differ-
ential inference model and both are outperformed by the
integral inference model with either polynomial or expo-
nential kernels. Polynomial kernel is the most powerful
for the alpha dataset at the given number of links. These
results should be considered with caution as applying
inference models is conditioned on the algorithm of
reconstruction: simulated annealing in Banjo and forward
selection for the integral additive model. As a subject for
further research, it may be promising to implement the
integral additive model in the DBN framework.

Independent artificial data
The average dependencies of PPV and Se on the number
of generated links are presented in Fig. 6. As for our own
artificial data (Fig 3), the integral inference model demon-
strated clear advantage for the independent dataset too.
We note three differences as compared to Fig. 3: (i) the
number of generated links in Fig 6 is smaller because the
networks are smaller in the independent dataset (10
nodes network in Fig. 6 against 20 nodes network in Fig.
3), (ii) the confidence intervals in Fig. 6 are wider because
the number of available networks is smaller in the inde-
pendent dataset (10 networks in Fig. 6 against 100 net-
works in Fig. 3), and (iii) as in [21], we did not include
self-feedback loops when computing PPV and Se,
although those are presented in the network structure
(diagonal elements of the adjacency matrix). The latter
might lead to decreased predictive power as the both, dif-
ferential and integral, inference models can account for
self-regulation.

To summarize the obtained results, we note that although
the performance of the integral inference model differed
depending on the system, it was always superior to the dif-
ferential inference model. In the integral model, we used
the zero-degree polynomial kernel and the single-expo-
nential kernel with the fixed decay time. The decay time
(0.9T, where T is the last time point in a time series) was
selected such that the kernel function decreased slowly
within the measurement time range. The zero-degree pol-
ynomial kernel can also be considered as a particular case
of the exponential kernel with the decay time approaching
infinity or, in practical applications, just somewhat bigger
than T. Therefore the variation between two kernels was
not expected to largely influence the performance. How-
ever, the observed difference in the inference results was
sometimes significant (for example, Fig. 4b, or Fig. 5).
This indicates that refined selection of the kernel function
can be an important perspective for network inference
improvements.

Conclusion
In this paper we propose a generalization of the additive
regulation model represented by a set of differential equa-

tions(1). Differential equations are one of the well-
advanced formalizations in biochemical systems mode-
ling. Although the model defined by Eq. (1) is a rough
approximation, it can be progressively modified to cover
more realistic models that adequately account for interac-
tion mechanisms and kinetic rates.

One way to increase flexibility of this model is to convert
it into a set of integral equations with adjustable kernel
functions. Then, instead of changing the form of the dif-
ferential equation, changing the kernel function or the
various parameters of the kernel function allows the
model to cover a broad range of systems. Properly identi-
fying the kernel function can make the inference model
more specific for the system under investigation and

The average dependence of PPV and Se on the total number of links for the independent set of artificial data [21]Figure 6
The average dependence of PPV and Se on the total 
number of links for the independent set of artificial 
data [21]. Inference models: differential (blue) and integral 
with the zero-degree polynomial kernel (red). The black line 
indicates the inference by the integral model with the zero-
degree polynomial kernel from permuted data. Confidence 
intervals for the obtained estimates are shown as dashed 
lines.
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ensure improved accuracy of network reconstruction.
Thus, our proposed approach is a generalization in a sense
that it provides an easy and broadly applicable way to cre-
ate specific models for particular datasets. The model can
be adjusted by parametric fitting, using complimentary
experimental data and by formalizing knowledge from
the literature and biological databases.

The basic model that we consider in this paper is additive,
i.e. the cooperative regulatory contribution of different
nodes is a sum of the contributions from each node. Inte-
gral representation can also cover more complicated
schemes including an S-system model [6,7], defined as a
set of zero-degree ordinary differential equations with
higher-order kinetic rate laws.

The integral inference model (5) can be incorporated into
the DBN framework in the same way as it was suggested
for the differential model (1) [29,30]. In this case such
equations as (11) or (15) can be used to specify condi-
tional links between the nodes and the corresponding
conditional probability distributions.

In this paper, the kernel functions (zero-degree polyno-
mial and single exponential with the fixed decay time)
were characterized by a single unknown parameter per
link. Consequently the compared integral and differential
inference models had the same overall number of degrees
of freedom. Thus, just by reshaping the inference model,
while preserving the total number of free parameters, we
were able to improve network reconstruction. However,
the problem of network inference may often be underde-
termined even for such simplified models: the number of
the unknown parameters may exceed the number of
experimentally measured points. Although the forward
selection fitting algorithm offers an effective solution to
the problem, it is not the only possible approach. For
example, interpolation techniques [2,31] can be used to
artificially increase the amount of experimental data, or
dimensional reduction methods [2,32] can be used to
decrease the number of free parameters. As more compli-
cated inference models, characterized by larger number of
parameters, can be envisaged, the choice of the most
appropriate approach for solving underdetermined prob-
lems deserves special attention in the future.

The forward selection fitting algorithm can be improved
as well. For example, as considered in [10], we can explore
regulatory nodes by pairs, triples, etc. rather than one by
one. This might avoid the local minima problem, but
would definitely increase the time of processing. Though
adding nodes one by one is not a perfect solution, it cre-
ates the dependence of the model performance (PPV and
Se values) on the number of generated links. The impor-
tance and trustworthiness of the generated links are func-

tions of iteration of the forward selection procedure that
generated these links. The links generated during early
stages of reconstruction should gain more attention in the
follow up analysis. This approach releases importance of
the stopping criteria; which, for real experimental data,
are often difficult to formulate.

Networks derived from limited data should only be con-
sidered as rough approximations for real network struc-
tures. Experiments should be designed to yield datasets to
improve the reconstruction. Therefore, reverse engineering
of the regulatory networks should be defined as an itera-
tive process where the steps of network inference and exper-
imental design are performed in turn. Thus, the initially
derived network can be used to optimally design experi-
ments. This would allow improved identification of the
network structure with less experimental effort and
expense. Proper formalization of such iterative algorithm
is a subject of further research.

Methods
We have developed three representations – polynomial,
exponential and delta-function – for wij(t, x) and bi(t, t0)
resulting in the inference models linear with respect to the
unknown parameters.

Polynomial Model
The polynomial model is given by

where ul,ij, l = 0, ...,Lw are the polynomial coefficients
approximating the influence of node j on node i and vl,i, l
= 0, ...Lb are the background polynomial coefficients. Sub-
stituting Eq. (8) in the integral in the right-hand side of
Eq. (5) yields

where  are the binomial coefficients. If we substitute

Eq. (10) in Eq. (5) and then convert the resulting equation
into discrete-time representation, we obtain
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where Ij,l-m(tk) is calculated recurrently using the trapezoi-
dal rule for integration [20]:

Exponential Model
We define the exponential model as a sum of exponen-
tials:

where ul,ij are the exponential amplitudes and τ l,ij are the
decay times approximating the influence of node j on
node i (l = 1, ...,Lw), v0,i and vl,i are the background expo-
nential amplitudes and λ l,i are the background decay
times (l = 1, ...Lb). With the Lw-exponential wij(t, x), the
integral equation (5) can be converted into a Lw-order
ordinary differential equation (e.g. in [29] or in [31] for Lw
= 2).

The exponential decay times, τ l,ij and λ l,i, and the expo-
nential amplitudes, ul,ij and vl,i, can be fit. However, this
will lead to models that are non-linear with respect to the
unknown parameters. We can assume that τ l,ij and λ l,i are
independent of the nodes (τ l,ij = τ l and λ l,i = λ l) and then
fix τ l and λ l during the fit. Once τ l and λ l are fixed, we
need to estimate only the exponential amplitudes ul,ij and
vl,i.

In this paper, for example, we always used the constant
background (Lb = 0 in Eq.(14)) and the single-exponential
kernel (Lw = 1 in Eq.(13)) with τ 0 = 0.9T, where T is the
last time point in a time series. This decay time approxi-
mates relatively slow processes occurring in the system.
Note that with further increase of τ 0, the single-exponen-
tial kernel will approximate the zero-degree polynomial
kernel more precisely. We selected τ 0 = 0.9T to test if a rel-
atively small variation of the kernel function (as com-

pared to the zero-degree polynomial) could significantly
influence network reconstruction.

Substituting Eqs. (13) and (14) in Eq. (5) and then con-
verting the resulting expression into discrete-time form
yields

where Il(tk) is calculated recurrently using the trapezoidal
rule for integration [20]:

Delta-function Model
The delta-function model can be represented as

bi (t, t0) = v0i (18)

where ul,ij are the weights of contribution from the previ-
ous time points x-μl,ij to the current one t (l = 0, ...,Lw), for
the regulation of node i by node j; μl,ij are the time delays
and v0,i is the background level. This model explicitly takes
into account time delays in regulation. The integral equa-
tion (5) with the delta-function kernel (17) can be trans-
formed into a difference equation similar to [33].

Combined Model
In general, we can always define kernel/background func-
tions as algebraic combinations of different elementary
functions. An example of such generalized kernel can be
represented as a sum of the polynomial (8) and exponen-
tial (13) models:

where P and E designate parameters of the polynomial
and exponential models, respectively, and yP and yE define
the weight of each elementary model into the overall ker-
nel function. If yP and yE are unknown and can not be fixed
during the fit, they should be incorporated in the fit
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