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Abstract

Background: Classical descriptions of enzyme kinetics ignore the physical nature of the
intracellular environment. Main implicit assumptions behind such approaches are that reactions
occur in compartment volumes which are large enough so that molecular discreteness can be
ignored and that molecular transport occurs via diffusion. Though these conditions are frequently
met in laboratory conditions, they are not characteristic of the intracellular environment, which is
compartmentalized at the micron and submicron scales and in which active means of transport play
a significant role.

Results: Starting from a master equation description of enzyme reaction kinetics and assuming
metabolic steady-state conditions, we derive novel mesoscopic rate equations which take into
account (i) the intrinsic molecular noise due to the low copy number of molecules in intracellular
compartments (ii) the physical nature of the substrate transport process, i.e. diffusion or vesicle-
mediated transport. These equations replace the conventional macroscopic and deterministic
equations in the context of intracellular kinetics. The latter are recovered in the limit of infinite
compartment volumes. We find that deviations from the predictions of classical kinetics are
pronounced (hundreds of percent in the estimate for the reaction velocity) for enzyme reactions
occurring in compartments which are smaller than approximately 200 nm, for the case of substrate
transport to the compartment being mediated principally by vesicle or granule transport and in the
presence of competitive enzyme inhibitors.

Conclusion: The derived mesoscopic rate equations describe subcellular enzyme reaction
kinetics, taking into account, for the first time, the simultaneous influence of both intrinsic noise
and the mode of transport. They clearly show the range of applicability of the conventional
deterministic equation models, namely intracellular conditions compatible with diffusive
transport and simple enzyme mechanisms in several hundred nanometre-sized compartments.
An active transport mechanism coupled with large intrinsic noise in enzyme concentrations is
shown to lead to huge deviations from the predictions of deterministic models. This has
implications for the common approach of modeling large intracellular reaction networks using
ordinary differential equations and also for the calculation of the effective dosage of competitive
inhibitor drugs.
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Background

The inside of a cell is a highly complex environment. In
the past two decades, detailed measurements of the
chemical and biophysical properties of the cytoplasm
have established that the conditions in which intracel-
lular reactions occur are, by and large, very different than
those typically maintained in laboratory conditions. One
of the outstanding differences between in vivo and in vitro
conditions, is that in the former, biochemical reactions
typically occur in minuscule reaction volumes [1]. For
example, in eukaryotic cells, many biochemical path-
ways are sequestered within membrane-bound compart-
ments, ranging from ~50 nm diameter vesicles to the
nucleus, which can be several microns in size [2]. It is
also found that the total concentration of macromole-
cules inside both prokaryotic and eukaryotic cells is very
large [3,4], of the order of 50-400 mg/ml which implies
that between 5% and 40% of the total intracellular
volume is physically occupied by these molecules [5].
The concentration of these crowding molecules is highly
heterogeneous (see for example [6]), meaning that
typically one will find small pockets of intracellular
space, characterized by low macromolecular crowding,
surrounded by a “sea” of high crowding; such pockets of
space may serve as effective compartments where
reactions may occur more easily than in the rest of the
cytosol. Analysis of experimental data for the depen-
dence of diffusion coefficients with molecular size
suggests the length scale of such effective compartments
is in the range 35-50 nm [7], a size comparable to that of
the smallest vesicles. The significant crowding also
suggests that frequently an active means of transport
such as vesicle-mediated transport, may be more desir-
able than simple diffusion as a means of intracellular
transport.

The volume of a spherical cavity of space of diameter
50 nm is merely ~6.5 x 107 liters, an extremely small
number compared to the typical macroscopic reaction
volumes of in vitro experiments (experimental attolitre
biochemistry is still in its infancy - see for example [8]).
These very small reaction volumes imply that at
physiologically relevant concentrations (nano to milli-
molar), the copy number of a significant number of
intracellular molecules is very small [1] and conse-
quently that intrinsic noise cannot be ignored; for
example 255 uM corresponds to an average of just
10 molecules in a 50 nm vesicle and fluctuations about
this mean of the order of 3 molecules [9].

The traditional mathematical framework of physical
chemistry ignores the basic physical properties of the
intracellular environment. Kinetics are described by a set
of coupled ordinary differential equations which impli-
citly assume (i) that the reaction compartment is so large
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that molecular discreteness can be ignored and that
hence integer numbers of molecules per unit volume can
be replaced by a continuous variable, the molar
concentration. Since the number of molecules is
assumed to be very large, stochastic fluctuations are
deemed negligible and the equations are hence determi-
nistic; (ii) the reaction compartment is well-stirred so
that homogeneous conditions prevail throughout [9].
Both assumptions can be justified for reactions occurring
in a constantly stirred reactor of macroscopic dimen-
sions. However if diffusion is the dominant transport
process inside the compartment then the homogeneity
assumption holds only if the volume is small enough so
that in the time between successive reactions, a molecule
will diffuse a distance much larger than the size of the
compartment. This comes at the expense of the first
assumption. It hence appears natural that for intracel-
lular applications, the first assumption, namely that of
deterministic kinetics cannot be justified a priori. The
second assumption can be justified if reactions are
localized in sufficiently small parts of the cell and in
particular for reaction-limited processes i.e. those for
which the typical time for two molecules to meet each
other via diffusion is much less than the typical time
for them to react if they are in close proximity. For
such conditions, a molecule will come within reaction
range several times before participating in a successful
reaction, in the process sampling the compartment many
times which naturally leads to well-mixed conditions
[9-11].

In this article we seek to understand the magnitude of
deviations from the classical kinetic equations in small
intracellular compartment volumes. We specifically
focus on the case of reaction-limited enzyme reactions
which allows us to relax the first assumption of physical
chemistry while keeping the second one; this makes the
mathematics tractable. We quantify deviations from
classical kinetics in the context of the Michaelis-Menten
(MM) equation; this is the cornerstone of present day
enzyme kinetics and is a derivative of the traditional
deterministic mathematical framework based on ordin-
ary differential equations. In steady-state metabolic
conditions, it is predicted to be exact. Thus this equation
is ideal as a means to accurately test the effects of small-
scale compartmentation on chemical kinetics. We con-
sider three successive biological models of intracellular
enzyme kinetics, each one building on the biological
detail and realism from the previous one (Figure 1). The
models incorporate the intrinsic noisiness of kinetics in
small compartments, the details of the substrate trans-
port process to the compartment (diffusion or active
transport) and the presence of intra-compartmental
molecules other than substrate molecules which may
modulate the enzyme-catalyzed process e.g. inhibitors.
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Figure |

Schematic illustrating the three models considered
in this article. (A) Model I: Michaelis-Menten reaction
occurring in a compartment volume of sub-micron
dimensions (shown by dashed rectangle). Substrate input
into compartment occurs via a Poisson process i.e. diffusion-
mediated substrate transport. (B) Model II: As for Model |
but now substrate is input into compartment in groups or
bursts of M molecules at a time i.e. vesicle-mediated
substrate transport along microtubules (MT). (C) Model
[ll: Michaelis-Menten reaction with competitive inhibitor (1)
occurring in a small subcellular compartment. Substrate
transport as in previous two models.

On the macroscopic level, i.e. for large volumes, the
steady-state kinetics of all models conform to the MM
equation. We test whether this equation holds on the on
the length scale of small intracellular compartments by
deriving the dependence of the ensemble averaged rate
of product formation on the ensemble-averaged sub-
strate concentration from the corresponding stochastic
models in the steady-state. It is shown via both
calculation and stochastic simulation that at these
small length scales the MM equation breaks down,
being replaced by a new more general equation. Practical
consequences of this breakdown are illustrated in the
context of the calculation of the effective dosage of
enzyme inhibitor drug needed to suppress intra-com-
partmental enzyme activity by a given amount. To make
our approach accessible to readers not familiar with
stochastic equations and their analysis, in the Results/
Discussion sections we mainly focus on the biological/
biophysical context and implications of the models
together with the main mathematical results which are
verified by simulation. Detailed mathematical deriva-
tions and the methods of simulation are relegated to the
Methods section.
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Results
Model I: Michaelis-Menten reaction occurring in a
compartment volume of sub-micron dimensions.
Substrate input into compartment occurs via a Poisson
process
This is the simplest, biologically-relevant case (Figure 1(A)).
The reaction scheme is 28 +E ké C 2 E + P . Substrate
k
molecules (S) are continuouslyl supplied inside the
compartment at some rate k;, they reversibly bind to
enzyme molecules (E) with rate constants k, (forward
reaction) and k; (backward reaction) to form transitory
enzyme-substrate complex molecules (C) which then decay
with rate k, into enzyme and product molecules (P). The
substrate input is assumed to be governed by a Poisson
process with mean k;,; this is consistent with substrate
transport to the compartment being dominated by normal
diffusion. The enzyme acts as a catalyst, effectively speeding
up the reaction by orders of magnitude. It is assumed that
diffusion inside the compartment is normal and not rate-
limiting on the catalytic process i.e. well-mixed conditions
or rate-limited kinetics inside the compartment. Given these
conditions we ask ourselves what is the relationship
between the reaction velocity and the substrate concentra-
tion inside the compartment. The simplest approach
consists of writing down the rate equations of traditional
physical chemistry:

[Er] =[E] +[C] = constant, (1)

d[S]/ dt =k, —ko[E][S] + 4 [C], (2)

d[C]/ dt = ko[E][S] = (ky + k3)[C], 3)
dip] _

g - elCl (4)

By imposing steady-state conditions we get the sought-
after relationship which is simply the well-known MM
equation:

dP] _  _ vmaxlS]
T KHZZi[S]' (5)

where Ky, = (k1 + k3)/ko is the MM constant, v, = k, [E7]
is the maximum reaction velocity and square brackets
indicate the macroscopic concentrations. We note that
steady-state conditions for substrate necessarily require
that k;, < v,,,, otherwise the substrate will continuously
accumulate with time. Though this approach is simple
and straightforward, as mentioned in the introduction,
the assumptions behind the formulation of the rate
equations are not consistent with the known physical
properties of the cytoplasm. In particular it is clear that if
the volume of our compartment is very small (as is the
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case), the numbers of particles is also quite small, meaning
that the concept of a continuous variable such as the
average macroscopic concentration has little meaning.
Rather we require a mathematical description in terms of
discrete, integer numbers of particles and which is
stochastic. The natural description of such cases is a master
equation which is a differential equation in the joint
probability function = describing the system [12-15]:

dn _
dt
+1, (005" —)nem + k(005 —1)ner,

_ k _
k. QO3 — ) + 20 (007 —1)nwmr
m(S ) Q(SC )SE (6)

where n = n(ns, ne, np), ny is the integer number of
molecules of type Y, Q is the compartment volume, and
O3 are step operators defined in the Methods section. This
equation cannot be solved exactly. However it can be solved
perturbatively using the system-size expansion due to van
Kampen [12]. This expansion is one in powers of the inverse
square root of the compartment volume. In the Methods
section, we calculate the first three terms of the expansion,
namely those proportional to Q'/?, Q%and Q'/?. The first
term, being the dominant one for large volumes, gives back
as expected, the rate equations Egs. (1)-(4). The second term
gives the magnitude of stochastic fluctuations about the
macroscopic concentrations. Corrections to the rate equa-
tions and to the MM equation (due to small compartment
volumes or equivalently due to intrinsic noise) are found by
considering the third term. In the rest of the article, instead
of using the reaction velocity v, we use the normalized
reaction velocity, o, which is simply the velocity of the
reaction, v, divided by the maximum reaction velocity, v;,,4-
Given some measured intracompartmental substrate con-
centration, [S*] = (ns/Q) (angled brackets imply average),
the relationship between the normalized reaction velocity
predicted by the MM equation (o, = [S*]/(Kum + [S*])) and
the actual normalized reaction velocity (), as predicted by
our theory, is given by:

a+(1-ay)f(@)Q ! =ay, (7)
where,

al

fle)= 5 (8)
KpmHET](1-0)

Hence the prediction of the MM equation is only correct,
i.e. o = oy, in the limit of infinitely large compartment
volumes, in which case the second term on the left hand
side of Eq. (7) will become vanishingly small and can be
neglected. For finite compartment volumes, the MM
equation is not exact (except in the two limiting cases of
oy — 0 and oy — 1) but is at best an approximation,
even though steady-state conditions are imposed; this is
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at odds with the prediction of the conventional
deterministic theory. An inspection of Egs. (7) and (8)
shows that the magnitude of the deviations from the MM
equation depends on the two non-dimensional quan-
tities: (i) Ky, a measure of the rate at which enzyme-
substrate combination events occur relative to the rate of
decay of complex molecules; (ii) [Er]Q, the total integer
number of enzyme molecules in the compartment.

As shown in the Methods section, the MM equation is
found to implicity assume that the noise about the
macroscopic substrate and enzyme concentrations is
uncorrelated (this assumption has generally been found
to be at the heart of many macroscopic models - for
example see [16]); properly taking into account these
non-zero correlations leads to the corrections encapsu-
lated by Eqgs. (7) and (8). These correlations are expected
to be small in two particular cases: (i) if Ky, is large; in
this case when substrate molecules combine with an
enzyme to form a complex, the latter dissociates very
quickly back into free enzyme and thus successive
enzyme-substrate events to the same enzyme molecule
are bound to be almost independent of each other. The
opposite situation of small Ky would imply that the
bottleneck in the catalytic process is the decay of
complex rather than enzyme-substrate combination; if
a successful combination occurs, the next substrate to
arrive to the same enzyme molecule would have to wait
until the complex decays, naturally leading to correla-
tions between successive enzyme-substrate combination
events. (ii) if the total number of enzyme molecules is
large; in such a case, at any one time, the noise about the
macroscopic concentrations will be the sum total from a
large number of enzymes, each at a different stage in the
catalytic process and each independent from all others,
which naturally dilutes any temporal correlations.

To estimate the magnitude of the deviations from the MM
equation inside cells, we use the above two equations, Egs.
(7) and (8), to compute the absolute percentage error R, =
100|1 - op/cr|. These estimates are also computed by
stochastic simulation of the master Eq. (6), using the exact
stochastic simulation algorithm of Gillespie [10] (see
Methods for details regarding the method of simulation);
this provides a direct test of the theory. Figure 2 shows the
typical dependence of R, on ay,, as predicted by both
theory (solid lines) and simulation (data points).
Generally the agreement between the two is found to be
very good; discrepancies increase as Ky, and compartment
volume decrease but are small for parameter values realistic
for intracellular conditions. The maxima of such plots gives
the maximum absolute percentage error which is a
measure of the maximum expected deviations from the
MM equation. Table 1 summarizes these estimates (theory
and simulation) over wide ranges of the parameters typical
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Figure 2

Deviations from the predictions of the MM equation
for diffusion-mediated substrate transport. (Model I)
Plot of the Percentage Error in reaction velocity, R, =
1001 -opmler|, versus the normalized reaction velocity of
the MM equation, a for 10 enzymes (green) and 100
enzymes (red) with Ky = 10 uM in compartments with
diameter 100 nm (A) and 50 nm (B). The solid lines show the
theoretical predictions, as encapsulated by Egs. (7) and (8);
the data points are obtained by stochastic simulation (see
Methods for details).

of in vivo conditions: Ky, = 10 yM - 1000 uM [17], enzyme
copy numbers of ten and one hundred per compartment
which correspond to enzyme concentrations ranging from
4 uM to 2.5 mM and compartment diameters ranging from
50 nm to 200 nm. Note that the maximum deviations
from the MM equation are estimated to be less than
approximately 20% and typically just a few percent over
large ranges of parameter values - this robustness of the
MM equation with respect to intrinsic molecular noise is
indeed surprising, since strictly speaking it is only valid for
infinite compartment volumes.

http://www.biomedcentral.com/1752-0509/3/101

Table I: Maximum Percentage error in reaction velocity from
prediction of the MM equation for Model |

D/nm Km =10 uM 100 uM 1000 uM  Copy No.
50 11.83 [17.00] 4.09 [4.33] 0.59 10
100 4.74 [5.00] 0.73 [0.74] 0.08 10
200 0.90 0.10 0.01 10
50 3.98 [5.33] 1.88 [2.02] 0.43 100
100 2.10 [2.23] 0.52 [0.52] 0.07 100
200 061 0.09 0.01 100

The copy number indicates the total number of enzyme molecules per
compartment. Values in bold and in square brackets are those estimated
by simulation; the italic values are obtained from the derived theoretical
expressions, Egs. (7) and (8).

The theory is always found to underestimate the actual
deviations predicted by simulations; hence the theore-
tical expressions provide a quick, convenient way by
which one can generally estimate a lower bound on the
deviations to be expected from the MM equation
without the need to perform extensive stochastic
simulation.

Model lI: Michaelis-Menten reaction occurring

in a compartment volume of sub-micron dimensions.
Substrate is input into compartment in groups

or bursts of M molecules at a time

Model I captures the basics of a general enzyme-catalyzed
process occurring in a small intracellular compartment. In
this section we build upon this model to incorporate
further biological realism. In particular, in the previous
model we assumed that substrate input can be well
described by a Poisson process, where one molecule at a
time is fed into the compartment with some average rate
k;,. This is the simplest possible assumption and approx-
imates well the situation in which molecules are brought to
the compartment via normal diffusion. However there are
many situations where this may not be the case; we now
describe two such cases.

The intracellular condition of macromolecular crowding
limits the Brownian motion of molecules in the
cytoplasm, this being reflected in the relatively small
diffusion coefficients measured in vivo compared to
those known in vitro for moderately to relatively large
molecules. Experiments with inert tracer particles in the
cytoplasm of Swiss 3T3 cells show that the in wvivo
diffusion coefficient is an order of magnitude less than
that in vitro for molecules with hydrodynamic radius 14
nm and diffusion becomes negligibly small for mole-
cules larger than approximately 25 nm [7]; similar results
have been obtained in Xenopus neurons [18] and
skeletal muscle myotubes [19]. If diffusion is consider-
ably hindered, one expects active transport to become a
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more desirable mode of transport. Indeed there exists
ample evidence for the active transport of macromole-
cules: they are typically packaged in a vesicle or a granule
which is then transported along microtubules or by
some other means. It is also found that each vesicle or
granule typically contains several of these molecules
(examples are: mRNA molecules - several estimated per
granule [20,21]; cholesterol molecules which are trans-
ported in low-density lipoproteins [2] - approximately
1500 per lipoprotein).

Generally an active means of transport is not exclusively
linked with the transport of large substrate molecules.
The cell being a highly compartmentalized and dynamic
entity requires for its survival the precise transport of
certain molecules from one compartment to another and
a regulation of this transport depending on its current
physiological state. Brownian motion leads to an
isotropic movement of molecules down the concentra-
tion gradient and to a consequent damping of the
substrate concentration with distance. In contrast active
transport provides a directed (anisotropic) means of
transport with little or no loss of substrate with distance,
is independent of the concentration gradient and it is
also easily amenable to modulation.

Hence it follows that a more general process modeling
molecular entry into an intracellular compartment is one
in which M molecules are fed into the compartment at a
rate ki?;; the latter rate constant is the rate at which
vesicles or granules arrive to the site of the compartment
(Figure 1(B)). The total mean substrate input rate is then
ki, =M kl% . The special case M = 1 corresponds to Model I.
We construct the relevant master equation and employ
the system-size expansion as for the previous model (see
Methods for details); it is found that the deterministic
rate equations are exactly Eqs. (1)-(4) i.e. at the
macroscopic level, given two reactions occurring in two
different compartments, both with the same total mean
substrate input rate k;, but one occurring via diffusion
(eg. M =1, k) =1) and the other via active transport
(eg. M = 10, k) = 0.1), cannot be distinguished.
However if the compartment volumes become small,
then once again we find corrections to the MM equation
and interestingly these corrections are sensitive to the
mode of transport. The relationship between the normal-
ized reaction velocity predicted by the MM equation ()
and the actual normalized reaction velocity («), as
predicted by our theory, is given by Eq. (7) together with:

) a[a+;(M—1):|

 KyHETI0-a)?

)

f(e)
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This suggests that generally deviations from the predic-
tions of the MM equation increase with the carrying
capacity, M, of the vesicle or granule. To compare the
effects of active transport and diffusion on the kinetics,
we set M = 50 and adjusted kgl so that in all cases, the
total mean substrate input rate for model II is equal to
k;,, the input rate of Model I (i.e. the two models would
be indistinguishable from a macroscopic point of view).
Using the same procedure as for Model I, we computed
the maximum percentage error using Eqgs. (7) and (9)
and also from simulations. The results are summarized
in Table 2. Notice that now the deviations from the MM
equation are much larger than before, running into
hundreds of percent rather than the tens as for Model 1.
Because of the increase in substrate fluctuations, the
quantitative accuracy of the theory is now less than
before; it generally fares very well for compartments with
diameters larger than ~100 nm and K, larger than
~100 uM. Nevertheless in all cases theory does correctly
predict a large increase in discrepancy between the
reaction velocities given by the deterministic MM
equation and those from stochastic simulation com-
pared to the case of Model I. The intuitive reason behind
these increases in discrepancy is that substrate which is
input in bursts enhances correlations between successive
enzyme-substrate events.

The explicit dependence of the reaction velocity on
substrate concentration is complex and generally
requires the solution of the cubic polynomial encapsu-
lated by Egs. (7) and (9). However for small substrate
concentrations, the equations simplify to a simple linear
equation:

M-1

M1 (10)
2Q(K m+ET])

o =[S*] KM[1+

Table 2: Maximum Percentage error in reaction velocity from
prediction of the MM equation for Model Il

Dinm Ky =10 uM 100 uM 1000 yM  Copy No.
50 225.40 152.83 [291.56] 4543 10
100 161.59 [331.66] 52.74 [58.39] 6.82 [6.99] 10
200 65.09 8.45 [8.50] 0.88 10
50 32.97 30.17 [61.66] 18.14 100
100 30.78 [66.03] 19.76 [24.52] 5.57 [6.06] 100
200 21.27 6.61 [6.91] 0.85 100

The copy number indicates the total number of enzyme molecules per
compartment. Values in bold and in square brackets are those estimated
by simulation; the italic values are obtained from the theoretical
expressions, Egs. (7) and (9).
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Note that if the MM equation was correct, one would
expect & = [S*]|/Ky. Indeed Eq. (10) reduces to the latter
prediction in the limit of large volumes. Note also that
this renormalization of the proportionality constant
occurs only if the substrate input occurs in bursts, i.e.
M > 1. These predictions of our theory are verified by
simulations (Figure 3).

Model llI: Michaelis-Menten reaction with competitive
inhibitor occurring in a compartment volume of sub-
micron dimensions. Substrate input as in previous models
In this last section, we further build on the previous two
models by adding competitive inhibitors to the intracel-
lular compartment in which enzymes are localized.
A competitive inhibitor, I, is one which binds reversibly
to the active site of the enzyme (forming a complex EI),
thus preventing substrate molecules from binding to the
enzyme and slowing down catalysis (Figure 1(C)). In
standard textbooks and in the literature, this is typically

modeled by the set of reactions (see for example [22]):
in ko k, ky
—-S+E=C—E+P,E=EI, where ks = kY [I] and [I]

1 3

0.12+
0.1]
0.08%
0.06%
0.04;

0.021

09

[S*]/ uM

Figure 3

Deviations from the predictions of the MM equation
for vesicle-mediated substrate transport. (Model Il)
Testing the validity of the MM relationship at small substrate
concentrations for the case in which substrate input into
compartments occurs in bursts. The data is for |0 enzymes
with Ky = 100 uM in compartments of diameter (A) 200 nm
(circles), (B) 100 nm (diamonds) and (C) 50 nm (crosses);
substrate is input M = 50 molecules at a time. The
deterministic prediction for all three cases is the same MM
equation shown by the green curve. In contrast, the stochastic
models, [Egs. (7) and(9)], predict different rate equations for
each case (red solid lines). Data points are obtained by
stochastic simulation (see Methods for details). Note that
VIVmax = Om and o for solid green and red lines respectively.
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is the inhibitor concentration. Note that it is implicitly
assumed that inhibitor is in such abundance that the
second-order bimolecular reaction between inhibitor
and enzyme can be replaced by a pseudo first-order
reaction with constant inhibitor concentration. We shall
assume the same in our model. Substrate input into the
compartment is considered to occur as in Model II since
this encapsulates that of Model I as well. The determi-
nistic model of this set of reactions leads to a
MM equation of the form:

d[P] _ VmaxlSl
dt  KpyQ+p)+Hs]’

(11)

where 8 = [I]/K; and K; = ks/ k) is the dissociation constant
of the inhibitor. The perturbative solution of the master
equation describing the system is now significantly more
involved than in previous models; the underlying reason
for this is that the computation of the noise correlators to
order O° requires the inversion of a 6 x 6 matrix as
opposed to a 3 x 3 one in previous models (see Methods
for details). The analysis predicts corrections to the MM
equation by postulating a new mesoscopic rate equation
having the form of Eq. (7) together with:

f(a) = 1+ Z?ZOCi(l_a)i

= -, (12)
KMIET] 54 (di(1-a)'
where ¢; and d; are coefficients with a complex
dependence on the various enzyme parameters (these
are given in full in the Methods Section). Table 3 shows
the maximum percentage error computed using Egs. (7)
and (12) and also from simulations for the cases in
which substrate input occur a molecule at a time and in
bursts of 50 at a time. The parameter values chosen in
the simulations and calculations (see caption of Table 3)
are typical for many enzymatic processes: the bimole-
cular rate coefficients span the range 10°-10%s'M™[22],
the backward decay processes are in the middle of the
range 10-10°s" [22], the inhibitor concentration is ten
times larger than the total enzyme concentration
(satisfying the implicit assumption that the inhibitor is
in significantly larger concentration than free enzyme),
and the intracompartmental enzyme concentrations
are in the range 4-255 uM. The deviations from the
MM equation in this case are more severe than in the
previous two models, this being due to non-zero
correlations between substrate and the complex EI in
addition to the already present correlations between
substrate and complex C. Note that the agreement
between theory and simulations is overall better than
in previous models, even when the burst size is large,
M = 50. As mentioned in the section for Model I,
discrepancies between theory and simulation are
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Table 3: Maximum Percentage error in reaction velocity from
prediction of the MM equation for Model Ill

Dinm Ky =10 uM 100 uM 1000 uM M (burst size)
50 67.8 [76.8] 67.8 [76.5] 67.8 |
100 20.8 [26.4] 20.6 [26.1] 20.6 |
200 2.8 2.7 2.7 |
50 1001.8 234.9 [169.4] 86 50
100 343.7 [345.5] 73.4[75.2] 26.2 [31.5] 50
200 71.4 11.3 [11.5] 3.6 50

The total number of enzyme molecules per compartment is ten in all
cases. Values in bold and in square brackets are those estimated by
simulation; the italic values are obtained from the theoretical
expressions, Eqgs. (7) and (12). The parameters are: ko = 10° s™' M,
ki = ks =1000s", k3 =10"s"' M, and [I] = 10 [Eq].

generally found to decrease with increasing K,,; for the
case of competitive inhibition, the effective K, of the
reaction is significantly larger than that of the enzyme
(see Eq. (11)), which explains the increased agreement
between theory and simulations for Model Il compared
to the previous two models.

A significant number of drugs suppress a chain of
biochemical reactions by reducing the activity of key
enzymes in the pathway via competitive inhibition [17].
The conventional method to estimate the required
concentrations of these inhibitors involves plotting the
variation of the enzyme activity with inhibitor concen-
tration, [I], using the MM equation; the substrate
concentration is kept fixed and is chosen so that at
[I] = 0, the reaction velocity is close to the maximum,
Umax- Since there are significant corrections to the
MM equation when reactions occur in intracellular
compartments, it is not clear how accurate are estimates
of [I] based upon it. Figure 4 compares the enzyme
activity curve based on the MM equation with the
theoretical predictions for the corrected enzyme activity
curves based on the mesoscopic rate equation embodied
by Egs. (7) and (12), for compartments of diameter 50
nm and 100 nm (inset) and for substrate input burst
sizes of M = 20 and 50. The substrate concentration is
chosen so that at [I] = 0, ¥/V., = 0.909 in all cases. We
find that generally as the burst size increases, the actual
inhibitor concentration needed to suppress enzyme
activity by a given amount is larger than that estimated
by the MM equation; this discrepancy decreases with
increasing compartment volume. For the example in
Figure 4, for the case in which substrate is input into the
compartment in bursts of M = 50, the actual inhibitor
concentration needed to decrease the enzyme activity
from 0.909 to 0.1 is approximately 7 times larger than
the MM estimate; if the compartment diameter is
doubled (inset of Figure 4), the actual inhibitor
concentration needed is less than twice that of the MM
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Figure 4

Effects of intrinsic noise on the inhibition of enzyme
activity in small compartments. (Model Ill) Plots of
normalized enzyme activity versus normalized inhibitor
concentration (measured in units of the total enzyme
concentration [E7]) for 10 enzymes with Ky = 100 uM in
compartments of diameter 50 nm and 100 nm (inset). The
colors correspond to: (red) MM equation; (green) stochastic
model, M = 20; (blue) stochastic model, M = 50. The latter
two curves are those predicted by theory [Egs. (7) and(12)].
Parameters same as mentioned in caption of Table 3 (except
for [I], which is a variable in the present case). Substrate
concentrations chosen so that at [I] = 0, v/v,,ox = 0.909 in all
cases. Black dashed lines contrast the inhibitor concentration
required to decrease enzyme activity from 0.909 to 0.1 as
predicted by the MM equation and the stochastic models.
Note that v/v,.x = 0 and o for solid red and blue/green
lines respectively.

estimate. Generally we find that for the typical parameter
values of enzymatic reactions, the corrections to the
enzyme-activity curves can be neglected for compart-
ments larger than about 200 nm in diameter.

Discussion and Conclusion

In this last section we discuss some fine points regarding:
(i) the assumptions behind the use of master equations
which throws light on the range of use of the derived
mesoscopic equations, (ii) the use of the system-size
expansion to perturbatively solve the master equation
and (iii) the assumption of steady-state metabolic
conditions. We conclude by placing our work in the
context of previous recent studies of stochastic enzyme
kinetics and discuss possible experiments to verify some
of the conclusions we have reached.

We have implicitly assumed throughout the article that a
single (global) master equation model suffices to
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capture the deviations from classical kinetics due to
fluctuations in chemical concentrations inside a single
subcellular compartment. As noted by Baras and Mansour
[23], “the global master equation selects the very limited
class of exceptionally large fluctuations that appear at the
level of the entire system, disregarding important none-
quilibrium features originated by local fluctuations.”
Hence the results presented here necessarily underesti-
mate the possible deviations from classical kinetics, in
particular the local fluctuations due to diffusion of
molecules inside the compartment. These local fluctua-
tions are typically small for reaction-limited processes
(as in this article) but significant for diffusion-limited
ones. To capture them effectively, one would be required
to spatially discretize the compartment into many small
elements and describe the reaction-diffusion processes
between these elements by means of a multivariate master
equation [12,23]. The latter is known as a reaction-
diffusion master equation; typically it does not allow
detailed analytical investigation as for a global master
equation and one is limited to stochastic simulation. Use
of the global master equation is also restricted for
compartments which are not too small: in particular the
linear dimensions of the compartment should be larger
than the average distance traveled by a molecule before
undergoing a successful reaction with another molecule
i.e. the length scale is much larger than that inherent in
molecular dynamics simulation [23].

We have applied the systematic expansion due to van
Kampen to perturbatively solve the master equation. It
is sometimes a priori assumed that because this
expansion is about the macroscopic concentrations, it
cannot give information regarding the stochastic
kinetics of few particle/small volume systems. This is
true if one restricts oneself to the expansion to order Q°
i.e. the linear-noise approximation; this is commonly
the case found in the literature since the algebra
becomes tedious if one considers more terms. However
we note that as argued and shown by van Kampen
himself [12], terms beyond the linear-noise approxima-
tion in the system-size expansion add terms to the
fluctuations that are of order of a single particle relative
to the macroscopic quantities and are essential to
understanding how fluctuations are affected by the
presence of non-linear terms in the macroscopic
equation (substrate-enzyme binding in our case). In
our theory we went beyond the linear-noise approxima-
tion. We find that the predicted theoretical results are in
reasonable agreement, in many cases (comparison of
bold and italic values in Tables 1, 2 and 3), with
stochastic simulations of just a few tens of enzyme
molecules in sub-micron compartments, which justifies
our methodology.
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We have also imposed metabolic steady-state conditions
inside the subcellular compartment. Technically this is
convenient since in such a case one does not deal with
complex transients. Also since under such conditions the
MM equation is exact from a deterministic point of view,
it provides a very useful reference point versus which to
accurately compute deviations due to intrinsic noise. In
reality one may not always have steady-state conditions
inside cells, this depending strongly on the rate of
substrate input relative to the maximum rate at which
the enzyme can process substrate. Another possibility is
that one is dealing with a batch reaction i.e. one in which
a number of substrate molecules are transported at one
go and just once to the subcellular compartment (e.g. via
vesicle-mediated transport) and the reaction proceeds
thereafter without any further substrate replenishment.
This latter scenario is compatible with the presentation
of the MM equation typical in standard physical
chemistry textbooks. The MM equation is then an
approximation (not exact as in steady-state case) to the
deterministic kinetics, when substrate is present in much
larger concentration than enzyme. This case is currently
under investigation using the same perturbative frame-
work used in this article.

We note that this is not the first attempt to study
stochastic enzyme kinetics. The bulk of recent studies
[24-27] have focused on understanding the kinetics of a
Michaelis-Menten type reaction catalyzed by a single
enzyme molecule. Deviations from classical kinetics were
found to be most pronounced when one takes into
account substrate fluctuations [26]. These pioneering
studies were restricted to a single-enzyme assisted
reaction which reduces complexity thereby making it
ideal from a theoretical perspective; since the reaction is
dependent on just a single enzyme molecule one also
finds maximum deviations from deterministic kinetics. In
reality, it is unlikely to find just one enzyme molecule
inside a subcellular compartment - as mentioned in the
introduction a physiological concentration of just a few
hundred micromolar would correspond to few tens inside
the typically smallest subcellular compartment. It is also
the case that diffusion may not always be the main means
of substrate transport to the compartment and that the
reaction maybe more complex than the simple Michaelis-
Menten type reaction of these previous studies. The
present study fills in these gaps by using a systematic
method to derive approximate and relatively simple
analytic expressions for mesoscopic rate equations
describing the kinetics of the general case of N enzyme
molecules in a subcellular compartment with or without
active transport of substrate and in the presence of
enzyme inhibitors. Most importantly our approach
shows the effects of intrinsic noise on the kinetics can
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be captured via effective ordinary differential equations.
This enables quick estimation of the magnitude of
stochastic effects on reaction kinetics and thus gives
insight into whether a model or parts of a model should
be designed to be stochastic or deterministic without the
need for extensive stochastic simulation. In the present
study, this approach enabled us to readily compute, for
the first time, the deviations from deterministic kinetics
for a broad range of realistic in vivo parameter constants
(Tables 1, 2 and 3), a task which would be considerably
lengthy if one had to rely solely on data obtained from
ensemble-averaged stochastic simulations.

We conclude by briefly discussing possible experiments
which can verify the predictions made in this article. It is
arguably not an easy task to perform the required
experiments in real-time in a living cell. A viable
alternative would consist of monitoring reaction kinetics
inside single artificially-made vesicles. Pick et al [8] have
shown that the addition of cytochalasin to mammalian
cells induces them to extrude from their plasma mem-
brane minuscule vesicles of attolitre volume with fully
functional cell surface receptors and also retaining
cytosolic proteins in their interior. The change in the
intra-vesicular calcium ion concentration in response to
surface ligand binding was measured using fluorescence
confocal microscopy (FCM). Since the vesicle sizes are
of typical small sub-cellular compartment dimensions
(1 attolitre corresponds to a spherical vesicle of approx-
imate diameter 120 nm) and FCM allows the measure-
ment of the concentration of a fluorescent probe (via a
calibration procedure), this experimental technique
appears ideal to verify the predictions of Model I and of
Model III for the case of diffusive substrate transport.
Model IT and Model 11T with vesicle-transport of substrate
are probably much more challenging to verify since one
then needs to construct the in vitro equivalent of
microtubules. This is within the scope of synthetic
biology and may be a possibility in the next few years.

Methods

We here provide full details of the calculations reported
in the Results section. The system size-expansion which
is at the heart of the analysis has to-date not been
applied extensively to biological problems and thus we
go into some detail in its elucidation in Sub section I,
which is dedicated exclusively to Model 1. For other
recent applications of the general method in the context
of reaction kinetics, see for example [28] and [29].
Subsections II and III (treating Model II and Model III,
respectively) naturally build on the results of the first
subsection and thus we only give the main steps of the
calculations in these last two cases. Sub section IV has a
brief discussion of the simulation methods used to verify
the theoretical results.
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Model I: Michaelis-Menten reaction occurring in a
compartment volume of sub-micron dimensions. Substrate
input into compartment is modeled as a Poisson process

. . ki k k .
The reaction scheme is -8+ E=C—E +P. The stochastic

kl
description of this system is encapsulated by the master
equation which is a differential equation in the joint
probability function = describing the system:

dn

i k;, QO — 1) + %’(@S@g —Dngngn

(13)
+1, (005" —D)nem + ky (005" —ner,

where 7 = n(nc, np, ng), nx is the integer number of molecules
of type X (where X = C, P, S), Q) is the compartment volume,
and (9;*“(1 are the step operators defined by their action on a
general function g(ny) as: @% g(nx) = g(nx + 1). Note that
the relevant variables are three, not four: the integer number
of molecules of free enzyme (ng) is not an independent
variable due to the fact that the total amount of enzyme is
conserved. The master equation cannot be solved exactly but
it is possible to systematically approximate it by using an
expansion in powers of the inverse square root of the
volume of the compartments. This is generally called the
system-size expansion [12].

The method proceeds as follows. The stochastic quantity,
nx/Q, fluctuates about the macroscopic concentrations
[X]; these fluctuations are of the order of the square root
of the number of particles:

Note that since np + nc = constant, it follows that ng =
Q[E] - ©"?¢c. The joint distribution function and the
operators can now be written as functions of the new
variables, ¢, giving: 7= = Il(ec, €p, €, t) and
0L =1+Q71/29 /9y + %Q‘la2 /32 +0(Q7/2); using these
new variables the master equation Eq. (13) takes the form:

an_Ql/;,_[d[C] ol d|P] orl +d[S]8HJ
(15)

ot dt dec dt dep  dt Odeg
= Q"2 11+ Q%, 1T+ Q7" 2a, T+ 0O(Q")

where
J
ay = (ki +14[C] —ko[E][S])I
) (16)
(e + 1) [C] = Ro[ENIS]) 5~ = kol Cl 5 =
€C ep
1, a2 1(a oY
@ =S ko7 E[E—g] (Ro[SI[E] + Iy [C])
%[%C—a%]ec+[a%—a%}[ko(esw1—eC[SJ)—klecl (17)
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1( o 2 Y
as :2[36 _aecj (koes[E] = koec[S]+ kyec)
—Ko

e
2
0 0 1 0 0
ky| — — — k)| — —— .
|:aes BGC:|€SEC+2 z[aep BECJGC

(18)

Note thatin Eq. (18) terms which involve products of first
and second-order derivatives, third-order derivatives or
higher have been omitted - these do not affect the low-
order moment equations which we will be calculating.

Analysis of Q'"? terms

The terms of order '/~ are the dominant ones in the
limit of large volumes. By equating both terms of this
order on the right and left hand sides of Eq. (15) and
using Eq. (16), one gets the deterministic rate equations:

1/2

d[S]/ dt = ky, — ko[E][S] + ky[C], (19)
d[C]/ dt = ko[E][S] - (ky + k,)[C], (20)
d[P]/ dt = k,|[C]. (21)

These are exactly those which one would write down
based on the classical approach whereby one ignores
molecular discreteness and fluctuations. This is an
important benchmark of the method since it shows
that it gives the correct result in the limit of large
volumes. On a more technical note, the cancelation of
these two terms of order O'/? makes Eq. (15) a proper
expansion in powers of a2, By imposing steady-state
conditions we have the Michaelis-Menten (MM) equa-
tion:

d[P] _ Vmax[S] , (22)

dt  KpHS]
where v,,,, = k, [E] is the maximum reaction velocity,
[E7] = [E] + [C] is the total enzyme concentration which
is a constant at all times and Ky, = (k; + ky)/kg is the
Michaelis-Menten constant.

Analysis of Q° terms

To this order, the master equation is a multivariate
Fokker-Planck equation whose solution is Gaussian and
thus fully determined by its first and second moments.
The equations of motion for these moments can be
straightforwardly obtained from the master equation to
this order, leading to a set of coupled but solvable
ordinary differential equations:
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2, |: (€s) ] _ —ko[E] ky + ko[S] |: (es? ] (23)
(€c) kolE]  —ko(Kp +[S]) || <€cd
[ (ed) (€3)
9| (&) |=A-| (&) |+B, (24)
(es€c? (es€c?

where,

~2k[E] 0 2(ley + eglS]) Kin + Ia[C1 + e [SI[E]
A=| 0 Dko(Ky+[S)  2kolE] | B=| ko([SI[EI+KulCD) |
0 ~2, 2k, kin + ko[C]

(25)

Note that the matrices and vectors in the above equations
have been reduced to a simpler form by the application of
a few row operations. Note also that these equations are
independent of ¢, since the product-forming step is
irreversible and hence the fluctuations in substrate and
complex are necessarily decoupled from its fluctuations. At
the steady-state, it is found that (e, c) — 0. From Eq. (14),
it is clear that this implies that to this order the average
number of substrate molecules per unit volume, {ns/Q), is
simply equal to the macroscopic concentration, [S]. The
same applies for complex molecules. Hence to this order in
the system-size expansion there cannot be any corrections
to the macroscopic equations or to the MM equation. By
writing the macroscopic concentrations in Eqs. (24) and
(25) in terms of k;,, and solving, one obtains the variance
and covariance of the fluctuations about the steady-state
macroscopic concentrations. We here only give the result
for the covariance since this will be central to our
discussion later on:

K MIET ]2
K+ ET](-0)?

(eces) = (26)

where o = k;;, /v, is the normalized reaction velocity of
the enzyme.

Analysis of O'"? terms

The system-size expansion is almost never carried out to
this order because of the algebraic complexity typically
involved, however it is crucial to find finite volume
corrections to the deterministic rate equations and in
particular to the MM equation. Using the master
equation to this order, the first moment of the complex
concentration is governed by the equation of motion:

dlec) [ dt = —ko([S]+ K yy)ec) + kol EKes) = ko@ ™/ *(egec).
(27)
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Now the production of product P from complex occurs
through a decay process which necessarily has to be
described by a linear term of the form: k;,, = kx(nc/Q) (the
steady-state condition). Since the steady-state macroscopic
complex concentration is equal to [C] = k;,/k,, then it
follows that to any order in the expansion we have (¢c) = 0.
This is always found to be the case in simulations as well.
Hence it immediately follows from Eq. (27) that the
average of fluctuations about the macroscopic substrate
concentration are non-zero and given by:

(esec)
(e = Qi

(28)
From a physical point of view, this indicates that the
steady-state concentration of substrate in the compart-
ment is not equal to the value predicted by the
MM equation (i.e. [S]) and hence the non-zero value
of the average of the fluctuations about [S]. The real
substrate concentration inside the compartment is
obtained by substituting Eqs. (28) and (26) in Equation
(14), leading to:

()
Q (1-a)[K mHET](1-0) 212

(29)

An alternative mesoscopic rate equation replacing the MM
equation

The renormalization of the steady-state substrate con-
centration indicates the breakdown of the MM equation;
this phenomenon occurs because of non-zero correla-
tions between noise in the substrate and enzyme
concentrations, {esec), which the MM equation implicity
neglects. To obtain the alternative to the latter, one needs
to obtain a relationship between the normalized reaction
velocity, & and the real substrate concentration (ns/Q);
writing [S] in terms of o and substituting in Eq. (29), one
obtains this new relation:

ar| 148D Npoyor o (ns/D
Kp+ng /<) Kp+ng /€2)
(30)
2
fla)= ¢ (31)

 KmHETI(-0)?

Note that in the limit of large volumes, the second term
on the left hand side of Eq. (30) becomes vanishingly
small and we are left with the MM equation. In the
results section the quantity on the right hand side of
Eq. (30) is referred to as o, since this is the normalized
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reaction velocity which would be predicted by the
MM equation given the measured substrate concentra-
tion (ng/Q) inside the compartment. A quick estimate of
the magnitude of the error that one is bound to incur by
using the conventional MM equation can be obtained by
substituting o = 1/2 (i.e. enzyme is half saturated with
substrate) in Eqs. (30) and (31), solving for a,, and then
using this value to compute the fractional error e =
1 - apy/c. This leads to the simple expression:

e =[1+Q([E;] +4K,)] (32)
We finish this section by noting that Eq. (30) will be
found to be valid generally and not only for the simple
Michaelis-Menten scheme treated in this section; the
details of the reaction network come in through the form
of Eq. (31) which is reaction-specific.

Model II: Michaelis-Menten reaction occurring in a
compartment volume of sub-micron dimensions.
Substrate is input into compartment in groups or bursts of
M molecules at a time

A natural generalization of Model I which has direct
biological application is when substrate molecules are
fed into the compartment M at a time with mean
rate kgl‘ The total mean substrate input rate is then
equal to k;,, = M ki(:l . The master equation for this process
is Eq. (13) with the first term on the right hand side
replaced by Q(@3™ —1)k) . This leads to the following
change in the expression for a, (Eq. 17):

1, 22 1 32
Sk 5 > S kM (33)
aeS 868

Note that since the expression for a, (Eq. 16) is
unchanged, the deterministic equations are precisely
the same as those of Model I. However now the
fluctuations about the macroscopic substrate concentra-
tion are enhanced by a factor M; consequently the entries
in the vector B in Eq. (25) need the change k;, — k;,,M.
The analysis proceeds in the same manner as before. The
mesoscopic rate equation replacing the MM equation is
now given by Eq. (30) together with:

) a[a+;(M—1):|

34
flo) = L (34)
Km+ET|(1-2)
The fractional error rate evaluated at o = 1/2 gives:
M
(35)

T MIQET]+4K y)
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This clearly shows that generally larger deviations
from the predictions of the MM equation are expected
in this case compared to those computed for Model 1.

Model Ill: Michaelis-Menten reaction with

competitive inhibitor occurring in a compartment
volume of sub-micron dimensions. Substrate input

as in two previous models

Competitive inhikbitiz)n is rr;odeled by the set of
reactions: £>S+E%C—Z>E+P,Eé}3[, where ky = RJ[I]
and [I] is the inhibitor concentration (similar models
have been studied by Roussel and collaborators [30,31]
in the context of biochemical oscillators though these
assume M = 1). In the rest of this section, we change the
notation of enzyme-inhibitor complex from EI to V, just
to make the math notation easier to read. The substrate
input into the compartment is considered to occur as in
Model II since this encapsulates that of Model I as well.
The master equation for this system is:

% =kpQ(O5M - 1)1 + %’(@seg‘ ~Dngngr + k(005" -

+h,y (005" —Dnem + ky(Oy —1)ny + k, (07 - ng.
(36)

The change of variables from ny to ex is done as
before, however note that now the conservation law for
enzyme is different than in the two previous models. The
total enzyme concentration is now equal to [E7] = [E] +
[C] + [V] from which it follows that ny = Q[E] - Q"?(ec +
ev). The description is chosen to be in terms of numbers
of molecules of types C, S and V and thus E being a
dependent variable does not show up explicitly in the
step operators of the master equation above.

Due to the significant number of changes in the terms of
the expansion from those of previous models, we will
show the equivalent of Egs. (15)-(18) in full. The master
equation in the new variables ey is given by:

an_Ql/z[d[c] on _ d[P] oMl _ dis] anl _ d[v] aHJ

o dt dec dt dep dt deg  dt dey

=Q'"24 11+ Q%,TT + Q724,11+ O(Q7)
(37)

where

=~y 1 Rl ENST) 57+ (U + kI Kol IsT) 52
€S €C
d 9
Hk3[V] - ky[E]) v —ky[C] s

(38)
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1 2 1(a a3 Y 9 _ 9
az—gkmMQﬁ[%‘E] (ko[suEHkllCD*kz[E‘E}C
+[afsafc}[kn(esus](ewev)[snklec1+k3[afvev+;aféivlJ
I 1 d 2 )
+k4[2[E]a€\2/+aEV(6c+6v) ]+2kz[aep_aec ] [C].
(39)
2
1{ 0 9
as =2(365_36C] (koeslEl = ko(ec +€v)IS]
d d
+k1€c)—ko|:aes—aec:|€s(ﬁc+fv)
2 2 2
1 9 p) 1 9 1 J
1,9 _ 9 R Tk : .
2 z[aep deC ] “ 385\2/ M 486\2/ e
(40)

Analysis of Q'"? terms

As for previous models, these terms give the macroscopic
equations. Equating both terms of this order on the right
and left hand sides of Eq. (37) and using Eq. (38), one
obtains:

d[S]/ dt = k;, — ky[E][S] + ky[C], (41)
d[C1/ dt = kolEI[S] ~ (ky + Ie,)[C], (42)
d[P]/ dt = k,|C], (43)
d[V]/dt = ky[E] - ks[V]. (44)

In the steady-state we have the Michaelis-Menten (MM)
equation:

d|P] — Vmax[S]
dt  KpyQ+p)+HS]’

(45)

where f = [I]/K; and K; = ks/LJ is the dissociation
constant of the inhibitor.

Analysis of Q° and '"? terms

The equations for the first moments are easily obtained
and we shall not reproduce them here; suffice to say
that at steady-state, it is found that (¢5, ¢, v) — O
which implies that to this order in the system-size
expansion there cannot be any corrections to the
macroscopic equations or to the MM equation. The
addition of a new species, V, does however substantially
increase the algebraic complexity in the equations of
motion for the second moments computed using terms
up to order Q°. In particular the matrix A is now a 6 x 6
matrix, rather than the 3 x 3 matrix of the previous two
models.
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] [ ]
(el (ed)
9, <€\2/> =A- (E\zz) +B, (46)
(esey) (esev)
(ecey) (ecey?
L (T ] L (esecy i
where,
—2ko|E] 0 0 2ko[S] 0 2(k; + kolS))
0 —2kg(Ky+[S]) O 0 BIAN| 2o |E]
acl O 0 -2 0 —2k, 0
1 o —ky 0 -k —(ky + ) —ky
0 —hy ~ko[S] kolE]  ~ko(Ky +[S]) = I 0
0 —k, 0 0 0 —k,
(47)
and
kinM + ky[C] + ko [S][E]
ko([SI[E] + K 4[C])
ky[E]+ ks[V]
B= 0 (48)
0
1
5 Ui+ [C])

In the above equations we have defined k’ = ks + k,. Note
also that the system of equations has been simplified
through the application of a few row operations.

Now to next order, i.e. O'/?, the first moments of the
concentrations of molecules of type C and V are
governed by the equation of motions:

dlec) [ dt =—ko([S]+ Ky Xec) = kolSKey) + kol EKes) — kOQ_]/z«fsEc) +(esev))
(49)

dley) [ dt = —k3(ey) — ky((ec) +(€v)) (50)
As in previous models, since the production of product P
from complex occurs through a decay process, it follows
that at steady-state, (¢c) = 0 which also implies (ey) = 0
from Eq. (50). Hence it follows from Eq. (49) that (es) =
[(esec) + (esev)]/ Q" [E]. The two cross correlators can be
estimated to order Q° by solving Eqs. (46)-(48). The
non-zero value of (eg) implies a renormalization of the
substrate concentration inside the compartment and
hence to a new rate equation replacing the MM equation.
This is obtained exactly in the same manner as
previously shown for Model 1. The mesoscopic rate
equation is found to be given by Eq. (30) together with:
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(1+8) Tigcill-a)’

fla) = - (51)
KMIET] 54 (di(1-a)'
where the numerator coefficients are given by:
co = +k3(B +1)°Kiko[Ex], (52)

61 =K (B +1)2[(B + DIEr T2 = (36 + 2)[Er koK ks +IeoBtyuek
(53)
C2 ==K (B + DI22B + B+ DIE IS — (35 + 4 + DIE koK, +
“B(B + 1)V e = kol Ex]*Yes + B+ 2B)eqV K pg = (B + DIE7 kgt g ],
(54)
¢3 =H(1+3B+ B> +3B7)[EIK k3 — (BB + 1[Er koK +
(BB +1)? Ve = 201+ B)Er [ ko)K g + BB + DIEr Ve )5 +
Bz(l + B)kovmuxKl%/l - (2 + 3ﬁ + 2B2)[ET]I"’OvmmcKM]'
(55)
¢y = (=B + DIE7]* koK vy + BB + D)[Eg Va5 +
_[ET](ﬁ + ﬁz + 1)k0vmaxKM]'

(56)
and the denominator coefficients by:
do = +Kykoks(1+ B)*, (57)
dy = +K yls(B +1)°[B(ks = koK ) + ks3], (58)
dy = +K ylo(B + 1) [k3[E](B +2) + vyl (59)

dy = +(B +1)[k3B*[Er] = koB k3K y[Er] + 2k3 B[Er]

(60)
—kols BK y[Er] = koBVpaxK p +k§[ET”' (61)
dy =+ Eqlko[ks[Er]+ k3BIEr] + Vypa]- (62)

Note that 24 oCi = 0 such that at o = 0, there is no

i=
correction to the MM equation i.e. o, = 0 also. The case

B = 0 reduces to Model 1], i.e. f(e) is given by Eq. (34).

Stochastic simulation

In this section we briefly describe the simulation
methods used to verify the theoretical results which are
described in detail in the Results section. All simulations
were carried out using Gillespie’s exact stochastic
simulation algorithm, conveniently implemented in the
standard simulation platform, Dizzy [32].

The data points in Figure 2 were generated by iterating
the following four-step procedure: (i) pick a value for o
between 0 and 1. This gives the substrate input rate

Page 14 of 15

(page number not for citation purposes)



BMC Systems Biology 2009, 3:101

ki, = OWyay (ii) tun the simulation and measure the
ensemble-averaged substrate concentration, (ns/Q) = [S*]
at long times; (iii) compute oy, using the MM equation,
opm = [S*]/([S*]+ Kum); (iv) compute the absolute
percentage error R, = 100](1 - o/or)|. The solid curves
in Figure 2 were obtained by numerically solving the
cubic polynomial in & given by Egs. (7) and (8) in the
Results section for given values of &, and then using the
above expression for R, Figure 3 is generated in the same
manner as Figure 2, except that: in step (i) we fix M and
pick a value for a between 0 and 1. Since k;,, = M kgl , the
required simulation parameter is ki(; = OWmax/M; step
(iv) is not needed. The solid curves were obtained by
numerically solving the cubic polynomial in o given by
Egs. (7) and (9) in the Results section for given values of
[S*]. The y-axis for this figure is v/v,, = oy for the
MM equation and v/v,,,, = o for the stochastic model.
Figure 4 is obtained by numerically solving the quintic
polynomial in e given by Egs. (7) and (12) in the Results
section together with the coefficients given by Egs. (52)-
(62) in the present section; the inhibitor concentration,
[1], is varied while the substrate concentration, [S*], is
kept fixed. The substrate concentration is chosen so that
at [I] = 0, v/Vyax = 0.909 in all cases. Note that for models
Land II, oy = [S*]/([S*] + Ku) while for Model 111, oty =
[S*]/(IS*] + (1 + B)Ku)- Note that the error bars are very
small on the scale of the figures and thus are not shown.
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